
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Towards a polynomial algorithm for optimal contraction
sequence of tensor networks from trees

Jianyu Xu, Ling Liang, Lei Deng, Changyun Wen, Yuan Xie, and Guoqi Li
Phys. Rev. E 100, 043309 — Published 31 October 2019

DOI: 10.1103/PhysRevE.100.043309

http://dx.doi.org/10.1103/PhysRevE.100.043309

Towards a Polynomial Algorithm for Optimal Contraction Sequence of Tensor
Networks from Trees

Jianyu Xu1, Ling Liang2, Lei Deng2†, Changyun Wen3, Yuan Xie2, Guoqi Li1†
1Department of Precision Instrument, Center for Brain Inspired

Computing Research, Tsinghua University, Beijing 100084, China.
2Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA.

3School of EEE, Nanyang Technological University, Singapore, 639798.
† Corresponding to liguoqi@mail.tsinghua.edu.cn or leideng@ucsb.edu

The computational cost of contracting a tensor network depends on the sequence of contractions, but to
decide the sequence of contractions with a minimal computational cost on an arbitrary network has been proved
to be an NP-Complete problem. In this work, we conjecture that the problem may be a polynomial one if we
consider the computational complexity instead. We propose a polynomial algorithm for the optimal contraction
complexity of tensor tree network, which is a specific and widely-applied network structure. We prove that
for any tensor tree network, the proposed algorithm can achieve a sequence of contractions that guarantees the
minimal time complexity and a linear space complexity simultaneously. To illustrate the validity of our idea,
numerical simulations are presented that evidence the significant benefits when the network scale becomes large.
This work will have great potential for the efficient processing of various physical simulations and pave the way
for the further exploration of the computational complexity of tensor contraction on arbitrary tensor networks.

Key Words Tensor Contraction, Tensor Tree Net-
work, Polynomial Algorithm, Computational Com-
plexity

I. INTRODUCTION

Tensor network [1] plays an important role in the
fields of quantum mechanics [2], multi-dimensional
data [3], and artificial intelligence [4], with appli-
cations involved in strong quantum simulations [5],
quantum many-body systems [6], matrix product
states (MPS) and projected entangled pair states
(PEPS) [7–13], multiscale entanglement renormal-
ization ansatz (MERA) [14, 15], quantum chemistry
[16], quantum circuit simulation [17, 18], neural
network and machine learning algorithm [4, 19–24]
and signal processing [25].

However, there does not exist a unified definition
for tensor networks among the articles mentioned
above. Although the main idea of mapping a cluster
of tensors onto a graph module is valid in these def-
initions, the ways in which vertices and edges are
drawn are different from one another among these
works. For instance, in [1] and [14] vertices and
edges are used to represent tensors and indices, re-
spectively, but in [17] the condition turns over. Ac-

cording to the convenience of evaluating the time
and space complexity, we adopt the definitions in
[1] and [14], and make some modifications includ-
ing assigning weights to edges for representing the
number of common indices and assigning weights
to vertices for representing the number of free in-
dices. Formal definitions would be presented in the
following sections.

Tensor contraction is the basic and most impor-
tant calculus [26] for tensors. To contract two ten-
sors means to carry out inner product (multiplica-
tion in sequence and summation by indices) of some
corresponding orders, and perform outer product of
the other orders. For instance, a matrix product is
a 1-order contraction of two 2-order tensors. This
operation is especially important for a tensor net-
work [3, 17, 18, 27–30], because to calculate, or
actually contract, a tensor network asks for contrac-
tions of pairs of tensors until the whole network is
contracted into a single tensor.

Considering the high order and high dimension
(the number of elements in each order) of tensors,
it is always time-and-space consuming to contract
two tensors. As a result, we hope to optimize the
efficiency of contraction. Many works contribute to
the efficiency of tensor contraction, including a so-
called tensor contraction engine, or TCE [16, 31–
33] and other versions [34]. The work in [35]

2

has pointed out that the sequence of contractions
in a tensor network determines the computational
cost(the number of multiplications of elements) of
the whole contraction procedure, and it has also
proved that the problem to find out the optimal se-
quence towards the fewest multiplications is NP-
Complete. Therefore, most of existing works target
at optimizing the efficiency of searching [27, 29] in-
stead of designing a deterministic algorithm. These
searching algorithms can actually find out a se-
quence in which the computational cost is much
lower than their baselines, but they cannot ensure
an optimal sequence in polynomial time.

Now that the sequence for optimal computational
cost is proved to be an NP-Complete problem ac-
cording to [35], we have to weaken the conditions
in order to obtain a deterministic and polynomial
algorithm. On one hand, there exist other indi-
cators, the time complexity and space complex-
ity, that can reflect the cost from the perspective
of time and storage. The computational cost in
[35] refers to the total number of multiplications of
scalars in the whole process of contracting a tensor
network, while the computational complexity rep-
resents the largest complexity among every contrac-
tions of pairs of tensors, or so-called “steps”. If we
suppose that the total number of tensors does not
increase with the dimension, i.e. the number of ele-
ments in each order, of every tensor, we prove that
the computational cost in [35] is equivalent to the
time complexity of the same process under the func-
tion of O(·).

On the other hand, it is rational for us to conjec-
ture that it is easier to determine the sequence for a
minimal time(and space) complexity than to deter-
mine that for a minimal computational cost, since
the calculation of complexity is much simpler than
that of cost. This is also because that we prove a
subproblem, to determine the sequence for a min-
imal time and space complexity on a Tensor Tree
Network (TTN) [36, 37], also termed as Tree Ten-
sor Network State (TTNS) [38], to be polynomial,
while the problem of achieving the sequence for
a minimal computational cost on tensor tree net-
work has neither been determined to be polynomial
nor NP-Complete yet. It is worth mentioning that
there are many different tensor network structures
(see [1–3, 39–41] for a review), and tensor tree

network is a typical structure which is both likely
to find a polynomial algorithm and significant for
many applications. These applications include sim-
ulations on quantum systems [42, 43], quantum crit-
ical Hamiltons [44], quantum chemistry [37], Bathe
lattice [45], spain chains & lattices [46], and in-
teracting fermions [47], referring to [48] in a nut-
shell. Besides, in tensor decomposition algorithms,
the results of Tucker decomposition [49], Hierar-
chical Tucker decomposition [50], and MPS [7] are
also in the format of tensor tree networks. There
are also structures similar to a tensor tree network
[51]. More importantly, the work [52] reveals that
many other structures of tensor networks can be di-
rectly transformed into tensor tree networks without
any approximation. Therefore, if we can figure out
a polynomial-time algorithm that can determine the
optimal sequence of contracting any tensor tree net-
work, then we can reduce the computational cost of
many problems listed above.

In this work, we transform the module of ten-
sor network to another module of graph theory,
and accordingly transform the problem of mini-
mizing the computational complexity to a problem
of optimizing a specific status occurring in a se-
ries of operations on that graph module. We no-
tice that a tree graph has many excellent proper-
ties, including a simple and recursive structure that
can be maintained during contractions. Different
from those searching and heuristic ones mentioned
above, we propose a polynomial-time algorithm for
tree-structure network for the first time. The algo-
rithm can achieve a sequence of contractions that is
proved to be optimal in time complexity, and would
guarantee a linear space complexity according to in-
put or output. For a deterministic Turing Machine,
its space complexity is defined on its work tape(and
thus the optimal could be logarithm). However, if
we also take the input and output tapes into con-
sideration, we know that a linear space complex-
ity in comparison with input and output is also op-
timal. Therefore, our ”optimal space complexity”
refers to a ”linear space complexity” in the follow-
ing part. This paper also proves that at least one spe-
cific structure of tensor networks has a polynomial-
time algorithm that can reach an optimal sequence
of contractions. Since tensor tree network is use-
ful in a number of areas, such as quantum simula-

3

tion and continuum mechanism as aforementioned,
our algorithm is essential for high-performance pro-
cessing in those domains.

To draw a conclusion, we firstly transform the
NP-Complete problem of contraction sequence with
optimal computational cost to an open problem of
contraction sequence with optimal time and space
complexities. Under this problem, we then prove an
important subproblem of contraction sequence on
tensor tree network to be polynomial. The proof is
carried out by a polynomial algorithm, which can si-
multaneously achieve minimal time and space com-
plexities. Finally, we conduct numerical simula-
tions to illustrate the validity and efficiency of our
algorithm. The evaluations verify that our transfor-
mation of the problem is rational, and the polyno-
mial time complexity is efficient.

In the following parts, we firstly provide some
preliminaries and definitions in Section II. After
that, we formulate the problem we are aiming at in
Section III. In Section IV we propose our algorithm,
and prove its optimality. We also propose and prove
some basic rules for optimal solutions, which will
turn out to be fingerposts for future researches on
the optimal sequence of contractions of a complete
graph (network). In Section V we present firstly
an example of our algorithm on a tensor tree net-
work, and then numerical simulation results where
we will compare not only the time and space gap be-
tween the found optimal contraction sequence and
the vanilla baseline of random sequence, but also
the time spending on finding optimal contraction se-
quence between our algorithm and an existing algo-
rithm, using randomly generated tensors and tensor
tree networks. In Section VI the paper is concluded
with some discussions.

II. PRELIMINARIES

According to [1], we can similarly define a ten-
sor to be a multidimensional array, and the order of
a tensor to be the number of indices necessary for
referring any element in the tensor. Based on these
two definitions, we can then define the tensor con-
traction and the tensor network.

Tensor Contraction. We name the operation ten-

sor contraction when we sum over some common
indices, each pair of which occurs twice and only
twice, of several tensors as inner products while re-
maining the other indices as outer products, each of
which occurs once and only once. We name these
common indices dummy indices, and the other in-
dices free indices.

For example, with A ∈ RNa×Nb×Nc×Nd , and B ∈
RNb×Nc×Ne , we can define the contraction of A and B
as follows:

(AB)a,d,e =

Nb∑
b=1

Nc∑
c=1

Aa,b,c,d · Bb,c,e. (1)

Here we use the expression AB to represent the re-
sult of contraction of A and B, and similar expres-
sions will be used in the following parts.

We make an assumption that all the tensors in-
volved are “cubic”, which means all indices range
from 1 to N. In a later part, we will prove that the
module with this assumption is also fit for the cases
when tensors are not cubic. With this assumption,
we can see FIG. 1 to have a direct illustration of the
contractions of two tensors.

Tensor Network. In a contraction of many ten-
sors, we use a graph to represent their relationship:
For every tensor, we use a vertex A to represent it,
and give it a weight WA that equals the number of
free indices it has. For every pair of tensors (ver-
tices) A and B, we use an edge EA−B to connect
them, and we give it a weight WA−B that equals the
number of dummy indices they have in common.
For every edge whose weight is 0, we can delete
it. We call this network a tensor network, usually
denoted as Tnet (or T for a tree structure in the fol-
lowing sections).

Contractions on a Tensor Network. Now we
can transform the definition of tensor contraction to
a tensor network: (1) We draw another vertex to rep-
resent the result of contraction of the selected ten-
sors (vertices) and give this vertex a weight equal-
ing the sum of these vertices’ weights. (2) For every
edge who has one and only one end in the selected
vertices, we move this end to the newly drawn ver-
tex, with its weight unchanged. (3) For any pair
of vertices between whom there is more than one

4

A[0 , : , :]

A[, : , :]

A[0 , : , :]

A B C

(a)

(b)

A B(c) C

A[, : , :]

FIG. 1. Illustration of tensor contraction: (a) A contraction of a 3-order tensor A and a 2-order tensor B, with one order
R contracted, and the result C = AB is a 3-order tensor; (b) matrix representation of (a), where the 2 non-contracted
orders are merged (or ”vectorized”) into one order and the contraction turns into a matrix product; (c) The equivalent
process on a tensor network. Here we adopt Zi

X = NW i
X , i = 0, 1, X = A, B and ZA−B = NWA−B , where N ∈ Z+.

edge, we “merge” these edges into one edge and
give this edge a weight equaling the sum of these
edges’ weights. (4) Erase those selected vertices
and edges between them.

Apparently, the definition of contractions on a
tensor network is equivalent to the definition of ten-
sor contraction. Moreover, it is worth pointing out
that there are two meanings on contractions asso-
ciated with a tensor network. Firstly, every pair of
connected vertices shares one or more common in-
dices, which has been defined as a contraction. The
sharing of indices serves as connections, or edges,
between pairs of vertices. Any of these edges would
be eliminated in one step of contraction, but be-
fore this step it contributes to the structure of net-
work. To this end, contractions serve as the struc-
ture of a tensor network. Secondly, in order to cal-
culate(contract) a tensor network, we should con-
tract small groups of vertices (tensors) until there

only exists one tensor (vertex). Therefore, contrac-
tions also serve as the method to calculate a tensor
network.

As defined, the contraction of the whole net-
work can be settled via several contractions of small
groups of vertices. Since any contraction of three or
more tensors can be broken down to contractions of
pairs of tensors sequentially, we stipulate that the
tensor contraction refers to that of two tensors with-
out special statements. Accordingly, we also stipu-
late that the vertex contraction refers to that of two
vertices without special statements. In the following
sections, we will show that the 2-tensor contraction
is capable of achieving optimal time and space com-
plexity. In this way, the tensor network should be
contracted by several steps sequentially, with the to-
tal number of vertices reduced by one for each step.
Therefore, we will define the sequence of contrac-
tions of a tensor network.

5

A

C

B

D

E
1

A

C
E

1

BD

E

BD

AC

8

BD

ACE

ABCDE(a)

(b)

2

2

1

0

2
1

2

2
2

1
2

8TP 13

SP 11

TP 10

SP 9

TP 14

SP 14

TP 15

SP 14

(c)

Step 1 Step 2 Step 3 Step 4 Result

2

2

1

0

2
1

2

2
2

1TP 13

SP 11

TP 12

SP 9

TP 11

SP 9

TP 10

SP 8

2

2

1 1

4

1

6

7

7

1 3

3

5

2

FIG. 2. Contraction of two vertices (tensors) in a tensor network. In sequence (a) we use BD to represent the tensor
obtained from the contraction of B and D. The edge between the two tensors is eliminated, and the edges whose one
end is either of the two tensors merge these ends onto the new born-in-contraction vertex, with their weights remaining
unchanged. Sequence (b) illustrates that the weight of the new vertex equals the sum of weights of the original two
vertices. Sequence (b) and (c) are 2 different sequences of contractions, and they have different time and space power:
sequence (b) has a time power 15 and space power 14, and those of (c) are 13 and 11 respectively.

Sequence of Contractions. For a tensor network
Tnet with n vertices V1,V2, . . . ,Vn, it turns into Tnet1
with (n− 1) vertices after contracting 2 vertices and
we denote this step of contraction as the 1st step of
contractions, or θ1. In this way, we similarly get
θk in contracting tensor network Tnetk−1 into Tnetk,
where k = 2, 3, . . . , n − 1. By arranging these con-
tractions in order, we can get a sequence of contrac-
tions, termed as “sequence of tensor network con-
tractions” which is denoted as QTnet . Actually, for
any specific sequence we have

QTnet =
{
θ1,QTnet1

}
(2)

and

QTnetk−1 =
{
θk,QTnetk

}
,∀k = 2, 3, . . . , n − 1. (3)

It is worth mentioning that the sign QTnet is not a
function, but a notation for one sequence of con-
tractions of Tnet.

FIG. 2 illustrates the contraction of a tensor net-
work. In this instance, we aim at calculating the

expression∑
j,k,l,p,q,r,s,t,u,v,w,x,y

Ai1,i2, j,k,l · Bi3, j,p,q,r,s,t,u,v,w,x

·Ci4,i5,k,p,q,r · Dl,s,t,u,v,y · Ei6,i7,w,x,y
(4)

within several steps, which has been shown in FIG.
2 (b). Here every index ranges from 1 to N inde-
pendently. For instance, we calculate BD in the first
step by

BDi3, j,l,p,q,r,w,x,y

=

N∑
s=1

N∑
t=1

N∑
u=1

N∑
v=1

Bi3, j,p,q,r,s,t,u,v,w,x · Dl,s,t,u,v,y.
(5)

For the tensor network at this step, the vertex B is
contracted with D. According to the definition of
contraction on network, we merge EA−B with EA−D,
EB−C with EC−D and EB−E with ED−E respectively.
For example, we draw EA−BD to substitute EA−B and
EA−D, with its weight WA−BD = WA−B + WA−D.

In this way we calculate this expression by

6

contracting every pair of tensors. We notice that for
each step, the time complexity equals the product
of ranges of every index, and the space complexity
equals the one with a maximal space complexity
of the three tensors. If we suppose that the ranges
of every index(order) are all from 1 to N, then the
time complexity equals N to the exponential of the
number of indices involved. In the following part,
we will state these computational complexities, and
map them in a graph module as well.

Time Complexity and Space Complexity.
For tensors A ∈ RM1×M2×...×Mm×N1×N2×...×Nn and
B ∈ RN1×N2×...×Nn×U1×U2×...×Uu , where Mr,Ns,Ut ∈

Z+,∀r = 1, . . . ,m; s = 1, . . . , n; t = 1, . . . , u, the
time complexity of contracting A with B as the ex-
pression

(AB)i1,i2,...,im,k1,k2,...,ku

=

N1∑
j1=1

N2∑
j2=1

. . .

Nn∑
jn=1

Ai1,i2,...,im, j1, j2,..., jn · B j1, j2,..., jn,k1,k2,...,ku

(6)
equals M1M2 . . . MmN1N2 . . .NnU1U2 . . .Uu, and
the space complexity of that equals

max {M1M2 . . . MmN1N2 . . .Nn,

N1N2 . . .NnU1U2 . . .Uu,

M1M2 . . . MmU1U2 . . .Uu} .

(7)

Specifically, if Mr = Ns = Ut = N, the time
complexity equals Nm+n+q and the space complex-
ity equals Nmax{m+n,n+q,m+q}.

Note: For a sequence of contracting a tensor net-
work, the time/space complexity equals the max-
imum time/space complexity among every single
step.

Simultaneously, we define two functions on the
graph: “Degree” (denoted as D) of a vertex is de-
fined as the sum of weights connecting to this ver-
tex:

D(A) =
∑
B,A

WA−B; (8)

“Weight and Degree” (denoted as S WD) of a vertex
is the sum of weight and degree of this vertex, i.e.

S WD(A) = WA +D(A) = WA +
∑
B,A

WA−B. (9)

The S WD value of a vertex equals the exponential
of space complexity of the tensor it represents. For
example, if there is

A ∈ RNa×Nb×Nc×Nd , (10)

then we can have

S WD(A) = logN Na + logN Nb + logN Nc + logN Nd.
(11)

Besides S WD, it is found that any weight of a ver-
tex or an edge on the tensor network equals the ex-
ponential, or power, of the element it represents. If
we only concern the complexity but not the struc-
ture, which means we only consider the number of
multiplications of tensors being contracted, we can
only count the number of order, or the exponential
power, with a fixed base N. This is equivalent to
taking logarithms with base N. For an order whose
index ranges from 1 to M, we can suppose this or-
der to be logN M since M = N logN M . Since M and
N are all positive integers, the numbers representing
weights of vertices and edges on the tensor network
can be any non-negative real number. To this end,
we can assume that the range of every index(or or-
der) equals N consistently, and that the weight of
any edge or vertex can be any positive real number.
Next, we define the time and space power of one
contraction in a tensor network according to time
and space complexity we have stated.

Definition 1 (Time Power) In a contraction of two
vertices, we use PT to express time power:

PT (AB) = S WD(A) + S WD(B) −WA−B, (12)

where WA−B means the weight of edge connecting A
and B.

Definition 2 (Space Power) In a contraction of
vertices, we use PS to express the space power.

PS (AB) = max {S WD (A) , S WD (B) , S WD (AB)} .
(13)

Note: In this paper, there are several terminolo-
gies: computational cost, time and space complex-
ity, time and space power. These terminologies may
result in confusion. Therefore, we now clarify these
words:

7

1. The term computational cost, or cost, refers
to the total number of multiplications during
the whole process of contractions of a tensor
network;

2. The term time complexity refers to the max-
imum time complexity among every single
step of contracting a tensor network;

3. The term space complexity refers to the max-
imum space complexity among every single
step of contracting a tensor network;

4. The term time power, or PT , refers to the
logarithm of time complexity with base N.
Equivalently, time complexity equals NPT ;

5. The term space power, or PS , refers to the
logarithm of space complexity with base N.
Equivalently, space complexity equals NPS .

Besides, in Section IV D we will prove that our
algorithm can be conducted in polynomial time
complexity. Here the time complexity of the algo-
rithm is not relevant to the complexities of contract-
ing tensor networks.

III. PROBLEM FORMULATION

The contraction of a whole tensor network can
be seen as a collection of many single steps of 2-
tensor contraction. As mentioned in [18], the origi-
nal problem is to minimize the total number of mul-
tiplications (computational cost). Since this is an
NP-Complete problem, we cannot expect to achieve
a sequence of contractions via a polynomial algo-
rithm. Therefore, we try to consider a similar prob-
lem, i.e. computational complexity, which focuses
on the reduction of difficulty. Also, we solve a spec-
ified and significant subproblem in this paper: the
optimal sequences of contractions of tensor tree net-
works.

Before we define a tensor tree network, we firstly
define some basic terminologies that we would use
in the next sections:

(1) A path on a graph is an ordered set of vertices
and edges p(v0, vn) = v0e1v1e2 . . . vn−1envn, where
ei = (vi−1, vi),∀i = 1, 2, . . . , n. We record n as the
length of the path p(v0, vn).

(2) A connective (or connected) graph is a graph
G < V, E > where ∀vi, v j ∈ V there exists a path
p(vi, v j) ∈ G.

(3) A tree graph is a connective graph with no
loop. Also, when the graph G is a tree, there exists
one and only one p(vi, v j) ∈ G,∀vi, v j ∈ V .

(4) A leaf on a tree is a vertex that connects only
one other vertex.

(5) A root of a tree is the “origin” vertex of the
tree. Actually, any vertex on a tree can be selected
as the root.

(6) For a tree G < V, E > with a determined
root v0, we can define the relationship of father
vertex and child vertex: for any pair of vertices
vi, v j ∈ V that is connected by one edge viv j, if the
path p(v0, vi) is shorter than p(v0, v j), then vi is the
father vertex of v j, and v j is the child vertex of vi.
Generally, we call the only vertex connecting a leaf
the father vertex of the leaf.

(7) For a tree G < V, E > with a determined root
v0, and for any vertex vi ∈ V , if the length of the
path p(v0, vi) equals a nonnegative number r, then
we say that vi on the rth layer. Specifically, v0 is on
the 0th layer.

(8) For a tree G < V, E > with a determined root
v0, we define the width of a tree as the maximal of
numbers of vertices among each layers.

(9) For a tree G < V, E >, if a tree G1 < V1, E1 >
satisfies that G1 ⊆ G, then we call G1 as a subtree
of G.

The definition of a Tensor Tree Network is that
the structure of the tensor network is a tree. Fig.
3 shows a comparison of a typical tensor network
with a tensor tree network.

In order to transform the problem, we make the
following assumptions:

1. The tensor networks we deal with are tensor
tree networks;

2. The tensor tree network is supposed to be
connected without losing generality;

3. There are n tensors (vertices) in the tensor
tree network;

4. We only contract two vertices that are con-
nected at each step;

8

A

C

B

D

E

B

A C

ED F

(a) (b)

FIG. 3. Comparison of (a) a common tensor network with
(b) a tensor tree network. In (a) there exist cycles of con-
nected vertices, such as {A,B,C}, {A,B,D}, {B,E,D}. Dif-
ferent from that, in tensor tree network (b) there does not
exist any cycle.

5. The weights of vertices are all non-negative
real numbers, and the weights of edges are all
positive without losing generality;

6. We consider n to be a relative constant to
N. This means n does not increase with N
while considering the complexity of tensor
contractions, but it determines the complex-
ity of algorithm while considering the optimal
sequence of contractions.

Besides, we have made “cubic” and “two-tensor-
contraction” assumptions in the past sections. As
stated in Section I and Section II, the time/space
complexity of contracting the whole tensor network
equals the largest time/space complexity among ev-
ery step in the sequence of contractions. Accord-
ing to this, the time/space power equals the largest
time/space power. These can be denoted as the fol-
lowing equations:

PT
(
QTnet

)
= max

k=1,2,...,n−1
{PT (θk)} ; (14)

PS
(
QTnet

)
= max

k=1,2,...,n−1
{PS (θk)} . (15)

Remark 1. We have O(computational cost) =

O(time complexity) = NPT according to our as-
sumptions. This also means that “cost” and “com-
plexity” are equivalent under our assumptions. This
is because that on one hand, computational cost
equals the total number of multiplications of ev-
ery pair of scalars during the whole process of con-
tracting the tensor network, while time complexity

equals the number of multiplications of one single
step. Therefore, we have computational cost ≥
time complexity. On the other hand, since time
complexity equals the largest one among every of
all steps, we have computational cost ≤ n ×
(time complexity). Since n is a relative constant
to N, we know that O(computational cost) =

O(time complexity).

For the assumption of a tree graph, we adopt it
because there are no edges merging if we only con-
tract those pairs of vertices that are connected with
a non-zero weighted edge. Therefore, the structure
of a tree network would maintain a tree under these
contractions .

Remark 2. In a connected tensor tree network,
and under the stipulation of contracting two con-
nected tensors at each time, we can equivalently
consider each step of contracting two tensors as
eliminating one edge and merging its two ends. We
will use the word “eliminate” for several times in
the following sections.

Comparing FIG. 2 (b) with (c), we notice that dif-
ferent sequences of contractions may have different
time and space power. Therefore, it is an impor-
tant issue to determine the optimal sequence on time
and space power. The problem we will solve in this
work is to design an appropriate algorithm that can
achieve a sequence of contractions on a tensor tree
network with an optimal computational complexity
(power) in both time and space. Moreover, the algo-
rithm should be executed in polynomial time com-
plexity, with respect to the number n of tensors (ver-
tices), for any tensor tree network.

Remark 3. For any group of tensors, the time
power of contracting them by one pair of 2 vertices
for each time would not exceed that of contracting
them together at one time. Actually, for the latter
one, the time power equals the sum of all weights
of edges and vertices involved. However, for ev-
ery step of the former one, the time power equals
the sum of some weights involved, which is a sub-
set of that in the latter one. Therefore, the former
time power would not exceed the latter one. This
also means that our presuppose of 2-tensor contrac-
tion (and 2-vertices contraction) is able to achieve
an optimal sequence.

9

Algorithm 1: Optimal Sequence of Tensor Tree Network Contraction
Input: Tensor tree network Tn, number of vertices N
Output: Sequence of contractions

1 Set S 1 = {weights o f every edge};
2 Set S 2 = {weights o f every lea f };
3 Set S = S 1 ∪ S 2;
4 The Case n = 1 and n = 2 are trivial;
5 while n ≥ 3 do
6 if min S ∈ S 2 then
7 Contract the leaf whose weight is this minimum to its father vertex IN THE

FIRST STEP;
8 n = n − 1 go to step 4;
9 else

10 Determine the edge whose weight is the minimum to be eliminated IN THE
LAST STEP;

11 Add the weight of the two ending vertices of this edge by this minimum;
12 Divide the tree into 2 subtrees into Tk and Tn−k;
13 Tk with n=k go to step 4;
14 Tn−k with n=n-k go to step 4;
15 end
16 end

1

FIG. 4. Algorithm to find the optimal contraction sequence on tensor tree network. This is an recursive algorithm,
which reduces the problem from a scale of n to one or two subproblems with their scale k < n for each iteration. In
subsections IV A and IV B, we will sequentially prove the sequence to be optimal in both time and space complexity. In
subsection IV C we will prove our stipulation on edge contractions to be rational. Finally, in subsection IV D we prove
our algorithm to be polynomial.

IV. ALGORITHM AND ANALYSIS

In this section, we first propose an algorithm to
solve the problem described in Section III to ob-
tain the optimal sequence of tensor contractions on
a tree network. The algorithm is illustrated in FIG.
4 (Algorithm 1), and FIG. 5 illustrates how our al-
gorithm works in a specific tree structure. Without
losing generality, we then describe and analyze the
algorithm in the equivalent graph module.

Later we will prove the proposed algorithm actu-
ally achieves minima on both time and space power
in subsections IV A and IV B sequentially. In Sub-
section IV C, we will prove that our presuppose for
our algorithm to adopt only edge contractions is
able to achieve optimal time power by proving that
the result would not be better without this presup-
pose. Finally, in Subsection IV D we will prove

that our algorithm can be executed in polynomial
time. By this way, we shall strictly prove that the
optimally contracting tensor tree network is a Poly-
nomial problem, which provides a solid theoretical
foundation for our conjecture in this work.

A. Optimal Time Complexity

In this subsection, we prove that our algorithm
can achieve the sequence with optimal time com-
plexity, which is equivalent to achieving an optimal
time power on the graph. Before doing this, we
firstly present the following lemmas.

Lemma 1 The minimal weight of leaves would not
decrease during contractions of a tree. In other
words, for any tensor tree network T , and any one

10

FIG. 5. How our algorithm finds the optimal contraction sequence: (a) The case when A is the smallest element in the
set S of weights of leaves and edges. Since it occurs on a leaf, we contract this leaf with its father B in the first step. (b)
The case when WB−C is the smallest element in the set S . We determine to contract B with C in the last step. To contract
it in the last step means to consider the two parts divided by EB−C separately before the last step.

of the intermediate or final results during contrac-
tions, denoted as T

′

, we have

min
Vk is a lea f o f T

WVk ≤ min
V ′k is a lea f o f T ′

WV ′K
. (16)

Proof. Before the final step, contractions of a tree
can be divided into the following two cases: (i) a
leaf contracts with a non-leaf vertex, and (ii) a non-
leaf vertex contracts with another.

The latter case cannot emerge a leaf. This is be-
cause both of them have at least one edge other than
their common one, and according to the property of
a tree, these two edges are not connected with each
other. Therefore, the vertex born in their contrac-
tion has at least two edges, which determines it a
non-leaf vertex.

As a result, a leaf born in contraction must come
out from another leaf. Since weights of vertices
are summed up during contraction, the weight of
newly-born leaf cannot be less than that of an ex-
isting leaf. Therefore, the minimum of weights of
leaves cannot decrease.�

Lemma 2 For a tensor tree network T , we suppose
the edge EA−B be eliminated in θn−1, and the tree
be divided into 2 independent subtrees TA and TB
by this edge, whose roots are A and B respectively.
Therefore, we have:

PT (QT)

≥max
min

QTA

{
PT

(
QTA

)}
,min

QTB

{
PT

(
QTB

)}
, PT (θn−1)

=PT

arg min
QTA

{
PT

(
QTA

)}
, arg min

QTB

{
PT

(
QTB

)}
, θn−1

 .
(17)

Proof. We prove it by contradiction. We name
our sequence of contractions, to optimally contract
TA and TB and finally eliminate EA−B, as ”Q1”. Sup-
pose there exists another sequence, named as ”Q2”,
whose last step is to eliminate EA−B and whose time
power is less than that of Q1.

Assume the time power of contracting TA in Q1
to be PT (Q1A), and that in Q2 to be PT (Q2A). Sim-
ilarly we can get PT (Q1B) and PT (Q2B). Since the
final step in the two sequences are the same, we sup-
pose the time power of this step to be PT f inal.

According to the definition of time power of a
sequence of contractions, we know that the time
power of Q1 and Q2 aremax

{
PT (Q1A) , PT (Q1B) , PT f inal

}
,

max
{
PT (Q2A) , PT (Q2B) , PT f inal

}
.

(18)

Since Q1 is supposed to be optimal on the contrac-
tions of TA and TB, there are PT (Q1A) ≤ PT (Q2A)
and PT (Q1B) ≤ PT (Q2B). Therefore, we have

max
{
PT (Q1A) , PT (Q1B) , PT f inal

}
≤max

{
PT (Q2A) , PT (Q2B) , PT f inal

}
,

(19)

which is a contradiction. Therefore, the lemma is
proved. �

Lemma 3 Consider an arbitrary tensor tree net-
work T whose edges have the same weights, and QT
to be an arbitrary sequence of contractions. For any
adjacent two steps θk and θk+1, if we interchange

11

them and thus construct a new sequence Q
′

T , we
have

PT (QT) = PT

(
Q
′

T

)
. (20)

Proof. We name the two edges whose con-
tractions are interchanged as EA−B and EC−D. If
{A, B} ∩ {C,D} = ∅, their contractions are indepen-
dent of each other, and thus can be interchanged.
Otherwise, we suppose A = D and turn to consider
the contractions of EA−B and EA−C . Since these two
steps are adjacent on the sequence, whether these
two steps interchange will not affect the other steps.

If we contract A with B firstly and contract AB
with C secondly, then the time power of the two
steps as a whole is

max {S WD(A) + S WD(B) −WA−B,

S WD(AB) + S WD(C) −WA−C}

= max {S WD(A) + S WD(B) −WA−B,

S WD(A) + S WD(B) − 2 ×WA−B + S WD(C) −WA−C} .
(21)

As assumed, WA−B and WA−C are minimal. There-
fore, if C is a leaf, then we have

S WD(C) −WA−C = WC > WA−B. (22)

If C is not a leaf, then there exists another vertex E
connected to C. In this case, there is

S WD(C) −WA−C = WC +D(C) −WA−C

≥WC + WA−C + WC−E −WA−C

=WC + WC−E

=WC + WA−B

≥WA−B.

(23)

Therefore, no matter whether C is a leaf or not, we
always have

S WD(A) + S WD(B) − 2 ×WA−B + S WD(C) −WA−C

>S WD(A) + S WD(B) − 2 ×WA−B + WA−B

=S WD(A) + S WD(B) −WA−B.
(24)

Thus, we can get

max {S WD(A) + S WD(B) −WA−B,

S WD(AB) + S WD(C) −WA−C}

=S WD(A) + S WD(B) − 2 ×WA−B + S WD(C) −WA−C .
(25)

Similarly, if we contract A with C firstly followed
by contracting AC with B, then the time power is

max {S WD(A) + S WD(C) −WA−C ,

S WD(AC) + S WD(B) −WA−B}

= S WD(A) + S WD(C) − 2 ×WA−C + S WD(B) −WA−B.
(26)

Since WA−B = WA−C , we know that

S WD(A) + S WD(B) − 2 ×WA−B + S WD(C) −WA−C

=S WD(A) + S WD(C) − 2 ×WA−C + S WD(B) −WA−B,
(27)

which is to say that the two sequences have the same
time power. Therefore, they can be interchanged. �

Theorem 1 (Minimal Time Power) For any ten-
sor tree network T , suppose the sequence achieved
by the algorithm is QT alg

. This leads to the follow-
ing equation

PT

(
QT alg

)
= min

QT
{PT (QT)} . (28)

Proof. We prove the theorem by mathematical
induction.

Step 1: When n = 1, 2, the conclusion is trivial.

Step 2: When n = 3, without losing general-
ity, we suppose the structure of the tree can be ex-
pressed as FIG. 6.

Therefore, if we firstly contract A with B, the time
power is

max {WA + WB + WA−B + WB−C ,

WA + WB + WC + WB−C} .
(29)

If we firstly contract B with C, the time power is

max {WB + WC + WA−B + WB−C ,

WA + WB + WC + WA−B} .
(30)

Corresponding to the algorithm, we divide the
condition into two cases respectively:

Case 2.1: If the minimum exists on leaves, with-
out losing generality, we suppose the minimum is
WA. In this case, we have

WA + WB + WA−B + WB−C ≤ WB + WC + WA−B + WB−C

WA + WB + WC + WB−C ≤ WB + WC + WA−B + WB−C .
(31)

12

A B C

A B C

A B C

(a) (b) (c)

FIG. 6. A tensor tree network with n vertices when n=3 in (a). In specific, the case when WA =

min {WA,WC ,WA−B,WB−C} and the case when WA−B = min {WA,WC ,WA−B,WB−C} are provided in (b) and (c), respec-
tively.

Therefore, it comes the following inequation

max {WA + WB + WA−B + WB−C ,

WA + WB + WC + WB−C}

≤ WB+WC + WA−B + WB−C

≤ max {WB + WC + WA−B + WB−C ,

WA + WB + WC + WA−B} .

(32)

According to equations (29) and (30), it is better to
contract A with B on time power.

Case 2.2: If the minimum does not exist on
leaves, then the minimum must exist on an edge.
Without losing generality, we suppose the minimum
to be WA−B. Therefore, we have

WA > WA−B,

WC > WA−B,

WB−C ≥ WA−B.

(33)

Furthermore, there are inequationsWA + WB + WC + WB−C > WA + WB + WA−B + WB−C ,

WA + WB + WC + WB−C > WB + WC + WA−B + WB−C .

(34)
Therefore, we know

max {WA + WB + WA−B + WB−C ,

WA + WB + WC + WB−C}

=WA+WB + WC + WB−C

≥max {WB + WC + WA−B + WB−C ,

WA + WB + WC + WA−B} .

(35)

According to equations (29) and (30), we can con-
tract B with C firstly in order to achieve the minimal
time power.

Note that our algorithm is proposed based on
these two strategies and thus it can achieve the min-
imal time power when n = 3.

Step 3: Suppose the conclusion is true when n ≤

k, where k ≥ 2. Now we consider the case when
n = k + 1.

Accordingly, we also divided the condition into 2
cases:

Case 3.1: If the minimum exists on one leaf, we
give this leaf a name “A”. Also, we suppose its
weight to be WA. Since A is a leaf, we denote its
only adjacent vertex, which is also its father, as B
with its weight WB. The edge connecting A and B
has its weight WA−B.

Now we consider the contractions, which have
the following three possibilities: i) B contracts with
vertices other than A; ii) B contracts with A; iii)
Contractions between other vertices.

On one hand, the time power of contracting B
with A would not exceed that of contracting B with
any other vertex C. In fact according to equation
(12), the time power of contracting B with A, and B
with C are sequentiallyS WD (B) + S WD (A) −WA−B,

S WD (B) + S WD (C) −WB−C .
(36)

Since WA is the least among weights of leaves and
edges, and that S WD(A) = WA + WA−B, we have the
following considerations: i) If C is a leaf, S WD(C) =

WC + WB−C , then we have

S WD (B) + S WD (A) −WA−B

=S WD(B) + WA

≤S WD(B) + WC

=S WD(B) + S WD(C) −WB−C;

(37)

ii) If C is not a leaf, then there exists a vertex D
connecting to C other than B. Therefore, we have

S WD(C) =WC +D(C)
≥WC + WB−C + WC−D

≥0 + WB−C + WA

=WB−C + WA,

(38)

13

and further have

S WD(B) + S WD(A) −WA−B

=S WD(B) + WA

≤S WD(B) + S WD(C) −WB−C .

(39)

On the other hand, since WB−C = WAB−C , we
know

S WD(B) + S WD(C) −WB−C

=S WD(B) + S WD(C) −WAB−C

≥S WD(B) + S WD(A) − 2WA−B + S WD(C) −WAB−C

=S WD(AB) + S WD(C) −WAB−C .
(40)

Therefore, the time power of contracting AB with
any other vertex C would not exceed that of con-
tracting B with C.

With the two facts above, we consider the follow-
ing case: if we contract B with C just before A be-
ing contracted, we can firstly contract A with B and
secondly contract AB with C because this would not
make the time power increase. As a result, without
losing generality, we can firstly contract the leaf A,
whose weight is the minimum among the weights of
edges and leaves, with its father vertex. Thus, this
case is reduced to the case that n ≤ k.

Case 3.2: If the minimum does not exist on
leaves, then the minimum must exist on an edge and
the weight of every leaf must be strictly greater than
the minimal edge weight. According to our algo-
rithm, we should find out the edge with a minimal
weight, and stipulate this edge to be eliminated in
the last (or named the “kth”) step. After that, this
edge divides the tree into two subtrees. We then add
the weights of the two endings of this edge by the
minimal weight for each, in their subtrees, and deal
with the two subtrees independently. Now we prove
that the above strategy can achieve the minimal time
power.

In the case that n = k + 1, we prove the result
by contradiction. Suppose there exist sequences of
eliminating edges that can achieve the minimal time
power, and the edge contracted in the last step is
never the one with the minimal weight. Now we
select one sequence from those optimal sequences,
and consider this sequence in the following part. If
the edge contracted in the last step is EA−B, then this
edge divides the tree into two subtrees, and each of

them has a root A or B. As a result, the edge with a
minimal weight must exist at least in one of the two
subtrees.

Therefore, contractions before the last step can
be seen as those in the two subtrees, independently.
If we consider one of the subtrees individually, we
should take into consideration the edge to be con-
tracted during the last step. Consequently, while
considering the subtree whose root is A, we should
give A a new weight W

′

A = WA + WA−B, in order to
keep S WD(A) unchanged. This operation is similar
to B, that is to say, W

′

B = WB + WA−B. For the pur-
pose of expression, we name the two subtrees as TA
and TB.

Note that WA−B is not the least, and thus neither A
nor B will become a leaf whose weight is less than
the least weight of an edge. Now we go back to
the original tree, find out an edge with the minimal
weight, and name it as EC−D. Since the division of
A and B does not damage other edges, EC−D exists
in either TA or TB. Without losing generality, we
suppose that EC−D exists in TA.

We know that the result of contracting TA and TB
is not relevant to the sequence of contracting them.
According to Lemma 2, for an optimal sequence
along with the edge being eliminated in the final
step (A − B), we can guarantee the sequence to be
optimal by contracting TA and TB optimally. Since
the number of vertices in TA or TB is less than k, we
can optimally contract TA and TB in our algorithm.
As is supposed that EC−D exists in TA, the last step
in the optimal sequence of contractions of TA is to
eliminate EC−D. Without losing generality, we as-
sume that D is nearer to A than C (actually, D might
be exactly A).

Similar to the nomination of TA and TB, we name
the two subtrees of TA, divided by edge EC−D, as TC
and TAD, which respectively represent the subtree
with root C and the subtree between A and D. Also,
the contractions in TC , TAD and TB are independent
of each other, and according to Lemma 2, we can
optimally contract them individually.

Now we consider the last two steps of finding the
optimal sequence. Currently, there are three vertices
and 2 edges EA−B and EC−D remained. On one hand,
it has been supposed at the beginning that the time
power to contract EA−B after contracting EC−D is op-
timal, and it is strictly less than that of contracting

14

an edge with a minimal weight, such as EC−D, in the
last step. However, on the other hand, as is proved
in the case n = 3, an optimal sequence is to contract
EC−D in the final step. This is because that, since
WC−D is strictly less than the weight of any leaf and
the weight of any newly born leaf would not be less
than that of existed ones, WC−D is always the min-
imal weight among those of leaves and edges. Ac-
cording to our conclusion in the case n = 3, we
contract EC−D in the last step to achieve the optimal
sequence.

Therefore, our earlier assumption contradicts to
what we have proved in the case n = 3. Thus, in
the case that n = k + 1 and the minimal weight does
not exist on a leaf, we can achieve a sequence of
optimal time power by contracting (eliminating) the
edge with a minimal weight in the last step.

So far, we have only proved the necessity, and
now consider the sufficiency. If there is only one
minimally weighted edge, the sufficiency is trivial.
For the case that there is more than one, we know
that they are contracted after those edges whose
weights are larger than these minima. According to
Lemma 3, the sequence of contracting these mini-
mally weighted edges can be interchanged, and thus
can be arbitrarily arranged. Therefore, the sequence
of contracting them does not affect the time power
of the whole process. This proves our algorithm to
be sufficient.

In conclusion, we have proved that our algorithm
is valid in the case n = k + 1, and thus our algo-
rithm can achieve the minimal time power for any
tree graph module, according to the principle of in-
duction. �

B. Optimal Space Complexity

Theorem 2 (Minimal Space Power) For a tree T ,
we denote its final result of contractions, which is a
single vertex, as Tc. By applying the algorithm pro-
posed in Section IV to contract T , the space power
for every step will not exceed

max
{
max
A∈T
{S WD(A)} ,WTc

}
. (41)

Proof. Firstly, we have mentioned while dividing
a tree into two subtrees from one edge each time,

the two subtrees are not achieved directly. Instead,
for each subtree, before we consider it as a tree, we
should conduct an operation: find out the end ver-
tex of the “split” edge, add the weight of this “split”
edge of this vertex. Therefore, the S WD values of
these two end vertices keep unchanged in the origi-
nal tree and in the subtrees. As a result, every vertex
maintains its S WD value in the original tree and sub-
trees. Therefore, we only need to consider the in-
fluence of each contraction (or elimination) on the
subtree it belongs to, instead of considering the in-
fluence on the whole tree.

Now we consider the two operations adopted dur-
ing contraction. Operation 1: If the minimal weight
of leaves and edges emerges on a leaf, then we con-
tract the leaf to its father. Apparently, during this
contraction, the S WD of the father vertex is larger
than that of the leaf. Also, the combined vertex born
in contraction has a lower S WD value in comparison
with that of the father vertex. Therefore, this con-
traction does not emerge new vertices whose S WD
exceeds the maximum among already existing ones.
Operation 2: If the minimal weight of leaves and
edges does not emerge on a leaf, then it must emerge
on an edge. Therefore, we must eliminate an edge
with the minimal weight in the final step of con-
traction. This result in that the sum of the weights
of the two remaining vertices equals the sum of the
weights of all vertices in the tree (subtree). Thus the
sum cannot exceed the sum of vertices in the tree.

As there are only these two cases, we have proved
the theorem. �

Remark 4. Since the terms in equation (41) ex-
ist definitely, this expression is exactly the optimal
space power. In other words, it is the greatest lower
bound and this space power is the best result among
all kinds of contractions, since this result measures
the necessary space complexity for the storage of in-
puts and outputs. Therefore, in the following proof
of edge contractions to be a best stipulation, we will
only prove the optimization on time power.

C. Edge Contractions

In this subsection, we prove our stipulation of
“edge contraction”, which forbids the contractions
between two vertices that are not connected, as for-

15

mally stated in the following theorem.

Theorem 3 (Edge Contraction) For an arbitrarily
connected tensor network and any sequence of con-
traction Q1, if there are two non-connected ver-
tices contracted in Q1, then there must exist a dif-
ferent sequence of contraction Q2 such that: (1) No
non-connected vertices are contracted in Q2 and (2)
PT (Q1) ≥ PT (Q2).

Proof. The result is proved by contradiction. For
the steps that contract two non-connected vertices
each time in Q1, we consider the last one of these
non-connected-contraction steps. We denote the
two vertices as A and B and the combined (result-
of-contraction) vertex as AB. It is apparent that a
connected network would not be changed to a non-
connected one after any step of contraction. As a
result, we know this non-connected contraction is
not the final step of the whole sequence of contrac-
tions. Therefore, AB will be contracted with another
vertex in one of the future steps of contractions, and
we denote this vertex as C. On one hand, for con-
tractions between any vertices other than A or B,
the time power of these contractions would not be
affected by whether A or B is contracted or not. On
the other hand, the time power of contracting AB
with C is

S WD(AB) + S WD(C) −WAB−C

=S WD(A) + S WD(B) + S WD(C) −WA−C −WB−C

= (S WD(A) −WA−C) + (S WD(B) −WB−C) + S WD(C).
(42)

Since the contraction of A with B is the last step
of non-connected contractions, the contraction of
AB with C must be an edge contraction. Therefore,
C must connect with at least one of A and B. With-
out losing generality, we suppose A and C are con-
nected. If we firstly contract A and C as AC, then
contract B with AC, the result is the same and thus
the time power of contractions after these two steps
remains unchanged. However, the time power of
these two steps of contractions turns out to be

max {S WD(A) + S WD(C) −WA−C ,

S WD(B) + S WD(AC) −WB−AC} .
(43)

Since we have
S WD(AC) = S WD(A) + S WD(C) − 2 ×WA−C

WB−AC = WA−B + WB−C = WB−C ,
(44)

the new time power equals

max {S WD(A) + S WD(C) −WA−C ,

S WD(B) + S WD(A) + S WD(C) − 2 ×WA−C −WB−C}

= max {(S WD(A) −WA−C) + S WD(C),
(S WD(B) −WB−C) + (S WD(A) −WA−C)

+ (S WD(C) −WA−C)} .
(45)

Notice the inequation

(S WD(A) −WA−C) + (S WD(B) −WB−C) + S WD(C)
≥ (S WD(A) −WA−C) + S WD(C),

(46)
and

(S WD(A) −WA−C) + (S WD(B) −WB−C) + S WD(C)
≥ (S WD(B) −WB−C) + (S WD(A) −WA−C)
+ (S WD(C) −WA−C) .

(47)
Therefore, the inequation comes out as

(S WD(A) −WA−C) + (S WD(B) −WB−C) + S WD(C)
≥max {(S WD(A) −WA−C) + S WD(C), (S WD(B) −WB−C)

+ (S WD(A) −WA−C) + (S WD(C) −WA−C)} .
(48)

With this rearrangement, the time power would at
least remain unchanged, if not decrease.

Also, if B and C are connected with a non-zero-
weighted edge, then the contraction of AC and B
is also an edge contraction, and thus the total num-
ber of non-connected contraction decreases by one.
Otherwise, the contraction between B and AC is a
non-connected contraction, which means that the
last step of non-connected contractions moves later
by one step. Since there are all edge contractions
after the step of contracting B and AC, this step is
the current last step of non-connected contractions,
and we can consider this step in a similar way as we
have just conducted. According to equation (48),
an adjustment on the sequence can either change
this non-connected contraction to an edge contrac-
tion, or move later the last step of non-connected
contractions by one step. Since the total number
of contractions is limited, and the fact that the final
step of the whole contractions must be an edge con-
traction, we know that the selection of moving later
by one step is not always valid. Thus, there must

16

2

1 1

3 0

2

1

3 3

(a)

(b)

Step 1 Step 2 Step 3 Step 4 Result

2

A

B C

D E

A

B

D D

ABCDECE

AB

CE

2

AB

CED

1 1
3

4

TP 8

SP 8

3

TP 6

SP 5

TP 9

SP 6

TP 9

SP 7
7

FIG. 7. The optimal sequence of contracting a tensor tree network: (a) The sequence our algorithm determines; (b) Time
power and space power for each step. For the optimal sequence shown here, the time power for the whole process is 9,
and the space power is 8.

exist a time when the rearrangement results in an
edge contraction, and the number of non-connected
contractions will be reduced by one. In conclusion,
we can always reduce the number of non-connected
contractions by one in limited operations of adjust-
ments on the sequences. As a result, the number of
non-connected contractions can be reduced to zero
after our finite number of operations of adjustments.
In other words, there exists a sequence, achieved by
adjusting from our original one, that has no non-
connected contractions and has a time power which
is no more than that of our original sequence. Thus
we have proved this theorem. �

D. Polynomial Complexity for Algorithm Execution

In the three subsections above we have proved the
validity of our algorithm. Now we will prove that it
is a polynomial algorithm.

Theorem 4 (Polynomial Algorithm) The algo-
rithm proposed in Section IV can be executed in
O

(
n2

)
time complexity.

Proof. For every loop in executing our algorithm,
we only need to find out the minimal element in the
set of weights of edges and leaves, whose number

of elements is at most 2n. It takes O (n) time com-
plexity to find out the minimal element from a set of
2n elements. Also, after executing every loop in the
algorithm, we can select one edge to be connected
in either the first or the last step among the follow-
ing steps of contractions, and thus the algorithm can
be executed in n − 1 steps. Therefore, the total time
complexity of the algorithm is O(n2). �

V. EXAMPLE AND SIMULATIONS

In this section, an example and some numerical
simulations of contracting tensor tree networks are
demonstrated.

A. An Example of Tree Network Contraction

We firstly give an example to illustrate our algo-
rithm, as shown in FIG. 7 where we calculate the
following expression:

N∑
j=1

N∑
k=1

N∑
l=1

N∑
p=1

N∑
q=1

N∑
r=1

N∑
s=1

N∑
t=1

Ai1,i2, j,k,l · Bi3, j

·Ci4,k,l,p,q,r,s,t · Di5,i6,i7,p,q,r · Es,t.

(49)

17

TABLE I. Stipulations and Sequences
Parameters Stipulations or Sequences

Weights of leaves 0 (65% possibility) or 1 (35% possibility)
Weights of other vertices 0

Weights of edges Among {1,2,3} randomly
Number of layers From 2 to 9 sequentially

Number of vertices in each layer Among {1,2,3} randomly
N From 2 to 5 sequentially

According to the proposed algorithm, the minimal
weight of edges and leaves belongs to the leaf E,
whose weight is zero. Therefore, we contract E with
its father C firstly, to be CE, which is not a leaf.
Secondly, the minimal weight belongs to the leaf B,
whose weight is one, and we contract B with its fa-
ther A, to be AB. After that, the minimal weight
belongs to the edge EAB−CE , and thus we contract
(eliminate) this edge in the last step. Therefore, we
contract ECE−D prior to EAB−CE . The time power
emerges in the third and the fourth steps, and the
time power of this sequence of contractions equals
9. The space power emerges in the original vertex
C. This example would help to understand our al-
gorithm.

B. Simulations on Tensor Network Contractions

Now we carry out numerical simulations to illus-
trate the efficiency of our algorithm on large num-
bers of random tensor tree networks. We compare
the time power and the total number of multipli-
cations of applying our algorithm with that of ap-
plying a random sequence of contraction for every
randomly-structured tree in different conditions.

The following main factors that affect the time
and space complexity, or cost, are considered while
conducting simulations. The first is the number of
orders of tensors (the S WD(·)), including the weight
of each vertex and each edge. Another is the dimen-
sion of each order of tensors, which is denoted as N
in the sections above. Besides, the size of the tree
network also plays an important role, including the
depth (the number of layers in a tree once we select
a root) and the width (the number of vertices in each
layer).

Our goal is to testify the validity of our algorithm
in all kinds of tensor tree networks and to illustrate
the advantages of our algorithm over a random se-
quence of contraction. For the former one, the se-
lection of tree network must be random. However,
considering the computational bound of our device,
we stipulate that the weight of a leaf is either 0
(65% probability) or 1 (35% probability), and the
weights of edges range from 1 to 3 randomly. Also,
we stipulate that the tree width ranges from 1 to 3
randomly. These stipulations are applied in every
simulation. For the latter one, we would like to ver-
ify that our algorithm can save more time or space
as the scale of the problem increases. Therefore,
we carried out the simulation with the following se-
quences: the depths of the tree range from 2 to 9
sequentially, and N ranges from 2 to 5 sequentially.
These stipulations and sequences are summarized in
Table I.

In order to evaluate the efficiency of our algo-
rithm in practical scenarios, we develop the follow-
ing 4 indicators for every random tree: (1) Running
time, including the time for contraction and the time
for executing our algorithm; (2) Time for contrac-
tion; (3) Storage space; (4) Computational cost that
counts the total amount of multiplications.

For each configuration of the tree depth and N,
we set up 500 tensor tree networks randomly, ac-
cording to our stipulations. We execute our algo-
rithm on each of them and calculate the average of
the 500 results on each indicator individually. We
then plot these averages according to the sequence
on charts, as in FIG. 8. To clearly show the ad-
vantages of our algorithm over random sequences,
which can be excessively large, we use logarithmic
coordinates for some indicators.

From FIG. 8 we have noticed the following ob-

18

0.0

0.1

0.2

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

3 4 5 6 7 8 9

A
vg

 R
u

n
n

in
g

Ti
m

e(
s)

Dimension
Depth

(a) Running Time Comparison

opt_total rand_total

0.0

0.1

0.2

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

3 4 5 6 7 8 9

A
vg

 R
u

n
n

in
g

Ti
m

e
(s

)

Dimension
Depth

(b) Contraction Time Comparison

opt_contract rand_contract

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

3 4 5 6 7 8 9

A
vg

 R
u

n
n

in
g

Ti
m

e(
s)

Dimension
Depth

(c) Storage Comparison

opt_storage rand_storage

1E+2

1E+4

1E+6

1E+8

1E+10

1E+12

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

3 4 5 6 7 8 9

A
vg

 R
u

n
n

in
g

Ti
m

e(
s)

Dimension
Depth

(d) Computation Cost Comparison
opt_cost rand_cost

FIG. 8. These four charts compare the numerical simula-
tion properties of our algorithm with that of random con-
tractions, from different perspectives: (a) The total time,
including the time spent on our algorithm, the procedure
of contraction and rearrangement of elements; (b) Time
on contractions, with each point on these two plots repre-
senting an average of 100 random cases; (c) and (d) are
logarithmic algorithms with logs base 10, which sequen-
tially express the storage(space) cost and computational
(numbers of multiplications) cost. The results show the
advantages of our algorithm over a random sequence of
contractions on these four scales.

servations:

1. Overall, the results of optimal sequences of
contraction achieved via our algorithm are al-
ways better than those of the random ones in
any condition and under all of these indica-
tors.

2. With the increase of tree depth, both optimal
and random sequences are more time-and-
space-consuming. Our algorithm presents an
increasing advantage on every indicator: it
spends 1/103 of computational cost and stor-
age on the condition when Depth = 9, but
it expresses imperceptible advantages when
Depth = 2 (both under the condition N = 5).
For the running and contraction time, our al-
gorithm also shows increasing benefits.

3. With the increase of dimension N of each or-
der of tensors, the problem is apparently more
exhausting. Actually, the advantages of our
algorithm become more significant on any in-
dicator as N increases.

C. Simulations on Searching for Sequences

Now we present another set of numerical ex-
periments. Since our algorithm is proved to be a
polynomial-time algorithm, we conjecture that the
algorithm presented in [29] should be more time
consuming than ours while performing on the same
tensor tree networks. Therefore, we have carried
out the following numerical simulations, comparing
these two algorithms in terms of execution time. We
use the MATLAB code from [29] and a Python code
for our algorithm. All inputs are constructed simi-
larly to those in the last subsection V B. For simplic-
ity, we set the number of vertices in each layer as a
fixed number 3 in all tests, and change only the tree
depth to reflect the increase of scale. In this work,
we only aim to find the contraction sequence of a
network rather than doing real tensor contractions.
Thus, the value of N and the distribution of weights
are not necessary. In other words, we just need to
guarantee that all input weights are no more than
the same constant number.

19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 51 101 151 201 251

Se
ar

ch
in

g
Ti

m
e/

s

Number of Layers

0

20

40

60

80

100

120

140

3 4 5 6 7

Se
ar

ch
in

g
Ti

m
e/

s

Number of Layers

0 50 100 150 200 250

NCOP SCOP

FIG. 9. Comparison of the execution time between our algorithm and the one in [29]. We construct a tree by starting
from a root and giving each layer 3 vertices, and then we randomly connect vertices between adjacent layers without
forming any loop. Weights of vertices and edges are randomly chosen non-negative real numbers within a constant
range. Specifically, (a) we plot the execution time of our algorithm on trees with different number of layers, and (b) plot
the search time of the algorithm [29] on trees with different number of layers. “NCOP” and “SCOP” in (b) represent
“Not Consider Outer Product” and “Should Consider Outer Product”, respectively, due to an alternate trade-off of their
algorithm. It is apparent that our algorithm can perform much better than the prior one.

Fig. 9 depicts the simulation results. Fig. 9(a)
reveals that our algorithm can find an optimal se-
quence within one second on average even on trees
with 250 layers and 751 vertices totally. Further
analysis shows that the trend of this series of time
could be well represented by a polynomial within
O(n3), which is exactly the time complexity of our
code and could still be optimized until O(n2). In
comparison, Fig. 9(b) shows that the algorithm pre-
sented in [29] is much more time-consuming. As is
shown, performing on a network with only 7 layers
would take more than 100s. If the number of layer
exceeds 8, our personal computer would no longer
be able to execute their algorithm due to the insuf-
ficient memory space. Apparently, all those huge,
and even increasing, gaps could not be just owed to
the difference between Python and MATLAB. In a
nutshell, our algorithm is more efficient in finding
an optimal sequence of contracting tensor tree net-
works.

To be honest, the algorithm in [29] have already
saved a large number of unnecessary searches (e.g.
remove the search of outer products) and thus saved
a large amount of time, but it is still not a polyno-
mial one. Their dynamic-programming based algo-
rithm would be much less efficient than ours, even if
in the tree cases where their algorithm can perform
better than other networks due to the more remov-

able unnecessary searches.

VI. CONCLUSION AND DISCUSSION

In this paper, we first transform the NP-Complete
problem on minimizing the computational cost of
contracting a general tensor network to an open
problem on minimizing the time and space com-
plexities. This kind of transformation leads to a sim-
plification of calculation, as it originally needs addi-
tions and multiplications when calculating a cost but
now only additions (on the index of power) when
calculating the complexity. Moreover, our work
contributes to the efficiency of tensor network con-
traction, by figuring out the optimal sequence of
contracting an important tensor network structure,
the tensor tree network. We propose a polynomial
algorithm to find the optimal contraction sequence
on tensor tree networks, and we prove that this al-
gorithm indeed achieves the optimal time and space
complexity. In order to illustrate the effectiveness of
our algorithm, we also carry out numerical simula-
tions of tensor tree network contractions and com-
pare the time and storage cost of the contraction se-
quences with those of random sequences, respec-
tively.

In addition, we believe that the solution of tree

20

networks would serve as a key to that of more com-
plex networks, or even arbitrary ones. For a cycle
with n vertices, we can first enumerate all possible
operations of the final step and then apply our algo-
rithm on the previous part, which has been “split”
into two chains (also trees in general) by the final
step. In this way, the time complexity to achieve
the optimal contraction sequence of an n-vertex cy-
cle is O(n4) in total, revealing that this subproblem
is polynomial. Similar polynomial methods can be
applied on any tensor network with a constant num-
ber of loops. Also, some important properties of the
tensor tree network, such as the edge with a min-
imal weight, might be taken into consideration in
our future research on general networks. Besides
of those inspiring properties, tensor tree network it-
self has plenty of applications involving simulations
of physics systems, as aforementioned in Section I.
These important applications would reflect the sig-
nificance of our work to a great extent.

However, there are still many issues remaining to
be addressed. First of all, the problem of achieving
the optimal computational complexity of contract-
ing an arbitrary complete graph has not been clas-
sified into any complexity class, though the prob-
lem of achieving the optimal total computational
cost has been proved to be NP-Complete. This is
equivalent to the question whether our transforma-
tion from “cost” to “complexity” is really a “simpli-
fication” or not, because the hardness of these two

problem would be identical if the problem “com-
plexity” is also proved to be NP-complete. Second,
it is unknown whether the optimal time complexity
can always come up simultaneously with an opti-
mal space complexity in a complete graph, although
it has been achieved in our algorithm on the ten-
sor tree network. Furthermore, although we have
proved that our algorithm can achieve an optimal
sequence of contractions, it is not clear whether the
method of contractions is efficient enough for cal-
culating tensor networks or not. For instance, the
time complexity of computing a matrix-chain prod-
uct is O(N3) according to our algorithm based on the
framework of tensor contractions, but there do exist
methods that calculate matrix products differently
and can guarantee a lower complexity [53]. These
problems are attractive but challenging, which de-
serve further researches.

ACKNOWLEDGMENT

This work was partially supported by National
Natural Science Foundation of China (Grant No.
61876215), National Science Foundation (Grant
No. 1817037), Tsinghua University Initiative Sci-
entific Research Program, and Tsinghua-Foshan
Industry-University-Research Cooperation and In-
novation Funds. We also gratefully acknowledge
Mr. Pengfei Yu, Mr. Xuanyuan Luo and Mr. Zhiyu
Wei, all from Tsinghua University, for their salutary
attempts and precious inspirations on the design of
our algorithm.

[1] Román Orús, “A practical introduction to tensor net-
works: Matrix product states and projected entan-
gled pair states,” Annals of Physics 349, 117–158
(2014).

[2] Jacob Biamonte and Ville Bergholm, “Quantum
tensor networks in a nutshell,” arXiv preprint
arXiv:1708.00006 (2017).

[3] Andrzej Cichocki, “Tensor networks for big data
analytics and large-scale optimization problems,”
arXiv preprint arXiv:1407.3124 (2014).

[4] Richard Socher, Danqi Chen, Christopher D Man-
ning, and Andrew Ng, “Reasoning with neural ten-
sor networks for knowledge base completion,” in
Advances in neural information processing systems

(2013) pp. 926–934.
[5] Cupjin Huang, Michael Newman, and Mario

Szegedy, “Explicit lower bounds on strong quan-
tum simulation,” arXiv preprint arXiv:1804.10368
(2018).

[6] Frank Verstraete and J Ignacio Cirac, “Renormaliza-
tion algorithms for quantum-many body systems in
two and higher dimensions,” arXiv preprint cond-
mat/0407066 (2004).

[7] Frank Verstraete, Valentin Murg, and J Ignacio
Cirac, “Matrix product states, projected entangled
pair states, and variational renormalization group
methods for quantum spin systems,” Advances in
Physics 57, 143–224 (2008).

21

[8] Andreas Holzner, Andreas Weichselbaum, and Jan
von Delft, “Matrix product state approach for a two-
lead multilevel anderson impurity model,” Physical
Review B 81, 125126 (2010).

[9] David Perez-Garcia, Frank Verstraete, Michael M
Wolf, and J Ignacio Cirac, “Matrix product state
representations,” arXiv preprint quant-ph/0608197
(2006).

[10] Robert Hübener, Volckmar Nebendahl, and Wolf-
gang Dür, “Concatenated tensor network states,”
New Journal of Physics 12, 025004 (2010).

[11] G Scarpa, A Molnar, Y Ge, JJ Garcia-Ripoll,
N Schuch, D Perez-Garcia, and S Iblisdir, “Com-
putational complexity of peps zero testing,” arXiv
preprint arXiv:1802.08214 (2018).

[12] Andras Molnar, José Garre-Rubio, David Pérez-
Garcı́a, Norbert Schuch, and J Ignacio Cirac,
“Normal projected entangled pair states generating
the same state,” arXiv preprint arXiv:1804.04964
(2018).

[13] Michael Lubasch, J Ignacio Cirac, and Mari-
Carmen Banuls, “Unifying projected entangled pair
state contractions,” New Journal of Physics 16,
033014 (2014).

[14] Szilárd Szalay, Max Pfeffer, Valentin Murg, Gergely
Barcza, Frank Verstraete, Reinhold Schneider, and
Örs Legeza, “Tensor product methods and entangle-
ment optimization for ab initio quantum chemistry,”
International Journal of Quantum Chemistry 115,
1342–1391 (2015).

[15] Philippe Corboz and Guifré Vidal, “Fermionic mul-
tiscale entanglement renormalization ansatz,” Phys-
ical Review B 80, 165129 (2009).

[16] Takeshi Yanai, Haruyuki Nakano, Takahito Naka-
jima, Takao Tsuneda, So Hirata, Yukio Kawashima,
Yoshihide Nakao, Muneaki Kamiya, Hideo Sekino,
and Kimihiko Hirao, “Utchema program for ab ini-
tio quantum chemistry,” in International Conference
on Computational Science (Springer, 2003) pp. 84–
95.

[17] Sergio Boixo, Sergei V Isakov, Vadim N Smelyan-
skiy, and Hartmut Neven, “Simulation of low-depth
quantum circuits as complex undirected graphical
models,” arXiv preprint arXiv:1712.05384 (2017).

[18] Jianxin Chen, Fang Zhang, Mingcheng Chen,
Cupjin Huang, Michael Newman, and Yaoyun Shi,
“Classical simulation of intermediate-size quantum
circuits,” arXiv preprint arXiv:1805.01450 (2018).

[19] Xipeng Qiu and Xuanjing Huang, “Convolutional
neural tensor network architecture for community-
based question answering.” in IJCAI (2015) pp.
1305–1311.

[20] Dong Yu, Li Deng, and Frank Seide, “The deep
tensor neural network with applications to large vo-
cabulary speech recognition,” IEEE Transactions on
Audio, Speech, and Language Processing 21, 388–
396 (2013).

[21] Wenzhe Pei, Tao Ge, and Baobao Chang, “Max-
margin tensor neural network for chinese word seg-
mentation,” in Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), Vol. 1 (2014) pp.
293–303.

[22] Yinchong Yang, Denis Krompass, and Volker Tresp,
“Tensor-train recurrent neural networks for video
classification,” arXiv preprint arXiv:1707.01786
(2017).

[23] Timur Garipov, Dmitry Podoprikhin, Alexander
Novikov, and Dmitry Vetrov, “Ultimate tensoriza-
tion: compressing convolutional and fc layers alike,”
arXiv preprint arXiv:1611.03214 (2016).

[24] Alexander Novikov, Dmitrii Podoprikhin, Anton
Osokin, and Dmitry P Vetrov, “Tensorizing neural
networks,” in Advances in Neural Information Pro-
cessing Systems (2015) pp. 442–450.

[25] Andrzej Cichocki, Danilo Mandic, Lieven De Lath-
auwer, Guoxu Zhou, Qibin Zhao, Cesar Caiafa, and
Huy Anh Phan, “Tensor decompositions for signal
processing applications: From two-way to multiway
component analysis,” IEEE Signal Processing Mag-
azine 32, 145–163 (2015).

[26] Wolfgang Hackbusch, Tensor spaces and numerical
tensor calculus, Vol. 42 (Springer Science & Busi-
ness Media, 2012).

[27] Glen Evenbly and Robert NC Pfeifer, “Improving
the efficiency of variational tensor network algo-
rithms,” Physical Review B 89, 245118 (2014).

[28] Igor L Markov and Yaoyun Shi, “Simulating quan-
tum computation by contracting tensor networks,”
SIAM Journal on Computing 38, 963–981 (2008).

[29] Robert NC Pfeifer, Jutho Haegeman, and Frank Ver-
straete, “Faster identification of optimal contraction
sequences for tensor networks,” Physical Review E
90, 033315 (2014).

[30] Robert NC Pfeifer, Glen Evenbly, Sukhwinder
Singh, and Guifre Vidal, “Ncon: A tensor
network contractor for matlab,” arXiv preprint
arXiv:1402.0939 (2014).

[31] Albert Hartono, Alexander Sibiryakov, Marcel
Nooijen, Gerald Baumgartner, David E Bernholdt,
So Hirata, Chi-Chung Lam, Russell M Pitzer, J Ra-
manujam, and P Sadayappan, “Automated opera-
tion minimization of tensor contraction expressions
in electronic structure calculations,” in International
Conference on Computational Science (Springer,

22

2005) pp. 155–164.
[32] So Hirata, “Tensor contraction engine: Ab-

straction and automated parallel implementation
of configuration-interaction, coupled-cluster, and
many-body perturbation theories,” The Journal of
Physical Chemistry A 107, 9887–9897 (2003).

[33] Qingda Lu, Xiaoyang Gao, Sriram Krishnamoor-
thy, Gerald Baumgartner, J Ramanujam, and
Ponnuswamy Sadayappan, “Empirical performance
model-driven data layout optimization and library
call selection for tensor contraction expressions,”
Journal of Parallel and Distributed Computing 72,
338–352 (2012).

[34] Albert Hartono, Qingda Lu, Xiaoyang Gao, Sriram
Krishnamoorthy, Marcel Nooijen, Gerald Baum-
gartner, David E Bernholdt, Venkatesh Choppella,
Russell M Pitzer, J Ramanujam, et al., “Identifying
cost-effective common subexpressions to reduce op-
eration count in tensor contraction evaluations,” in
International Conference on Computational Science
(Springer, 2006) pp. 267–275.

[35] Chi-Chung Lam, P Sadayappan, and Rephael
Wenger, “On optimizing a class of multi-
dimensional loops with reductions for parallel
execution,” Parallel Processing Letters 7, 157–168
(1997).

[36] Wolfgang Hackbusch and Stefan Kühn, “A new
scheme for the tensor representation,” Journal of
Fourier analysis and applications 15, 706–722
(2009).

[37] Naoki Nakatani and Garnet Kin-Lic Chan, “Efficient
tree tensor network states (ttns) for quantum chem-
istry: Generalizations of the density matrix renor-
malization group algorithm,” The Journal of chemi-
cal physics 138, 134113 (2013).

[38] Valentin Murg, Frank Verstraete, Reinhold Schnei-
der, Péter R Nagy, and O Legeza, “Tree tensor net-
work state with variable tensor order: An efficient
multireference method for strongly correlated sys-
tems,” Journal of chemical theory and computation
11, 1027–1036 (2015).

[39] Boris N Khoromskij, “Tensors-structured numeri-
cal methods in scientific computing: Survey on re-
cent advances,” Chemometrics and Intelligent Lab-
oratory Systems 110, 1–19 (2012).

[40] Lars Grasedyck, Daniel Kressner, and Christine To-
bler, “A literature survey of low-rank tensor approx-
imation techniques,” GAMM-Mitteilungen 36, 53–
78 (2013).

[41] Shi-Ju Ran, Emanuele Tirrito, Cheng Peng,
Xi Chen, Gang Su, and Maciej Lewenstein, “Re-
view of tensor network contraction approaches,”

arXiv preprint arXiv:1708.09213 (2017).
[42] Luca Tagliacozzo, Glen Evenbly, and Guifré Vidal,

“Simulation of two-dimensional quantum systems
using a tree tensor network that exploits the entropic
area law,” Physical Review B 80, 235127 (2009).

[43] Y-Y Shi, L-M Duan, and Guifre Vidal, “Classical
simulation of quantum many-body systems with a
tree tensor network,” Physical review a 74, 022320
(2006).

[44] Pietro Silvi, Vittorio Giovannetti, Simone Mon-
tangero, Matteo Rizzi, J Ignacio Cirac, and Rosario
Fazio, “Homogeneous binary trees as ground states
of quantum critical hamiltonians,” Physical Review
A 81, 062335 (2010).

[45] Wei Li, Jan von Delft, and Tao Xiang, “Efficient
simulation of infinite tree tensor network states on
the bethe lattice,” Physical Review B 86, 195137
(2012).

[46] J Ignacio Cirac and Frank Verstraete, “Renormaliza-
tion and tensor product states in spin chains and lat-
tices,” Journal of Physics A: Mathematical and The-
oretical 42, 504004 (2009).

[47] Philippe Corboz, Glen Evenbly, Frank Verstraete,
and Guifré Vidal, “Simulation of interacting
fermions with entanglement renormalization,” Phys-
ical Review A 81, 010303 (2010).

[48] Örs Legeza, Thorsten Rohwedder, Reinhold Schnei-
der, and Szilárd Szalay, “Tensor product approx-
imation (dmrg) and coupled cluster method in
quantum chemistry,” in Many-Electron Approaches
in Physics, Chemistry and Mathematics (Springer,
2014) pp. 53–76.

[49] Yong-Deok Kim and Seungjin Choi, “Nonnegative
tucker decomposition,” in Computer Vision and Pat-
tern Recognition, 2007. CVPR’07. IEEE Conference
on (IEEE, 2007) pp. 1–8.

[50] Christian Lubich, Thorsten Rohwedder, Reinhold
Schneider, and Bart Vandereycken, “Dynamical ap-
proximation by hierarchical tucker and tensor-train
tensors,” SIAM Journal on Matrix Analysis and Ap-
plications 34, 470–494 (2013).

[51] Daniel Bauernfeind, Manuel Zingl, Robert Triebl,
Markus Aichhorn, and Hans Gerd Evertz, “Fork
tensor-product states: efficient multiorbital real-time
dmft solver,” Physical Review X 7, 031013 (2017).

[52] Stefan Handschuh, “Changing the topology of
tensor networks,” arXiv preprint arXiv:1203.1503
(2012).

[53] Volker Strassen, “Gaussian elimination is not opti-
mal,” Numerische mathematik 13, 354–356 (1969).

	Towards a Polynomial Algorithm for Optimal Contraction Sequence of Tensor Networks from Trees
	Abstract
	Introduction
	Preliminaries
	Problem Formulation
	Algorithm and Analysis
	Optimal Time Complexity
	Optimal Space Complexity
	Edge Contractions
	Polynomial Complexity for Algorithm Execution

	Example and Simulations
	An Example of Tree Network Contraction
	Simulations on Tensor Network Contractions
	Simulations on Searching for Sequences

	Conclusion and Discussion
	Acknowledgment
	References

