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We present a theory for the rate of energy exchange between electrons and ions – also known
as the electron-ion coupling factor – in physical systems ranging from hot solid metals to plasmas,
including liquid metals and warm dense matter. The paper provides the theoretical foundations of a
recent work [J. Simoni and J. Daligault, Phys. Rev. Lett. 122, 205001 (2019)], where first-principles
quantum molecular dynamics calculations based on this theory were presented for representative
materials and conditions. We first derive a general expression for the electron-ion coupling factor that
includes self-consistently the quantummechanical and statistical nature of electrons, the thermal and
disorder effects, and the correlations between particles. The electron-ion coupling is related to the
friction coefficients felt by individual ions due to their non-adiabatic interactions with the electrons.
Each coefficient satisfies a Kubo relation given by the time integral of the autocorrelation function of
the interaction force of an ion with the electrons. Exact properties and different representations of
the general expressions are discussed. We then show that our theory reduces to well-known models
in limiting cases. In particular, we show that it simplifies to the standard electron-phonon coupling
formula in the limit of hot solids with lattice and electronic temperatures much greater than the
Debye temperature, and that it extends the electron-phonon coupling formula beyond the harmonic
phonon approximation. For plasmas, we show that the theory readily reduces to well-know Spitzer
formula in the hot plasma limit, to the Fermi golden rule formula in the limit of weak electron-ion
interactions, and to other models proposed to go beyond the latter approximation. We explain
that the electron-ion coupling is particularly well adapted to averaged atom models, which offer an
effective way to include non-ideal interaction effects to the standard models and at a much reduced
computational cost in comparison to first-principles quantum molecular dynamics simulations.

PACS numbers:

I. INTRODUCTION

Nonequilibrium states of matter where the constituent
electrons and ions are separately strongly driven out of
equilibrium are routinely created in the laboratory. Such
conditions typically occur when a material is subjected
to an impulsive perturbation such as caused by an in-
tense femtosecond laser pulse [1], the irradiation by swift
neutrons and charged projectiles [2], or a strong shock
wave [3]. Understanding the energy exchanges between
and among the electrons and the ions that follow the ex-
citation and drive the system towards equilibirum is a
long standing problem in condensed matter [4–22] and
plasma physics [23–44]. Because of the small electron to
ion mass ratio, it is customary to distinguish two distinct
time scales, namely a short time scale that characterizes
the fast internal thermalization of each particle species,
and a longer time scale that characterizes the slower equi-
libration of the electron and ion temperatures. The lat-
ter, which is the subject of this work, is governed by the
strength of the electron-ion coupling factor.

For solids and weakly coupled plasmas, the central
mechanisms that govern the energy exchanges between
electrons and ions have been known for a long time. In
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the case of solids, the energy exchanges are well described
as resulting from the interactions between electrons and
phonons [8, 45]. Yet, the modeling of energy exchanges
between electrons and phonons remains an active sub-
ject of research driven by increasingly accurate measure-
ments and numerical simulations[16, 18, 19, 21, 22]. In
the case of weakly coupled plasmas, the energy exchanges
are well described as resulting from individual binary col-
lisions between charged particles screened by the surroud-
ing plasma [23]. Different methods have been proposed
and validated with simulations to self-consistently take
into account the effects of the plasma on binary collisions
[33–36, 38].

For systems at the confluence of solids and plasmas,
however, different models [15, 26–29, 32, 37] have been
proposed that offer diverging predictions even for simple
materials (see table I in [44]). This intermediate regime,
which is characterized by the coexistence and interplay
of significant quantum, thermal, disorder and strong
Coulomb interaction effects, challenges the standard sim-
plifying approximations of either ordinary condensed-
matter physics (e.g., band structure, phonons, etc.) or
plasma physics (classical statistics, binary collisions, etc.)
[46]. The last decade has seen remarkable progress in
our ability to form and interrogate in the laboratory ma-
terials under conditions at the confluence of solids and
plasmas [47]. These experiments typically produce tran-
sient, non-equilibrium conditions and measurements may
be misleading if recorded while the plasma species are
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still out of equilibrium. Remarkably, the electron-ion
energy relaxation rate is now accessible to experimen-
tal measurements thanks to the diagnostic capabilities
offered by the new generation of x-ray light sources [40–
43].

Motivated by these recent developments, we present
a theory for the electron-ion coupling factor, the rate
of energy exchange between electrons and ions, that ap-
plies to physical systems ranging from hot solid metals to
plasmas, including liquid metals and warm dense matter.
In a recent paper [44], we have presented first-principles
calculations based on this theory for representative mate-
rials of various electronic complexity and over a range of
conditions, but the present theory was only briefly out-
lined without justification. The purpose of this paper is
to provide a detail exposition of the theory, its properties
and its relation to previous models. We focus on the the-
oretical aspects only, the numerical algorithms used to
obtain the results shown in [44] will be presented in an-
other publication. We do not present calculations on spe-
cific physical systems in this paper and refer the reader
to [44] and future publications for such applications.

The paper is organized as follows.

In Sec. II, we derive the general expression for the
electron-ion coupling factor g. The derivation relies on a
recent work presented in Ref. [48], where it was shown,
under mild assumptions suitable for the physical systems
of interest here, that the coupled dynamics of ions and
electrons can be replaced by a simpler, effective classical-
quantum dynamics, in which the atomic motions are gov-
erned by a stochastic Langevin-like equation and the elec-
tron dynamics is described by a master equation for the
populations of the electronic states. By assuming that
the electron and ion systems can be characterized by
separate temperatures, the theory implies that the two
temperatures satisfy coupled rate equations and yields an
explicit expression for the relaxation rate – the electron-
ion coupling factor – in terms of the friction coefficients
felt by individual ions due to their non-adiabatic interac-
tions with the electrons. Each friction coefficient satisfies
a Kubo relation given by the time integral of the autocor-
relation function of the interaction force of an ion with
the electrons. Several equivalent expressions are given
for g.

In Sec. III, we recast the general result of Sec. II in
terms of quantities that highlight the many-body screen-
ing and correlation effects, and that are more easily
amenable to theoretical analysis, practical approxima-
tions and numerical evaluations. We consider three dif-
ferent reformulations, each being based on a different rep-
resentation of the many-body electron response function
in terms of reference response functions, namely the free-
particle, the proper and the Kohn-Sham response func-
tions commonly used in condensed matter and plasma
physics. The formulation in terms of the Kohn-Sham
response function is at the basis of the first-principles
molecular dynamics simulations presented in [44], which
will be discussed at length elsewhere.

In Sec. IV, we show that our theory reduces to well-
known models in limiting cases and suggests improved
practical models. We show that it reduces to the tradi-
tional Spitzer formula in the hot plasma limit [23], to the
Fermi golden rule formula in the limit of weak electron-
ion interactions [27], and to the model of Daligault and
Dimonte in their attempt to include non-linear electron-
ion effects [36]. We then explain that the electron-ion
coupling is particularly well adapted to averaged atom
models, which have proved to be accurate and computa-
tionally much more expedient than quantum molecular
dynamics simulations. We then demonstrate that our
theory also applies to hot solids, namely to solid metals
with lattice and electronic temperatures much greater
than the Debye temperature. The theory reduces to the
standard electron-phonon coupling formula [8] in the ap-
propriate limit and extends the latter by including ionic
motions beyond the harmonic approximation. We finally
relate our theory to a simple model due to Wang et al.
[58], which has served as a reference in recent works on
the temperature relaxation rates in hots solids and warm
dense matter [15, 41].
For clarity, the technical details are presented in the

appendices. Throughout the paper, ~ is the reduced
Planck constant, kB is the Boltzmann constant, and mu

is the atomic mass unit, and e2 = q2e/4πǫ0, where qe is
the elementary charge and ǫ0 is the vacuum permittiv-
ity. Rez and Imz denote the real and imaginar parts of
a complex number z. Throughout the paper, t and ω de-
note the time and frequency variables and, with no risk
of confusion, f(ω) =

∫∞

−∞
dteiωtf(t) denotes the Fourier

transform of the function f(t). Finally,

vC(r) =
e2

|r| (1)

denotes the Coulomb potential energy.

II. DERIVATION AND GENERAL
EXPRESSIONS OF THE ELECTRON-ION

COUPLING FACTOR

A. Definitions and assumptions

We consider a material containing one atomic species
enclosed in a three-dimensional cubic box of volume
V = L3. The material is described as a two-component
system comprised of ions (mass mi = Amu, number
density ni = N/V , charge Ze) and of electrons (mass
me, density ne = Zni), where each ion consists of an
atomic nucleus and its most tightly bound, unresponsive
core electrons. Throughout the paper, the calculations
are performed by imposing three-dimensional periodic
(Born-von Karman) boundary conditions along each di-
rection of the box; physical results are then obtained in
the thermodynamic limit where both N and V tend to
infinity in such a way that ni remains constant.
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The total Hamiltonian of the system is

H =

N∑

I=1

P2
I

2M
+

N∑

I,J 6=I=1

vii(RI −RJ)

︸ ︷︷ ︸

≡ Vii

+He(R) (2)

with the electron Hamiltonian

He(R) =

Ne∑

i=1

p2
i

2me
(3)

+

Ne∑

i=1

N∑

I=1

vie(ri −RI)

︸ ︷︷ ︸

≡ Vie

+

Ne∑

i,j 6=i

vC(|ri − rj |)
︸ ︷︷ ︸

≡ Vee

,

where vii and vie are the ion-ion and ion-electron interac-
tion energies. For simplicity of exposition, the electron-
ion interaction is described by a local pseudopotential
vie(r); in practice, the formalism allows to deal with more
elaborate descriptions, e.g., using plane-augmented wave
pseudopotentials as will be discussed elsewhere.
Below, Rα=Ix denotes the position of ion I along the

x-direction and R = {Rα}α=1,...,3N denotes the set of all
ionic positions.

B. Effective dynamics of ions and electrons

For the metallic systems of interest here, the dynamics
governed by the complete quantum Hamiltonian (2) can
be replaced by a simpler, effective classical-quantum dy-
namics by making use of the naturally small electron-ion
mass ratio and the existence of a manifold of infinites-
imally separated electronic excitations. More precisely,
we make the following three assumptions:

(i) The dynamics of each ion can be described by that
of the center Ri(t) of its narrowly localized wavepacket.
This is justified here, since the thermal de Broglie wave-
length Λ = ~

√

2π/mikBTi(≃ 0.3/
√

ATi[eV ] Bohr) of
ions is generally much smaller than the spatial variations
of forces acting on them due to their large mass and the
relatively high temperatures.

(ii) The typical ion velocities are small compared
to the typical electronic velocities. For instance,
for the two-temperature systems considered later, we
assume Ti/mi ≪ TF /me or Ti/mi ≪ Te/me in
the degenerate Te/TF ≪ 1 or non-degenerate limit

Te/TF ≫ 1, respectively, where TF = ~
2

2mekB
(3π2ne)

2
3

(≃ 1.69
(
ne[cm

−3]/1022
) 2

3 eV) is the electronic Fermi
temperature. This condition is generally respected due
to the natural smallness ofme/mi, and is challenged only
if Ti ≫ Te.
(iii) We assume that there is a quasi-continuum of elec-

tronic states, as it is the case for the metallic systems of
interest here.

Under these conditions, the electron and ion dynamics
can be described by the coupled set of equations [48]

dPn

dt
=

∑

m

(WnmPm −WmnPn) (4a)

MR̈α = − ∂Vii
∂Rα

+ FBO
α −M

3N∑

β=1

γ
[R]
αβ Ṙβ + ξ[R]

α . (4b)

The electron dynamics is described by the master equa-
tion (4a) for the populations Pn(t) of the adiabatic elec-

tronic states |n(R(t))〉 defined by Ĥe(R(t)) |n(R(t))〉 =
En(R(t)) |n(R(t))〉. The transition rates between differ-
ent electronic states are given by [59]

Wnm = 2π~|dnm ·V|2e−
(Em−En)|dnm|2

2M|dnm·V|2 δ(En − Em), (5)

where V = Ṙ represents the full set of atomic velocities
and the non adiabatic couplings dnm = 〈n|∇R|m〉.
Each ionic position follows a stochastic Langevin-like

equation (4b), where

FBO
α (t) =

∑

n

Pn(t)f
α
nn(t),

is the adiabatic Born-Oppenheimer force, which includes
the interactions between ions and with the instanta-
neous electrostatic potential of electrons, where fα

nn(t) =

〈n|−∇RαĤe(R(t))|n〉 represents the force exerted on the
degree of freedom Rα by the state |n({R(t)})〉. The
other terms describe the effect of non-adiabatic transi-
tions between closely spaced electronic states induced
by the atomic motions and electronic excitations. These
terms, which are not accounted for in current quantum
molecular dynamics simulations, are responsible for the
constant, non-reversible, energy exchanges between elec-
tron and ions. Like the buffeting of light liquid particles
on a heavy Brownian particle, the non-adiabatic effects

produce the friction forces −Mγ
[R]
αβ Ṙβ , where

γ
[R]
αβ = −π~

M

∑

n6=m

Pn − Pm

En − Em
fα
nmf

β
mnδ(En − Em), (6)

Here, the out-of-diagonal force matrix elements are de-
fined as fα

nm = 〈n|−∇RαĤe(R(t))|m〉. The symbol [R] is
used to indicate that the quantity depends on the instan-
taneous atomic configuration of the system. However, in
order to avoid cluttering the mathematical expressions,
we do not always indicate the dependence on [R].
The second term is a δ-correlated Gaussian random

fluctuating force, ξ
[R]
α (t), that satisfies the following two

conditions

≪ ξ[R]
α (t) ≫ = 0, (7)

≪ ξ[R]
α (t)ξ

[R]
β (t′) ≫ =

B
[R]
αβ

2
δ(t− t′), (8)
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where ≪ . . . ≫ denotes an average over the Gaussian
noise, and

B
[R]
αβ = π~

∑

n6=m

(Pn + Pm)fα
nmf

β
mnδ(En − Em) . (9)

C. Application to a two-temperature plasma

1. General result

For our present purpose, we assume throughout the
rest of the paper that the material can be described as
an isolated, homogeneous, two-temperature system char-
acterized at all times t by the temperatures Te(t) and
Ti(t) of the electronic (e) and ionic (i) subsystems. (We
could in principle relax the homogeneity condition and
add an external energy source, e.g. a laser, but this is
not necessary here.) The instantaneous electronic popu-
lations are then Pn = e−En/kBTe/Z, with the canonical

partition function Z = Tre−Ĥ[R]
e /kBTe =

∑

n e
−En/kBTe .

The temporal evolution of the temperatures can be
obtained by applying the evolution equations (4a)-(4b)
to the ensemble averaged kinetic energy of the ions

Kion(t) =
〈

1
2MṘ2(t)

〉

and to the internal energy of elec-

trons Eelec(t) =
〈
∑

n Pn(t)En(t)
〉

. As shown below, this

yields the rate equations

c0i
dTi
dt

= g[Te(t)− Ti(t)] (10a)

ce
dTe
dt

= −g[Te(t)− Ti(t)] , (10b)

where c0i = V −1∂[3NkBTi/2]/∂Ti = 3nikB/2 is the ki-
netic component of the heat capacity of the ions, ce =
V −1∂

〈∑

n PnEn

〉
/∂Te is the electronic heat per unit vol-

ume, and g is the electron-ion coupling factor of interest
here given by

g(Te, Ti) = 3kBni

〈
1

3N

3N∑

α=1

γ[R]
αα (Te, Ti)

〉

. (11)

We show in Sec. II D that the friction coefficients γ
[R]
αα

and the resulting coupling factor g can be written in
the form of standard Kubo relations like the ordinary
electronic and ionic transport coefficients. The physical
content of Eq.(11) is discussed in the following sections.
Before, we present a derivation of Eqs.(10) and (11).

2. Proof of Eqs.(10) and (11).

Equation (10a) for the ionic temperature can be read-
ily obtained by recalling the close relationship between
the Langevin equation and the Fokker-Planck-Kramers
equation [60]. The swarm of trajectories generated by

Eq.(4b) can be described by the probability distribution
function

f(R,V, t) =
〈

δ
(

R−R(t)
)

δ
(

V − Ṙ(t)
)〉

, (12)

with R,V ∈ R
3N , and 〈. . . 〉 represents the double aver-

age 〈≪ · · · ≫〉 over the noise and over the initial distri-
bution function. The distribution function f satisfies the
Fokker-Planck-Kramers equation

∂f

∂t
+

3N∑

α=1

Vα
∂f

∂Rα
+

3N∑

α=1

FBO
α

M

∂f

∂Vα
(13)

=
3N∑

α,β=1

∂

∂Vα

[

γαβ (Vβf) +
Bα,β

2M2

∂

∂Vβ
f

]

.

Remark that this equation, which governs the full distri-
bution functions of the ions, should not be confused with
the celebrated Fokker-Planck equation for the single-
particle distribution function that is widely used in ordi-
nary plasma physics [61]. From this evolution equation,
we find the time evolution of the kinetic energy of ions
Kion(t) =

∫∫
1
2MV2f(R,V, t)dRdV,

dKion

dt
=

3N∑

α=1

∫∫

VαF
BO
α f(R,V, t)dRdV (14)

+

3N∑

α=1

∫∫ [

−γααMV 2
α +

Bαα

2M

]

f(R,V, t)dRdV .

By assuming a Maxwellian velocity distribution at tem-

perature Ti(t), i.e. f(R,V, t) ∝ e−MV2/2kBTi(t), the ki-
netic energy Kion(t) = 3NkBTi(t)/2 and Eq.(14) simpli-
fies

dKion

dt
=

3NkB
2

dTi(t)

dt
(15)

= −
〈 3N∑

α=1

γαα

〉

kBTi +

〈 3N∑

α=1

Bαα

2M

〉

.

Since we also assume a thermal distribution of adiabatic
states at temperature Te, γαα and Bαα satisfy the rela-
tion Bαα = 2MkBTeγαα (compare Eqs.(6) and (9), see
details in [48]), and Eq.(15) reduces to the desired result,
Eq.(10a).
The equation (10b) for the electronic temperature is

obtained by combining Eq.(15) with the conservation

equation d
dt

〈
1
2MṘ2 + Vii +

∑

n PnEn

〉

= 0 and with

the property d〈Vii〉/dt = 0 that is easily shown using the
Fokker-Planck-Kramers equation. A proof of the energy
conservation equation can be found in Ref. [48]. This
yields the desired result for the rate of change of the
electronic energy Eelec,

1

V

d

dt
〈Eelec〉 = −g(Te − Ti) , (16)

or, with ce ≡ V −1∂〈Eelec〉/∂Te,

ce
dTe
dt

= −g(Te − Ti) . (17)
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D. Kubo relations for the friction coefficients and
the electron-ion coupling. Sum rule.

Under the two temperature assumption considered
here, the electronic populations are

Pn =
e−En/kBTe

Z , (18)

and the general expression (6) for the friction coef-
ficients can be effectively written compactly in the
form of ordinary Kubo relations, i.e. as time integrals
of correlation functions. The different expressions
below result from well-known relations between ther-
mal correlation functions, response function and
their Lehmann representations [49]; their defintions
are recalled for convenience in appendix A. Below,

〈. . .〉e = Tr

[

e−Ĥe/kBTe

Z . . .

]

indicates the thermal average

over the electronic subsystem.

i) With Eq.(18), the expression (6) can be written
compactly as (see Eq.(A1))

γ
[R]
αβ =

1

2MkBTe

∫ ∞

−∞

K
[R]
αβ (t) dt =

1

2MkBTe
K

[R]
αβ (ω = 0)

(19)
in terms of the Kubo correlation function

K
[R]
αβ (t) = kBTe

∫ 1/kBTe

0

dλ
〈

eλĤ
[R]
e δf̂βe

−λĤ[R]
e δf̂α(t)

〉

e
,

(20)

where f̂α=Ix(t) = −eiĤet/~ ∂RαĤe e
−iĤet/~ is the force

operator at time t between ion I and the electronic

subsystem along the x-direction and δf̂α(t) indicates the
same operator deprived of its diagonal matrix elements,
i.e. (δfα)nm = fα

nm(1− δn,m).

ii) Using the property (A4), the relation (19) can be
written in terms of the electron-ion force-force correlation
function 〈 δf̂α(t)δf̂β(0) 〉e,

γ
[R]
αβ =

1

2MkBTe
Re

∫ ∞

0

dt〈 δf̂α(t)δf̂β(0) 〉e . (21)

iii) Equation (21) can be expressed in terms
of the symmetric electronic density correlation

function S
[R]
ee (r1, r2, t) = 1

2 〈 δn̂e(r1, t)δn̂e(r2, 0) +
δn̂e(r2, 0)δn̂e(r1, t) 〉e as follows

γ
[R]
αβ =

1

MkBTe
(22)

×
∫

V

dr1

∫

V

dr2fα(r1)S
[R]
ee (r1, r2, ω = 0)fβ(r2) .

where

fα=Ix(r) = −∇Rα=Ixvie(r−RI) , (23)

is the force along the x-direction between the ion I and
an electron located at r. Equation (22) is easily obtained

using ∂RI Ĥe =
∫

V dr ∂RI vie(r−RI)n̂e(r) in Eq.(21).

iv) The expression (19) can also be written in terms
of the electron response function (a.k.a. susceptibility),

χ
[R]
ee (r1, r2, t) = − i

~
θ(t)〈 [δn̂e(r1, t), δn̂e(r2, 0)] 〉e of the

electronic subsystem in the frozen ionic configuration R,
as follows

γ
[R]
αβ = − 1

M
(24)

×
∫

V

dr1

∫

V

dr2fα(r1)∂ωImχ
[R]
ee (r1, r2, ω = 0)fβ(r2) .

This is easily found using Eq.(22) and the fluctuation-

dissipation relation (A5) between χ
[R]
ee and S

[R]
ee . We

shall mainly rely on the expressions (21) and (24) in the
reminder of the paper.

v) With the help of the previous expressions, the
electron-ion coupling factor (11) writes as

g(Te, Ti) =
3ni

2MTe

〈

1

3N

3N∑

α=1

Re

∫ ∞

0

dt
〈

δf̂α(t)δf̂α(0)
〉

e

〉

(25a)

= −3kBni

M

〈

1

3N

3N∑

α=1

∫

V

dr1

∫

V

dr2fα(r1)∂ωImχ
[R]
ee (r1, r2, ω = 0)fα(r2)

〉

, (25b)

vi) The electron-ion coupling (11) equals the trace of

the matrix γ↔[R] =
{

γ
[R]
α,β

}

of friction coefficients. Other

combinations of matrix elements satisfy remarkable prop-
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erties. Most remarkably,

∑

I,J

γ
[R]
Ix,Jy = 0 for all x, y , (26)

and, therefore,

∑

α,β

γ
[R]
αβ = 0 . (27)

for the sum of all matrix elements. These sum rules,
which are physically related to the conservation of mo-
mentum, are proved in appendix C.

III. ELECTRONIC SCREENING, EXCHANGE
AND CORRELATION EFFECTS

Thus far we have given general expressions for the fric-
tion coefficients and the electron-ion coupling factor in
which the electrons are not described individually but
are described as a single entity. For instance, the elec-
tronic states |n(R)〉 in Eq.(6) are many-body states, and

the response function χ
[R]
ee in Eq.(24) is the full density-

density response function of the electronic subsystem. In
this section, we recast these results in terms of quantities
that instead emphasize the individual character of elec-
trons. The many-body screening and correlation effects
are displayed more distinctly in terms of dielectric func-
tions and local field corrections. To accomplish this, we

express the full density-density response function χ
[R]
ee in

terms of the response of a reference system of indepen-
dent particles. We shall consider three different reference
response functions that are often used [50], namely the
proper response function, the non-interacting response
function, and the Kohn-Sham response function. As we
shall show in Sec. IV, previous models for g are easily
recovered from these reformulations.
For pedagogical clarity, we follow the same line of pre-

sentation in each case. To this end, we recall that the

response function χ
[R]
ee gives the change in the ground-

state electronic density n
(0)
e through

δne(r, ω) = ne(r, ω)− n(0)
e (r, ω)

=

∫

V

dr′χ[R]
ee (r, r′;ω)δvext(r

′, ω) , (28)

when the electron subsystem in the frozen ionic configu-
ration R is perturbed by a weak time-dependent scalar
potential δvext(r, t) [50].

A. Relation to the proper response function

The proper density-density response function χ̃[R] al-
lows to write Eq. (28) as [50]

δne(r, ω) =

∫

V

dr′χ̃[R](r, r′;ω)δvsc(r
′, ω) (29)

in terms of the screened potential

δvsc(r, ω) = δvext(r, ω) +

∫

V

dr′vC(r− r′)δne(r
′, ω).

(30)
This is the potential experienced by a test particle (i.e.,
a fictitious particle that does not disturb the system in
which it is embedded) in the electron gas due to both the
external potential and the Coulomb field created by the
density pertubation δne induced by δvext. This potential
does not account for the correlation that exists between a
given electron of the electron gas and the other electrons.
By definition, these correlation effects are implicitely in-
corporated in the proper response function χ̃[R].

The proper response function χ̃[R] is related to the

full response function χ
[R]
ee through the integral (Dyson)

equation,

χ[R]
ee (r1, r2, ω) = χ̃[R](r1, r2, ω) (31)

+

∫

V

dr

∫

V

dr′χ̃[R](r1, r, ω)vC(r − r′)χ[R]
ee (r′, r2, ω) .

Using this relation in Eq.(24), it is straigthforward to

write the friction coefficient γ
[R]
αβ as (see appendix B 1)

γ
[R]
αβ = − 1

M
(32)

×
∫

V

dr1

∫

V

dr2f
L
α (r1)∂ωImχ̃

[R](r1, r2, ω = 0)fR
β (r2) ,

where the f
L(R)
α=Ix represents the force of interaction along

the x-direction of ion I and a test charge,

fL
α (r1) =

∫

V

drfα(r)ε
[R]
L (r, r1, ω = 0)−1, (33)

fR
α (r1) =

∫

V

drε
[R]
R (r1, r, ω = 0)−1fα(r), (34)

in terms of the inverse of the left (L) and right (R) di-
electric functions

ε
[R]
L (r, r1, ω) = δ(r− r1)−

∫

V

dr′χ̃[R](r, r′, ω)vC(r
′ − r1)

ε
[R]
R (r, r1, ω) = δ(r− r1)−

∫

V

dr′vC(r− r′)χ̃[R](r′, r1, ω)

Note that the definition of the left (L) and right (R) di-
electric functions is needed at this level of generality since
the system is embedded in the inhomogenous background
of the ionic configuration R (for homogeneous systems,
ǫL = ǫR (see Sec. IV)).

With Eq.(32), the electron-ion coupling factor becomes
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g(Te, Ti) = −3kBni

M

〈

1

3N

3N∑

α=1

∫∫

V

dr1dr2f
L
α (r1)∂ωImχ̃

[R](r1, r2, ω = 0)fR
α (r2)

〉

. (35)

The expressions (32) and (35) make a good starting point
of further theoretical analysis because the proper re-
sponse function – or irreducible reponse function – lends
itself well to advanced perturbative methods in order to
systematically include the correlation effects beyond the
mean-field approximation [50–52]. This goes beyond the
scope of the present work and, instead, we shall now
consider another representation where these important
many-body effects appear even more visibly in terms of
local field corrections.

B. Relation to the ideal gas response function

It is also common to express the deviation δne as the
induced density of a noninteracting (free) electron gas
such as [50]

δne(r, ω) =

∫

dr′χ
[R]
0 (r, r′;ω)δveff(r

′, ω) (36)

where χ
[R]
0 is the density-density response function of the

inhomogeneous, free-electron gas in the static ionic con-
figuration R, and δveff is the effective potential

δveff(r, ω) = δvsc(r, ω) (37)

−
∫

V

dr1

∫

V

dr2vC(r− r1)G
[R]
ee (r1, r2, ω)δne(r2, ω)

In contrast with the previous section, here, it is the free
electron response function that does not include the cor-
relations existing between a given electron and the other
electrons of the gas. These correlations are included
through the last term of the effective potential by means

of the so-called local field correction G
[R]
ee (r1, r2, ω) (we

extend standard definitions for the homogeneous electron
gas [50, 53] to the non-homogeous case).

The response functions χ
[R]
ee and χ

[R]
0 are related

through the integral equation

χ[R]
ee (r1, r2, ω) = χ

[R]
0 (r1, r2, ω) (38)

+

∫

V

dr

∫

V

dr′χ
[R]
0 (r1, r, ω)K

[R](r, r′, ω)χ[R]
ee (r′, r2, ω),

with the interaction kernel

K [R](r, r′, ω) = vC(r−r′)−
∫

V

dr1vC(r−r1)G
[R]
ee (r1, r

′, ω) .

(39)
As shown in appendix B 2, with this relation, the friction
coefficient (24) can be written as the sum of two terms,

γ
[R]
αβ = γ̄

[R]
αβ + δγ̄

[R]
αβ . (40)

The first term writes as

γ̄
[R]
αβ = − 1

M

×
∫

V

dr

∫

V

dr′f̄ L
α (r)∂ωImχ

[R]
0 (r, r′, ω = 0)f̄ R

β (r′),
(41)

the spatial derivative of the effective screened potentials
are given respectively by

f̄ L
α (r1) =

∫

V

drfα(r)ε̄
[R]
L (r, r1, ω = 0)−1, (42)

f̄ R
α (r1) =

∫

V

drε̄
[R]
R (r1, r, ω = 0)−1fα(r), (43)

where the electronic screening effect is described by the
inverse of the (electron-test charge) dielectric functions

ε̄
[R]
L (r, r1, ω) = δ(r− r1)−

∫

V

dr′χ
[R]
0 (r, r′, ω)K [R](r′, r1, ω)

ε̄
[R]
R (r, r1, ω) = δ(r− r1)−

∫

V

dr′K [R](r, r′, ω)χ
[R]
0 (r′, r1, ω) .

By comparison with Eqs.(25), we see that γ̄
[R]
αβ can also

be expressed as follows

γ̄
[R]
αβ =

1

2MkBTe
Re

∫ ∞

0

dt
〈
δf̄L

α (t)δf̄
R
α (0)

〉

e

in terms of the corrrelation function
〈
δf̄L

α (t)δf̄
R
α (0)

〉

e
of the electron-ion force screened by the electron-
test charge dielectric functions ε̄L,R, where f̄L,R

α (t) =

eiĥ
0
et/~f̄ L,R

α e−iĥ0
e t/~ and ĥ0e = p̂2

2me
+

∑N
I=1 vie(r̂−RI)

is the Hamiltonian of a free electron moving in the back-
ground of the ionic potential.
The second term in Eq.(40) writes as

δγ̄
[R]
αβ = − 1

M

× Im

∫

V

dr

∫

V

dr′n′
α(r)∂ωK

[R](r, r′, ω = 0)n′
β(r

′),
(44)

where n′
α(r) =

∫

V dr
′fα(r

′)χ
[R]
ee (r′, r, ω = 0).

We expect that for many systems the second term
will be a small correction to the first term. In prac-
tice, the frequency dependence of the local field correc-
tion is poorly known and the so-called static approxi-

mation G
[R]
ee (r1, r2, ω) = G

[R]
ee (r1, r2, ω = 0) is commonly

used; in this so-called static local-field correction approx-

imation, the last term cancels out and γ
[R]
αβ = γ̄

[R]
αβ .

With Eq.(40), the electron-ion coupling factor becomes
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g(Te, Ti) = −3kBni

M

〈

1

3N

3N∑

α=1

Im

∫∫

V

drdr′f̄ L
α (r)∂ωχ

[R]
0 (r, r′, ω = 0)f̄ R

β (r′)

〉

−3kBni

M

〈

1

3N

3N∑

α=1

Im

∫∫

V

drdr′n′
α(r)∂ωK

[R](r, r′, ω = 0)n′
α(r

′)

〉

. (45)

C. Relation to the Kohn-Sham response function

The previous expressions in terms of the proper re-
sponse function or in terms of the local field corrections
are useful for theoretical analysis using many-body tech-
niques and for the developments of practical models (see,
e.g., Sec. IV). Another approach consists in expressing
Eq.(25) in terms of quantities directly accessible to ab-
initio simulations. The formulation in terms of the Kohn-
Sham response function described here is at the basis of
the first-principles molecular dynamics simulations pre-
sented in [44]. We restrict ourselves to the presentation
of the exact expressions; the practical algortihms used
to numerically evaluate them will be discussed at length
elsewhere [54].
The most important among these methods is Density

Functional Theory (DFT) [55], in which the density de-
viation Eq.(28) can be written as

δne(r, ω) =

∫

dr′χ
[R]
KS (r, r

′;ω)δvKS
eff (r′, ω)

where the effective interaction

δvKS
eff (r, ω) = δvext(r, ω) +

∫

V

dr1vC(r− r1)δne(r1, ω)

+

∫

V

dr1f
[R]
xc (r, r1, ω)δne(r1, ω)

= δvsc(r, ω) +

∫

V

dr1f
[R]
xc (r, r1, ω)δne(r1, ω)

is the sum of the external perturbation δvext and of
the linearized Kohn-Sham potential. The latter con-
sists of the sum of the linearized Hartree potential and
of the linearized exchange-correlation potential, where

f
[R]
xc [ne](r, r

′, ω) is the so-called exchange-correlation ker-
nel [55]. The Kohn-Sham density-density response func-
tion is given by [55]

χ
[R]
KS(r1, r2;ω)

= lim
η→0+

∑

i6=j

peqi − peqj
~ω + ǫi − ǫj + iη

〈i|n̂e(r1)|j〉 〈j|n̂e(r2)|i〉

(46)

where peqi = 1/
[
1 + e−(µ(Te)−ǫi)/kBTe

]
is the Fermi-Dirac

function at temperature Te,and 〈r|i〉 = φi(r) are the
Kohn-Sham wave functions, obtained from the solution

of the following set of equations

[

− ~
2

2m
∇2 + vKS(r)

]

φi(r) = ǫiφi(r) (47)

where

vKS[ne](r) =

N∑

I=1

vie(r−RI) + vH[ne](r) + vxc[ne](r)

(48)

is the Kohn-Sham potential, vH[ne](r) = e2
∫

V
dr′ ne(r

′)
|r−r′|

is the Hartree potential, vxc[ne](r) is the exchange-
correlation potential, and

ne(r) =
∑

i

peqi |φi(r)|2 , (49)

is the ground state electron density of the physical sys-
tem. The present approach differs from the one of the

previous section in the fact that, unlike χ
[R]
0 that de-

scribes the response of a free electron gas to the poten-

tial δv
[R]
eff (r), the Kohn-Sham response function is the

response of a system of free particles moving under the
effect of the self-consistent Kohn-Sham potential δvKS(r),
Eq.(48).

The response functions χ
[R]
ee and χ

[R]
KS are related

through the integral equation [55]

χ[R]
ee (r1, r2, ω) = χ

[R]
KS (r1, r2, ω) (50)

+

∫

V

dr

∫

V

dr′χ
[R]
KS (r1, r, ω)K

[R]
KS (r, r

′, ω)χ[R]
ee (r′, r2, ω),

where the kernel K
[R]
KS (r, r

′, ω) is now given by the sum
of the Hartree and exchange-correlation contributions

K
[R]
KS (r, r

′, ω) = vC(r− r′) + f [R]
xc [ne](r, r

′, ω), (51)

Using Eq. (50) into Eq. (24), each friction coefficient
becomes the sum of two contributions,

γ
[R]
αβ = γ̃

[R]
αβ + δγ̃

[R]
αβ (52)

The first term is

γ̃
[R]
αβ = − 1

M
(53)

× Im

∫

V

dr1

∫

V

dr2f̃
L
α (r1)∂ωχ

[R]
KS(r1, r2, ω = 0)f̃ R

β (r2),
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where the spatial derivative of the effective screened po-
tentials are given respectively by

f̃ L
α (r1) =

∫

V

drfα(r)ε̃
[R]
L (r, r1, ω = 0)−1,

f̃ R
α (r1) =

∫

V

drε̃
[R]
R (r1, r, ω = 0)−1fα(r),

and the screening effect of the electronic subsystem is
described by the inverse of the dielectric functions

ε̃
[R]
L (r, r1, ω) = δ(r− r1)−

∫

V

dr′χ
[R]
KS (r, r

′, ω)K
[R]
KS (r

′, r1, ω)

ε̃
[R]
R (r, r1, ω) = δ(r− r1)−

∫

V

dr′K
[R]
KS (r, r

′, ω)χ
[R]
KS(r

′, r1, ω)

By comparison with Eqs.(25), we see that γ̃
[R]
αβ can also

be expressed as follows

γ̃
[R]
αβ =

1

2MkBTe
Re

∫ ∞

0

dt
〈

δf̃L
α (t)δf̃

R
α (0)

〉

e
, (54)

in terms of the corrrelation function
〈

δf̃L
α (t)δf̃

R
α (0)

〉

e
of the KS particle-ion force screened by the KS parti-
cle -test charge dielectric function ε̃L,R, where f̃

L,R
α (t) =

eiĥKSt/~f̃ L,R
α e−iĥKSt/~, and ĥKS = p̂2

2me
+ vKS(r̂) is the

KS Hamiltonian.

The second term in the expression (52), instead, repre-
sents a quantum many body correction including all the
memory effects

δγ̃
[R]
αβ = − 1

M
(55)

× Im

∫

V

dr1

∫

V

dr2n
′
α(r1)∂ωf

[R]
xc (r1, r2, ω = 0)n′

β(r2),

where n′
α(r) =

∫

V
dr′fα(r

′)χ
[R]
ee (r′, r, ω = 0). In prac-

tice [54], the frequency dependence of the exchange-
correlation kernel remains poorly known [56, 57]; we ex-
pect it to be a small correction to the first term for many
systems.

We note that the sum rules (26)-(27) discussed in
Sec. II D become (see Appendix B 2)

N∑

I,J=1

γ̃
[R]
Ix,Jy = 0 ,

N∑

I,J=1

δγ̃
[R]
Ix,Jy = 0 (56)

for all x,y. In practice, these sum rules provide a useful
test of the accuracy or the consistency of the numerical
calculations.

By using Eq.(52), the electron-ion coupling factor be-
comes

g(Te, Ti) = −3kBni

M

〈

1

3N

3N∑

α=1

Im

∫∫

V

dr1dr2f̃
L
α (r1)∂ωχ

[R]
KS(r1, r2, ω = 0)f̃ R

β (r2)

〉

−3kBni

M

〈

1

3N

3N∑

α=1

Im

∫∫

V

dr1dr2n
′
α(r1)∂ωf

[R]
xc (r1, r2, ω = 0)n′

β(r2)

〉

(57)

We find important to remark that Eq.(57) is an exact
rewriting of the Kubo formula (21). It does not cor-
respond to the Kubo-Greenwood approximation that is
widely used to calculate other transport properties such
as the electrical and thermal conductivities. In the Kubo-
Greenwood (KG) approximation, the Kohn-Sham wave
functions are assumed to represent the single-particle ex-
citations of the electronic system, i.e. the many-body
electronic states are approximated by Slater determinant
of KS orbitals. Here, this approximation amounts to set

χ
[R]
ee in Eq.(24) equal to χ

[R]
KS , yielding

γ
[R]
αβ ≃ − 1

M

∫∫

V

dr1dr2fα(r1)∂ωImχ
[R]
KS(r1, r2, 0)fβ(r2)

=
1

2MkBTe
Re

∫ ∞

0

dt
〈

δf̂KG
α (t)δf̂KG

α (0)
〉

e
(58)

which should be compared with Eq.(52). Here f̂KG
α (t) =

−eiĥKSt/~∂Rα V̂iee
−iĥKSt/~ is the bare electron-ion force

propagated by the Kohn-Sham Hamiltonian. Unlike the

force f̃α in Eq.(54), f̂KG
α fails to include the effects of the

electronic screening on the electron-ion interactions. As
a consequence, the KG approximation (58) can be shown
to diverge logarithmically at large interparticle distances
|r1 − r2|. This is fully analogous to the well-known in-
frared divergence that occurs in the basic calculations of
scattering cross sections in plasma physics when screen-
ing effects are neglected [23].

IV. RELATION TO OTHER MODELS

The electron-ion coupling formula (25) includes self-
consistently the quantum mechanical and statistical na-
ture of electrons, the thermal effects and the correlations
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between all particles. In this section we show that our
theory reduces to well-known models developed in plasma
and condensed matter physics when one or several of
these effects are treated approximately or neglected.

We begin in Sec. IVA and IVB with discussing the
reduction to the Spitzer formula in the hot plasma limit
[23], to the Fermi golden rule formula in the limit of weak
electron-ion interactions [27], and to the model devel-
oped by Daligault and Dimonte that includes important
electron-ion correlation effects [36]. We then explain that
the problem of the calculation of the electron-ion cou-
pling is particularly well adapted to average atom model
calculations. In Sec. IVC, we show that our theory also
applies to hot solids, namely to solid metals with lat-
tice and electronic temperatures much greater than the
Debye temperature. When the ionic motions are de-
scribed within the phonon approximation, our theory re-
produces the standard electron-phonon coupling formula
[8] in the high temperature limit; the full formula includes
effects beyond the harmonic approximation. Finally, in
Sec. IVD, we relate our theory to a simplified model of
the electon-phonon coupling factor due to Wang et al.
[58].

In the following, vie(k) =
∫
drvie(r)e

−ik·r and vC(k) =
4πe2/k2 are the spatial Fourier transforms of the
electron-ion and Coulomb interaction potentials.

A. Reduction to the Spitzer model and the Fermi
golden rule formula

In the general formula (25), the effects of the interac-
tions between the ionic and electronic subsystems are in-
cluded non-perturbatively. Simpler models are obtained
if one assumes that the interaction vie is weak. Then,

to lowest order in vie, the response function χ
[R]
ee can be

approximated by the density-density response function
χjel of the homogeneous electron gas (a.k.a. jellium) at
temperature Te, i.e.

χ[R]
ee (r, r′, ω) ≈ χjel(|r− r′|, ω) .

With this approximation, the electron-ion coupling for-
mula (25b) becomes

g(Te, Ti) = −kBni

M
(59)

×
∫∫

V

dr1dr2~∇vie(r1) · ~∇vie(r2) ∂ωImχjel(|r1 − r2|, 0)

In the thermodynamic limit, this expression is conve-
niently rewritten such as

g(Te, Ti) = − kBni

2π2M

∫ ∞

0

dk |vie(k)|2 k4∂ωImχjel(k, 0) ,

(60)

where χjel(k, ω) =
∫
drχjel(r, ω)e

−ik·r. Similarly, the for-
mulas (35) and (45) become

g(Te, Ti) (61)

= − kBni

2π2M

∫ ∞

0

dk

∣
∣
∣
∣

vie(k)

1− vC(k)χ̃(k, 0)

∣
∣
∣
∣

2

k4∂ωImχ̃(k, 0)

and

g(Te, Ti) (62)

= − kBni

2π2M

∫ ∞

0

dk

∣
∣
∣
∣

vie(k)

1− vC(k) [1−Gee(k, 0)]χ0(k, 0)

∣
∣
∣
∣

2

× k4
[
∂ωImχ0(k, 0) + |χ0(k, 0)|2vC(k)∂ωGee(k, 0)

]
.

where χ̃, χ0 and Gee are the proper response function,
the non-interacting (a.k.a. Lindhard) response function
and the local field correction of the jellium model [50].
Equations (60), (61) and (62) correspond to the so-called
‘Fermi golden rule formula’ for the electron-ion coupling
derived in Ref. [27] by first calculating the energy ex-
changes between the electron and ion subsytems within
the framework of linear response theory and then by tak-
ing the small ion to electron velocity ratio into account.
The relation of Eq.(60) to the celebrated Spitzer for-

mula was discussed elsewhere (e.g., see [36]), and we only
briefly recall the result for completeness. When electron-
electron correlation effects are neglected, χ̃ = χ0 and
Gee = 0, and

g(Te, Ti) = − kBni

2π2M
(63)

×
∫ ∞

0

dk

∣
∣
∣
∣

vie(k)

1− vC(k)χ0(k, 0)

∣
∣
∣
∣

2

k4∂ωImχ0(k, 0)

The familar plasma physics results are recovered using
the Coulomb interaction vie(r) = −Ze2/r in Eq.(63),
yielding

g(Te, Ti) = 4niZ
2 (2πmeM)1/2

(MkBTe)3/2
ln Λ (64)

in terms of the Coulomb logarithm

lnΛ =

∫ ∞

0

dk

k

k4
(
k2 + λ−2

sc

)2 f(k/2) (65)

with the screening length λsc = 1/
√

4πe2χ0(k, 0) and
f(k) is the Fermi-Dirac function (see Eq.(A10)). In the

classical limit ~ → 0, f(k) = 1 and λsc =
√

kBTe/4πnee2

is the Debye-Hückel screening length, and Eq.(64) be-
comes the celebrated Spitzer formula, which logarithmi-
cally diverges at large k. In the non-degenerate limit,

Eq.(65) becomes lnΛ =
∫∞

0
dk
k

k4

(k2+λ−2
De)

2
e−λ2

ek
2/8 is con-

vergent, where λe = ~/
√
mekBTe is the electronic ther-

mal de Broglie wavelength.
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B. Going beyond the weak electron-ion interaction
approximation using average atom models

In the previous section, we have discussed the general
expression (25) in the limit of weak electron-ion inter-
actions. Here, we discuss approaches to go beyond this
approximation. To this end, we remark that the formula
(11) can be written as

g(Te, Ti) = 3kBniΓ(Te, Ti) , (66)

where

Γ(Te, Ti) =

〈
1

3N

3N∑

α=1

γ[R]
αα (Te, Ti)

〉

(67)

can be regarded as the averaged friction coefficient felt
by any ion in the system along any direction of motion.
A natural approximation for Γ consists in identifying it

with the friction felt by a single impurity embedded in an
electron gas (jellium) or by a slow projectile (i.e., whose
velocity is much smaller than the electronic velocities),

Γ =
1

6MkBTe
Re

∫ ∞

0

dt〈 δf̂(t) · δf̂(0) 〉e (68)

where f is the force between the impurity and the elec-
trons. This problem has been extensively studied in the
past (see, e.g. [62]) and, for completeness, we recall
results useful to the present work. When the electron-
impurity interaction is treated within the framework of
linear response,

Γ = − 1

6π2M

∫ ∞

0

dk |vie(k)|2 k4∂ωImχjel(k, 0) . (69)

When used in Eq.(66), we, not surprisingly, retrieve the
Fermi golden rule formula (60) discussed above.
As suggested in Ref. [63], the so-called ‘disconnected

approximation’ can be used to extend Eq.(69) beyond
the weak electron-ion interaction approximation. This
approximation, which originates from works in the clas-
sical kinetic theory of strongly coupled plasmas [64, 65],
neglects the effect of the slow impurity on the electron
dynamics, but accounts for the average distortion of the
electronic density around the impurity. It amounts to re-
placing in Eq.(69) the term vie(k)

2 by vie(k)
2[1−Gie(k)],

where Gie is the electron-ion local field correctionGie(k),
yielding

g(Te, Ti) (70)

= − kBni

2π2M

∫ ∞

0

dk

∣
∣
∣
∣

vie(k)

1−vC(k)[1−Gee(k, 0)]χ0(k, 0)

∣
∣
∣
∣

2

× [1−Gie(k)] k
4∂ωImχ0(k,0)

This corresponds to the model derived by Daligault and
Dimonte in [36] using a very different method. We refer
to Ref. [36] for a detailed discussion of Eq.(70).

Let assume for the moment that electron interactions
can be neglected (Vee ≡ 0). Electrons then move inde-
pendently in the potential of the ionic impurity and the
Kubo relation (68) can then be expressed in terms of the
basic scattering properties of the electron-ion potential
vie (see e.g. [62]), which gives

g(Te, Ti) =
~
2ni

π2meMTe
(71)

×
∫ ∞

0

dk k5nFD(ǫk) (1− nFD(ǫk))σtr(k)

where ǫk = ~
2k2/2me, nFD(ǫ) = 1/(1 + e−(µ−ǫ)/kBTe) is

the Fermi-Dirac distribution, and σtr is the cross section
for binary collisions

σtr(k) =
4π

k2

∑

l

(l + 1) sin2 (δl(k)− δl+1(k)) , (72)

where δl(k) is the phase shift of the lth partial wave at
momentum ~k calculated for the spherically symmetric
vie(r) (see appendix E). This formula is applicable to
any temperature Te. In particular, at Te = 0,

g(Te, Ti) =
~kBnik

4
F

π2M
σtr(kF ) , (73)

and, at high Te, the result (71) agrees with that obatined
from the classical Boltzmann-Lorentz kinetic theory [66]

g(Te, Ti) =
8πkBnineme

M
(2πmekBTe)

3 Ω(1,1) (74)

with

Ω(1,1) =

√

kBTe
2πme

∫ ∞

0

dγe−γ2

σtr

(√
2mekBTe

~
γ

)

(75)

The result (71) can be effectively used in conjunction
with an average atom model to include the effects of elec-
tron and ion interactions that affect the electron-ion cross
section in a plasma. Average atom models have been a
quite popular approximate method to model both the
equation-of-state and transport properties of dense ion-
ized matter [37, 67–69]. They have proved to be accurate
enough to be useful while being computationally much
more expedient. An average atom model assumes that
the physical system is spherically symmetric about a cen-
tral nucleus and one calculates with finite-temperature
density functional theory the electronic structure of the
central ions and of the surrounding conduction electrons.
As we have seen above the electron-ion coupling factor
is related to the averaged friction coefficient felt by any
ion in the system along any direction of motion; its cal-
culation is thus particularly well adapted for this trans-
port property. Many variations exist that differ in the
description of the surrounding plasma, e.g. via bound-
ary conditions or by coupling the model with the the-
ory of fluids. Electrons are treated as independent parti-
cles subject to the Kohn-Sham potential vKS(r) given by
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the sum of the central nuclear potential, the spherically
averaged distribution of surrounding ions, and the self-
consistent Hartree and exchange correlation potentials.
The expressions (71) and (72) still apply but should be
computed using the phase shifts δl(k) corresponding to
the effective potential vKS(r). Results for the friction
coefficient felt by a charge immersed in a homogeneous
electron gas were presented in Ref. [70].

C. Relation to the electron-phonon coupling factor

In hte case of solids, the energy exchanges between
electrons and ions are generally described in terms of
interactions between electrons and phonons. In the
phonon approximation, the total Hamiltonian is given
by Ĥ = Ĥe(R0) + Ĥph + Ĥe−ph, where Ĥe(R0) is the
electronic Hamiltonian in the potential of the Bravais lat-
tice (R0 denote the equilibrium lattice positions), Ĥph is

the Hamiltonian of phonons, and Ĥe−ph is the electron-
phonon Hamiltonian (see Appendix D). Here we show
that, for hot solids, the standard electron-phonon cou-
pling factor can be readily derived from the electron-ion
coupling formula (25). For simplicity, we use the assump-
tion of thermal phonons characterized by a single tem-
perature Ti, although recent investigations suggest that
it could lead to marked disagreement with experimental
observations [18, 19, 21, 22].
Most of the works in condensed matter physics rely on

a formula for the electron-ion coupling derived by Allen
[8]. Here, we prefer to work with a generalization of
Allen’s formula that, unlike the latter, does not approxi-
mate from the outset the electrons with the Bloch states.
This generalized formula naturally reduces to Allen’s for-
mula in the appropriate limit as shown in appendix D.
As shown in appendix D1, the rate of change of the to-
tal electron energy due to the absorption and emission of
phonon excitations can be written as

dEe

dt
= 4~

∑

q

∫ ∞

0

dω

2π

∑

G,G′

vie(q +G)∗vie(q +G′)

×ωImχ[R0]
G,G′(q, ω)Imχ

ph
G,G′(q, ω) (76)

×
[

nB

(
~ω

kBTi

)

− nB

(
~ω

kBTe

)]

with nB(x) = 1/(ex−1). Here χph
G,G′(q, ω) is the Fourier

transformed density-density response function of the ion
subsystem calculated in the phonon approximation (see

appendix D 5), and χ
[R0]
G,G′(q, ω) is the Fourier trans-

formed density-density response function χ
[R0]
ee of the

electron system described by the Hamiltonian Ĥe, i.e.
of the system of interacting electrons in the background
of the perfect lattice potential,

χ[R0]
ee (r, r′, ω) (77)

=
1

V

∑

q

∑

G,G′

ei(q+G)·re−i(q+G′)·r′χ
[R0]
GG′(q, ω)

As shown in appendix D4, Eq.(76) reduces to Allen’s
work (see Eq.(6) in [8]) in the limit of Bloch electrons.
Equation (76) is valid for any temperatures Te,i. The

rate of energy change (76) can be simplified at high tem-
peratures, i.e. for electronic and ion temperatures greater
than the Debye temperature ΘD (kBΘD = ~ωD with the
Debye frequency ωD = max

q,λ
{ωqλ} (typically 0.01 − 0.04

eV [71])). In that limit, as shown in appendix D 2,
Eq.(76) simplifies to

1

V

dEe

dt
= −ge−ph [Te − Ti] (78)

where the electron-phonon coupling factor ge−ph is given
by

ge−ph = −kBni

M

1

V

∑

q

∑

G,G′

vie(q+G)∗vie(q+G′)

× (q+G) · (q+G′) ∂ωImχGG′(q, 0) (79)

Remarkably, this expression is readily obtained from our
general formula (25) for the electron-ion coupling by sub-
stituting in Eq. (25b) the expression (77) for the electron-
electron density response function (see appendix D3 for
the details). Since Eq.(25b) is an approximation of the
density response function of electrons in a solid, the for-
mula (25) extends the electron-phonon coupling formula
(79). In particular, it goes beyond the harmonic phonon
approximation as the ionic configurations R in Eq.(25)
include those thermally sampled that are not described
by the small harmonic lattice vibrations. Such anhar-
monic motions become increasingly important as one ap-
proaches melting conditions. We refer the reader to [44]
for preliminary first-principle calculations of the electron-
phonon coupling based on Eq.(25).

D. Relation to the Lin et al. model

We finally relate our approach to the following model
due to Wang et al. [15, 58],

Ge−ph ≈ Ge−ph
0

∞∫

−∞

[
g(ǫ)

g(ǫF )

]2(

−∂ nFD(ǫ)

∂ǫ

)

dǫ , (80)

obtained as a simplification valid at high temperatures
of Allen’s electron-phonon coupling fomula [8]. Here g(ǫ)
is the electron density of states (DOS), which is com-

putable with DFT, and Ge−ph
0 = π~kBλ〈ω2〉g(ǫF ), where

ǫF = kBTF is the Fermi energy, 〈ω2〉 is the second mo-
ment of the phonon spectrum, and λ is the electron-
phonon mass enhancement factor. In previous works, the

prefactor Ge−ph
0 was either set to match an experimental

measurement at low electronic temperature [15], or was
calculated ab-initio [17, 19]. Although derived for crys-
talline solids, the model (80) was used in recent works
on warm dense matter systems [40–43]. Remarkably, an
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expression similar to Eq.(80) also results from Eq.(57) if
one neglects the second term and if one assumes that the
matrix elements between the Kohn-Sham states of the
force operator δf̃L,R depend weakly on the energies and
spatial directions, which yields

Gei ≈
〈

Gei
0

∞∫

−∞

[
g[R](ǫ)

g[R](ǫF )

]2(

−∂ nFD(ǫ)

∂ǫ

)

dǫ

〉

, (81)

as shown in appendix F. Here Gei
0 = |δf̃ |2g[R](ǫF )

2,
where g[R](ǫ) is the density of states of the Kohn-Sham

system in the frozen ionic configuration R, and δf̃ is the
characteristic matrix element. The formulas (80) and
(81) highlight the interplay between the DOS and the
distribution of electronic states, which, as shown by Lin
et al. [15], results in a strong dependence on the chemi-
cal composition and often on sharp variations with Te. In
[44], we have compared our results to predictions based
on (80) reported by others and on Eq.(81) with Gei

0 set
to reproduce the value of Gei at the lowest Te considered.
We find that the simplified models (80) and (81) tend to
overestimate the dependence on Te or predict variations
at odds with the full calculation.

V. SUMMARY

This paper provides the theoretical foundations of cal-
culations presented in a recently published Letter [44]. A
formal expression was derived for the rate of energy ex-
changes between electrons and ions – also known as the
electron-ion coupling factor – in physical systems rang-
ing from hot solid metals to plasmas, including liquid
metals and warm dense matter. The expression includes
self-consistently the quantum mechanical and statistical
nature of electrons, the thermal and disorder effects, and
the correlations between particles. The rate of energy ex-
changes is expressed in terms of the friction coefficients
felt by individual ions due to their non-adiabatic interac-
tions with the electrons. Each friction coefficient satisfies
a Kubo relation given by the time integral of the autocor-
relation function of the interaction force of an ion with
the electrons. Exact properties and different represen-
tations of the theory were discussed. We then showed
that our theory reduces to well-known models in limiting
cases, including: the standard electron-phonon coupling
formula in the limit of hot solids with lattice and elec-
tronic temperatures much greater than the Debye tem-
perature; the Spitzer formula in the hot plasma limit; the
Fermi golden rule formula in the limit of weak electron-
ion interactions; and other models proposed to go beyond
the latter approximation.
In a future publication, we will discuss in details the

numerical implementation of the theory using density-
functional-theory-based quantum molecular dynamics
simulations that was used to obtain the results presented
in [44] and elsewhere [72]. An interesting extension of this

work is the study of the non-adiabatic effects beyond the
Born-Oppenheimer approximation in warm dense matter
that are modeled by the friction and noise terms in the
Langevin-like equation (4b).
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Appendix A: Miscellaneous properties of correlation
and response functions

A detailed exposition of the definitions and properties
recalled below can be found in standard textbooks, e.g.,
[49, 50]

1. Quantum correlation functions

In quantum statistical mechanics, there are several
ways to measure the temporal correlations between two
observables Â and B̂ at thermal equilibrium. These in-
clude: the canonical Kubo relation [49]

K(t) =
1

β

∫ β

0

dλ
〈

eλĤ
[R]
e δB̂e−λĤ[R]

e δÂ(t)
〉

the symmetrized correlation function,

S(t) =
1

2

〈

δÂ(t)δB̂ + δB̂δÂ(t)
〉

,

and the unsymmetrized correlation function,

C(t) =
〈

δÂ(t)δB̂
〉

,

where in this appendix 〈. . . 〉 = Tr
(

e−βĤ ...
)

/Tre−βĤ in-

dicates a canonical thermal average. In the classical limit,
the three definitions are equivalent.
Lehmann representation. By expanding over the eigen-

spectrum of the Hamiltonian Ĥ , Ĥ |n〉 = En|n〉, the
Fourier transforms of the time correlation functions can
be written as

K(ω) = −2π~

β
(A1)

×
∑

n,m

P eq
n − P eq

m

En − Em
〈n|δÂ|m〉〈m|δB̂|n〉δ(En − Em − ~ω)

S(ω) = π~ (A2)

×
∑

n,m

(P eq
n + P eq

m ) 〈n|δÂ|m〉〈m|δB̂|n〉δ(En − Em − ~ω)
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and

C(ω) = 2π~ (A3)

×
∑

n,m

P eq
n 〈n|δÂ|m〉〈m|δB̂|n〉δ(En − Em − ~ω)

where P eq
n = e−En/kBT /

∑

m e−Em/kBT is the thermal
population of state n. We recall the relation,

K(ω) = 2
1− e~ω/kBT

~ω/kBT
Re

∫ ∞

0

dteiωtC(t) . (A4)

2. Density correlation and response function

We recall the well-known (fluctuation-dissipation) re-
lation

S(r1, r2, ω) = −~

2
coth

(
~ω

2kBT

)

Imχ(r1, r2, ω)(A5)

between the symmetric density-density correla-
tion function S(r1, r2, t) = 1

2 〈 δn̂e(r1, t)δn̂e(r2, 0) +
δn̂e(r2, 0)δn̂e(r1, t) 〉 and the density-density response
function χ(r1, r2, t) = − i

~
θ(t)〈 [δn̂e(r1, t), δn̂e(r2, 0)] 〉.

3. Lehmann representations of the density
response functions

The Fourier transform of the density-density response
function is

χ(r1, r2;ω)

=
∑

n,m

P eq
n − P eq

m

~ω + En − Em + iη
〈n|n̂e(r1)|m〉〈m|n̂e(r2)|n〉 .

(A6)

For a system of independent particles,

χ(r1, r2;ω)

=
∑

n,m

nFD(ǫn)− nFD(ǫm)

~ω + ǫn − ǫm + iη
〈n|n̂e(r1)|m〉〈m|n̂e(r2)|n〉 ,

(A7)

where nFD(ǫ) = 1/
[
1 + e−(µ(T )−ǫ)/kBT

]
is the Fermi-

Dirac population, and µ(T ) is the chemical potential.

4. Lindhard response function

The density-density response function χ0(k, ω) of a
non-interacting electron gas at temperature T is given
by [50]

χ0(k, ω) = −
∫

dp

(2π)3
nFD(p+ ~k)− nFD(p)

~ω − ǫ(p+ ~k) + ǫ(p) + i0+
(A8)

where ǫ(p) = p2/2m is the energy of a particle of mo-
mentum p. Equation (A8) implies [36]

∂

∂ω
Imχ0(k, ω = 0) = −nβ

√

πmβ

2

1

k
f(k/2), (A9)

with

f(k) ≡ 3
√
π

4
Θ3/2nFD(~k). (A10)

In the classical limit (~ → 0),

∂

∂ω
Imχ0(k, ω = 0) = −nβ

√

πmβ

2

1

k
. (A11)

Appendix B: Details on the derivation of the
relations (32), (40) and (52).

Here we drop the superscript [R] indicating the de-
pendence on the instantaneous ionic configuration, and
the integral relations between the response functions are
written in operator notations. The identity operator is
denoted by I, i.e. I(r, r′) = δ(r− r′).

1. Relation (32) to the proper response

Using obvious notations, the Dyson equation (31) can
be written as

χee(ω) = χ̃(ω) + χ̃(ω) ∗ vC ∗ χee(ω)

= χ̃(ω) + χee(ω) ∗ vC ∗ χ̃(ω)
= ε−1

L (ω) ∗ χ̃(ω) (B1)

= χ̃(ω) ∗ ε−1
R (ω)

where we introduced the left and right dielectric functions

εL(ω) = I− χ̃(ω) ∗ vC , εR(ω) = I− vC ∗ χ̃(ω) .

with inverses

ε−1
L (ω) = I + χee(ω) ∗ vC , ε−1

R (ω) = I + vC ∗ χee(ω)

The relation εL(ω) ∗ ε−1
L (ω) = I implies

∂ωε
−1
L = −ε−1

L ∗ ∂ωεL ∗ ε−1
L = ε−1

L ∗ ∂ωχ̃(ω) ∗ vC ∗ ε−1
L

Therefore, from Eq.(B1),

∂ωχee =
[
ε−1
L ∗ ∂ωχ̃ ∗ vC ∗ ε−1

L

]
∗ χ̃+ ε−1

L ∗ ∂ωχ̃
= ε−1

L ∗ ∂ωχ̃ ∗ [vC ∗ χee + I]

= ε−1
L ∗ ∂ωχ̃ ∗ ε−1

R . (B2)

By using the last expression into Eq. (24), we obtain the
desired Eq.(32).
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2. Relations (40) and (52) to the Lindhard and
Kohn-Sham responses

Because of the close similarity between the Dyson
equations (38) and (50) satisfied by the free-electron and
Kohn-Sham response, the derivations of Eqs.(40) and
(52) are analogous. We here consider the case involving
the free electron response function. the Dyson equation
(40) can be written as

χee(ω) = χ0(ω) + χ0(ω) ∗K(ω) ∗ χee(ω)

= χ0(ω) + χee(ω) ∗K(ω) ∗ χ0(ω)

= ε̄−1
L (ω) ∗ χ̃(ω)

= χ̃(ω) ∗ ε̄−1
R (ω)

with the frequency-dependent kernel

K(ω) = vC ∗ (I +Gee(ω))

and the left and right dielectric functions

ε̄L(ω) = I− χ0(ω) ∗K(ω)

ε̄R(ω) = I−K(ω) ∗ χ0(ω)

with inverses

ε̄−1
L (ω) = I + χee(ω) ∗K(ω)

ε̄−1
R (ω) = I +K(ω) ∗ χee(ω)

Following the steps used to derive Eq.(B2), we now ob-
tain

∂ωχee = ε̄−1
L ∗ ∂ωχ0 ∗ ε̄−1

R + χee ∗ ∂ωG ∗ χee. (B3)

where the additional term results from the dependence
of the kernel on the frequency. Similarly, we find

∂ωχee = ε̃−1
L ∗ ∂ωχKS ∗ ε̃−1

R + χee ∗ ∂ωfxc ∗ χee. (B4)

By introducing the last expressions into Eq. (24), we
readily obtain the desired relations (40) and (52).

3. Homogeneous limit of the response and
dielectric functions

We give properties satisfied by the reponse function
χee and related quantities in the limit of a homogeneous
electron gas. Similar relations are satisfied by χ̃, χ0 and
χKS .
In the limit of a homogeneous electron gas,

χee(r, r
′, ω) = χee(r− r′, ω) , (B5)

and the left and right dielectric functions are equal,

ǫL(r, r
′, ω) = ǫR(r, r

′, ω) ≡ ǫ(r− r′, ω) . (B6)

The spatial Fourier transform, generally defined as

χee(k,k
′, ω) =

1

V

∫

V

dre−ik·r

∫

V

dr′eik
′·r′χee(r, r

′, ω) ,

satisfies

χee(k,k
′, ω) = χee(k, ω)δk,k′ . (B7)

The inverse dielectric function satisfies

ǫ−1(k, ω) = 1/ǫ(k, ω) . (B8)

Finally, the integral equations in Sec. B 1 and B 2 be-
come algebraic equation, e.g.,

χee(k, ω) = χ̃(k, ω)/ǫ(k, ω) (B9)

with ǫ(k, ω) = 1− vC(k)χ̃(k, ω)

= χ0(k, ω)/ǭ(k, ω) (B10)

with ǭ(k, ω) = 1−K(k, ω)χ0(k, ω)

= χKS(k, ω)/ǫ̃(k, ω) (B11)

with ǫ̃(k, ω) = 1−KKS(k, ω)χKS(k, ω)

with K(k, ω) = vC(k) [1−Gee(k, ω)] and KKS(k, ω) =
vC(k) + fxc(k, ω)

Appendix C: Sum rules

In this appendix we provide the proof for a set of sum
rules, the [R] superscript is dropped in order to simplify
the notation. Below,

v(r) =
N∑

I=1

vie(r−RI) .

i) The force matrix elements and the total linear mo-
mentum matrix elements satisfy

N∑

I=1

f Ix
nm = −i 〈n|P̂x|m〉 En − Em

~
. (C1)

Proof:
By starting from the definition

N∑

I=1

f Ix
nm = 〈n|

∫

V

dr∇xv(r)n̂e(r)|m〉 , (C2)

we may rewrite the term on the right hand side as follows

∫

V

dr∇v(r)n̂e(r) =

Ne∑

i=1

∂v(r̂i)

∂r̂i
= − 1

i~

Ne∑

i=1

[p̂i, v(r̂i)]

= − 1

i~

[
Ne∑

i=1

p̂i, Ĥe(R)

]

= − 1

i~

[

P̂, Ĥe(R)
]

(C3)

where P̂ =
∑Ne

i=1 p̂i is the linear momentum operator of
the many body system. In deriving Eq.(C3), we used the

relation
[
∑

i p̂i, V̂ee

]

= 0 that results from the symmetry

of the Coulomb interaction. By substituting the previous
result into Eq. (C2) we easily obtain the final result (C1).
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ii) The density response function satisfies the rela-
tions:

∫

V

dr1∇r1v(r1)χee(r1, r2, ω = 0) = ∇r2ne(r2), (C4)

∫

V

dr2χee(r1, r2, ω = 0)∇r2v(r2) = ∇r1ne(r1). (C5)

Proof:
Here we limit ourself to prove the first expression, for
the second one the procedure is completely analogous.
By using the Lehmann representation for the electron-
electron susceptibility (A6)

∫

V

dr1∇r1v(r1)χee(r1, r2, ω = 0) =

=
∑

n6=m

P eq
n − P eq

m

En − Em
〈n|

∫

V

dr∇rv(r)n̂e(r)|m〉 〈m|n̂e(r2)|n〉

=
−i
~

∑

n,m

(P eq
n − P eq

m ) 〈n|P̂|m〉 〈m|n̂e(r2)|n〉 = ∇r2ne(r2),

where we have used (C1) for the force matrix elements,
that proves Eq. (C4).
iii) The Kohn-Sham matrix elements satisfy

N∑

I=1

〈n|δf̃L,R
Ix |m〉 = −i ǫn − ǫm

~
〈n|p̂x|m〉 . (C6)

Proof:
From the definition of the force matrix elements

N∑

I=1

〈n|δf̃L,R
Ix |m〉 = 〈n|

∫

V

dr∇xvKS(r)n̂e(r)|m〉 ,

we rewrite the term on the right hand side as follows

∫

V

dr∇vKS(r)n̂e(r) =
−1

i~

[

p̂, V̂KS(r)
]

=
−1

i~

[

p̂, ĤKS(R)
]

where ĤKS(R) = −~
2∇2

2m + V̂KS(r) is the Hamiltonian of

the Kohn-Sham system, such that ĤKS(R) |n〉 = ǫn |n〉.
From this result (C6) then follows immediately.
iv) The Kohn-Sham density response function satis-

fies the relations:
∫

V

dr1∇r1vKS(r1)χKS(r1, r2, ω = 0) = ∇r2ne(r2),

(C7)

∫

V

dr2χKS(r1, r2, ω = 0)∇r2vKS(r2) = ∇r1ne(r1).

(C8)
Proof:
The procedure is analogous to the one used in ii), with

the only difference that now we need to use (C6) instead
of (C1)
∫

V

dr∇r1vKS(r1)χKS(r1, r2, ω = 0) =

=
∑

n6=m

peqn − peqm
ǫn − ǫm

〈n|
∫

V

dr∇rvKS(r)n̂e(r)|m〉 〈m|n̂e(r2)|n〉

=
−i
~

∑

n,m

(peqn − peqm ) 〈n|p̂|m〉 〈m|n̂e(r2)|n〉 = ∇r2ne(r2)

that proves (C7), while for (C8) the proof is identical.
v) The Kohn-Sham dielectric functions satisfy the re-

lations:
∫

V

dr1∇r1v(r1)ε̃L(r1, r2, ω = 0)−1 = ∇r2vKS(r2),

(C9)
∫

V

dr2ε̃R(r1, r2, ω = 0)−1
∇r2v(r2) = ∇r1vKS(r1).

(C10)
Proof:
By using the definition of the left dielectric function

ε̃L(r1, r2, ω = 0)−1 =

I(r1, r2) +

∫

V

dr3χee(r1, r3, ω = 0)KKS(r3, r2, ω = 0),

into the left hand side of (C9) we obtain, by using Eq.
(C4), (we omit the frequency dependence in the deriva-
tion)
∫

V

dr1∇r1v(r1)ε̃L(r1, r2, ω = 0)−1 =

= ∇r2v(r2) +

∫

V

dr1

∫

V

dr3∇r1v(r1)χee(r1, r3)K
KS(r3, r2)

= ∇r2v(r2) +

∫

V

dr3∇r3ne(r3)[vC(r3, r2) + fXC(r3, r2)]

= ∇r2v(r2) +∇r2vH(r2) +∇r2vxc(r2)

= ∇r2vKS(r2),

that proves (C9), while (C10) may be obtained in the
same way by using the definition of the right dielectric
function, ε̃R.
vi) The friction coefficients satisfy the sum rule

N∑

I,J=1

γIx,Jy = 0. (C11)

Proof:
From the definition of the many body friction frictions,
we can write

N∑

I,J=1

γIx,Jy =

−Im

M

∫

V

dr1

∫

V

dr2∇xv(r1)∂ωχee(r1, r2, ω = 0)∇yv(r2),
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while the frequency derivative of the electron-electron
susceptibility is

∂ωχee(r1, r2, ω = 0) =

− ~

∑

n6=m

P eq
n − P eq

m

(En − Em)2
〈n|n̂e(r1)|m〉 〈m|n̂e(r2)|n〉 ,

by using (C2) the combination of the previous two ex-
pressions leads to

N∑

I,J=1

γIx,Jy =

=
~Im

M

∑

n6=m

P eq
mn

E2
nm

〈n|
∫

V

dr∇x vn̂e|m〉 〈m|
∫

V

dr∇y vn̂e|n〉

=
1

M~
Im

∑

n,m

(P eq
n − P eq

m ) 〈n|P̂x|m〉 〈m|P̂y|n〉

=
1

M~
Im

∑

n,m

P eq
n 〈n|

[

P̂x, P̂y

]

|n〉 = 0

with P eq
nm = P eq

n −P eq
m and Enm = En−Em, proving the

sum rule (C11).
vii) An analogous result is valid also for the Kohn-

Sham friction tensor

N∑

I,J=1

γ̃Ix,Jy = 0. (C12)

Proof:
From the definition of the Kohn-Sham tensor (53) and
by using the sum rules (C9) and (C10) for the gradient
of the external potential it is easy to write

N∑

I,J=1

γ̃Ix,Jy =

−Im

M

∫

V

dr1

∫

V

dr2∇xvKS(r1)∂ωχKS(r1, r2, 0)∇yvKS(r2)

~Im

M

∑

n6=m

peqmn

ǫ2nm
〈n|

∫

V

dr∇xvKSn̂e|m〉 〈m|
∫

V

dr∇yvKSn̂e|n〉

=
1

M~
Im

∑

n,m

(peqn − peqm) 〈n|p̂x|m〉 〈m|p̂y|n〉

=
1

M~
Im

∑

n,m

peqn 〈n|[p̂x, p̂y]|m〉 = 0

that finally proves (C12). As a consequence of (C12) and
(C9) we also have

N∑

I,J=1

δγ̃Ix,Jy = 0, (C13)

completing the set of sum rules we seek to prove.

Appendix D: The electron-phonon coupling formula

1. Derivation of the electon-phonon coupling
formula (76)

We treat the general case of any monatomic Bravais
lattice, whose ionic equilibrium positions are denoted by
R0 = {R0

I}.
The Hamiltonian of an electron gas interacting with a

periodic lattice of ions oscillating around their equilib-
rium positions is Ĥ = Ĥe + Ĥph + Ĥe−ph, where [52]

Ĥe(R
0) =

Ne∑

i=1

[

p2
i

2me
+

Ni∑

I=1

vie(ri −R0
I)

]

+ Vee(D1)

is the Hamiltonian of the electron gas interacting with
the ions in their equilibrium positions R0,

Ĥph =
∑

λ,q

~ωqλ

[

b̂†qλb̂qλ +
1

2

]

(D2)

is the Hamiltonian of the phonons, and

Ĥe−ph =
1

V

∑

λ,q

∑

G

gq,G,λρ̂−q−G(b̂qλ + b̂†−qλ) (D3)

is the interaction between electrons and phonons with
the phonon coupling [52]

gq,G,λ = i

√

N~

2Mωq,λ
(q+G) · ǫqλvie(q+G) . (D4)

Here b̂qλ, b̂
†
qλ are the annihilation and creation operator

of a phonon of frequency ωq,λ, ǫqλ are the polarization
vectors, ρ̂k is the Fourier transform of the electron den-
sity,

∑

λ is the sum over polarizabilities,
∑

q means q in

first Brillouin zone,
∑

G means G in reciprocal lattice,
k is a Brillouin zone’s vector, q is localized in the first
Brillouin zone and G is a reciprocal space’s vector [52].
The interpretation of the previous expression is straight-
forward, the electron in fact can be scattered from any
initial state |k〉 to a final state |k+G+ q〉 either by
absorbing a phonon in the state |q, λ〉 or by emitting a
phonon in the state |−q, λ〉.
We shall apply the Fermi golden rule to calculate the

rate of change of the total electron energy

dEe

dt
=

∑

q,λ

~ωqλ [Wabs(q, λ) −Wem(q, λ)] (D5)

whereWabs(q, λ) is the rate of absorption andWem(q, λ)
is the rate of emission of a phonon of energy ~ωqλ by the

electronic states |m〉 defined by Ĥe(R
0) |m〉 = Em |m〉.

We calculate these rates to lowest order of pertrubation
theory by applying the Fermi golden rule.

b̂qλ| . . . nqλ . . . 〉 =
√
nqλ| . . . nqλ . . . 〉 (D6)
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The propability per unit time of transition between state
|m′〉 ⊗ | . . . nqλ . . . 〉 and state |m〉 ⊗ | . . . (nqλ − 1) . . . 〉 is

Wabs (|m′, nqλ〉 → |m,nq,λ − 1〉)

=
2π

~

∣
∣ 〈m,nqλ − 1|Ĥe−ph|m′, nqλ〉

∣
∣
2
δ(Em − Em′ − ~ωqλ)

=
2π

~

∑

G,G′

gq,G,λg
∗
q,G′,λ

V 2
〈m|ρ̂−q−G|m′〉 〈m′|ρ̂q+G′ |m〉

×nqλδ(Em − Em′ − ~ωqλ) .

By averaging over a thermal distribution of electronic
states at temperature Te and of phonon states at tem-
perature Ti, we obtain the rate of phonon absorption

Wabs(q, λ)

=
2π

~

∑

m,m′

∑

G,G′

gq,G,λg
∗
q,G′,λ

V 2
Pm′ 〈m|ρ̂−q−G|m′〉

× 〈m′|ρ̂q+G′ |m〉Nqλδ(Em − Em′ − ~ωqλ)

=
1

~2

∑

G,G′

g∗q,G,λgq,G′,λ

V 2
CG,G′(q, ωqλ)Nqλ ,

where Nqλ = 1/(e~ωq,λ/kBTi − 1) is the Bose population
of the phonon mode (q, λ) at temperature Ti and Pm =
e−Em/kBTe/Z is the thermal population of the electronic
state |m〉. In the second line, we have introduced the
(non-symmetrical) electron density correlation function
(see also appendix A)

CG,G′(q, ω) =

∫ ∞

−∞

dteiωt〈ρ̂q+G(t)ρ̂−q−G′〉e . (D7)

Similarly, the emission calculation gives

Wem(q, λ)

=
1

~2

∑

G,G′

g∗q,G,λgq,G′,λ

V 2
CG,G′(q,−ωqλ)(Nqλ + 1)

=
1

~2

∑

G,G′

g∗q,G,λgq,G′,λ

V 2
e
−

~ωqλ
kBTe CG,G′(q, ωqλ)(Nqλ + 1) ,

where in the second line we used the detailed balance
property [50].

The rate (D5) of energy exchange between electrons

and phonons becomes

1

V

dEe

dt
=

1

V

∑

q,λ

∑

G,G′

~ωqλ

~2

g∗q,G,λgq,G′,λ

V 2
CG,G′(q, ωqλ)

×
[

Nqλ − e−~ωqλ/kBTe(Nqλ + 1)
]

(D8)

= −2
∑

q,λ

∑

G,G′

ωqλ

g∗q,G,λgq,G′,λ

V 2
Imχ

[R0]
GG′(q, ωqλ)×

×
[

nB

(
~ωqλ

kBTi

)

− nB

(
~ωqλ

kBTe

)]

(D9)

=
4

V

∑

q

∫ ∞

0

dω

2π

∑

G,G′

vie(q+G)∗vie(q+G′)

× ~ωImχ
[R0]
GG′(q, ω)Imχ

ph
GG′(q, ω)

×
[

nB

(
~ω

kBTi

)

− nB

(
~ω

kBTe

)]

. (D10)

In deriving Eq.(D9), we used the simple relation

Nqλ − e−~ωqλ/kBTe(Nqλ + 1)

=
(

1− e−~ωqλ/kBTe

)[

Nqλ − nB

(
~ωqλ

kBTe

)]

and the fluctuation-dissipation relation
(

1− e−~ω/kBTe

)

CGG′(q, ω) = −2~V Imχ
[R0]
GG′(q, ω)

between the correlation function and the density-density
response function of electrons described by the Hamilto-
nian Ĥe(R

0) (see Eq.(77)). In going from equation (D9)
to the desired result (D10), we used the expression for
the density-density response of ions in the phonon ap-
proximation derived below in Sec. D 5,

Imχph
G,G′(q, ω) = (D11)

= −~πni

2M

∑

λ

1

ωqλ
(q+G) · ǫqλ (q+G′) · ǫqλ Aλ(q, ω)

in terms of the phonon spectral function Aλ(q, ω) =
δ(~ω − ~ωqλ)− δ(~ω + ~ωqλ).
Equation (D10) was derived by treating the electrons

as a many-body system, i.e. the states |m〉 are the many-

body eigenstates of the Hamiltonian Ĥe(R
0), Eq.(D1).

The considerations of Sec. III, where the many-body
properties are expressed in terms of single-particle prop-
erties, can be straightforwardly adapted to effectively
deal with electrons in a crystalline solid. For instance,
instead of using the free electron response function as

in Sec. III B, the response function χ
[R0]
GG′(q, ω) can be

expressed in terms of the response function of non-
interacting electrons immersed in the perfect ion lattice
R0 described by the single particle Hamiltonian,

ĤBloch(R
0) =

p̂2

2me
+

Ni∑

I=1

vie(r̂−R0
I) , (D12)

whose eigenstates are the so-called Bloch electron states.
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2. High temperature limit Ti,e ≫ ΘD.

We show that in the hot solid limit, Ti,e ≫ ΘD,
the relation (76) simplifies to Eq.(78). The quantity

Imχph
G,G′(q, ω), which is simply related to the phonon

spectrum (D11), is non-zero only for frequency |ω|
smaller than the Debye frequency ωD. For kBTi,e ≫ ~ωD

and 0 ≤ ω ≤ ωD, we have

nB(~ω/kBTi)− nB(~ω/kBTe) ≈ kB(Ti − Te)/~ω

and, as a consequence of the small electron to ion mass
ratio,

Imχ
[R0]
GG′(q, ω) ≃ ω∂ωImχ

[R0]
GG′(q, 0)

Using these two approximations in Eq.(76), we obtain

dEe

dt
= 4kB(Ti − Te)

∑

q

∑

G,G′

vie(q+G)∗vie(q+G′)

× ∂ωImχ
[R0]
GG′(q, 0)

∫ ∞

0

dω

2π
ωImχph

GG′(q, ω)

(D13)

The expression (D11) implies the relation

∫ ∞

−∞

dω

2π
ωImχph

GG′(q, ω) = − ni

2M
(q+G) · (q+G′)

which, when introduced in Eq.(D13), implies the desired
results (78) and (79).

3. Derivation of ge−ph, Eq.(79), from the general
formula (25)

By introducing the expression (77) in gei, Eq.(25b),
the average over ions disappear (it is set to R0) and we
obtain

g(Te, Ti) = − kB
VM

Im

N∑

I=1

3∑

λ=1

1

V

∑

q

∑

G,G′

∂ωχ
[R0]
GG′(q, 0)

×
∫

V

dr∇λvie(r−RI)e
i(q+G)·r

×
∫

V

dr′∇λvie(r
′ −RI)e

−i(q+G′)·r′

= −kBni

M

1

V

∑

q

∑

G,G′

∂ωImχ
[R0]
GG′(q, 0)vie(q+G)∗

×vie(q+G′)
∑

λ

(q+G) · ǫqλ (q+G′) · ǫqλ

= −kBni

M

1

V

∑

q

∑

G,G′

vie(q+G)∗vie(q+G′)

× (q+G) · (q+G′) ∂ωImχ
[R0]
GG′(q, 0)

4. Reduction to Allen’s formula

In his paper, Allen describes the electrons in terms of
Block states ψk, eigenstates of the Hamiltonian (D12),

ĤBloch(R
0)ψk = ǫkψk , (D14)

where k = (n,k, σ) is short for the Bloch electron quan-
tum number (k is in the first Brillouin zone, n ∈ N is the
band index and σ denotes the spin).

ψk(r) = unk(r)e
ik·rχσ . (D15)

The density response function of Bloch electrons satisfies

ImχBloch
GG′ (q, ω) = − π

V

∑

k,k′

(pk − pk′)

×ρk,k′(q+G)ρk′,k(−q−G′)δ(~ω + ǫk − ǫk′)

with ρk,k′ (K) =
∫

V dru
∗
k′ (r)uk(r)e

−i(k′−k+K)·rδσ,σ′

1

V

dEe

dt
(D16)

=
2π

~

1

V

∑

q,λ

∑

k,k′

~ωqλ|Mλ
k,k′(q)|2Sλ

k,k′δ(~ωqλ + ǫk − ǫk′)

Sλ
k,k′ = (pk − pk′ )

[

nB

(
ǫk − ǫk′

kBTi

)

− nB

(
ǫk − ǫk′

kBTe

)]

= (pk − pk′ )Nqλ + pk′(1 − pk) ,

where in the last equation we used the energy conserva-
tion described by the delta function in Eq.(D16). where
we have introduced the scattering amplitude probability

|Mλ
kk′(q)|2 =

∣
∣
∣
∣
∣

1

V

∑

G

ρk′,k(−q−G)gq,G,λ

∣
∣
∣
∣
∣

2

.

Equation (D16) corresponds to the starting point of
Allen’s derivation, see equation (6) in Ref. [8].

5. The ionic density response function in the
phonon approximation

Here we derive an expression for the density-density
response function of ions

χ(k,k′, t− t′) = − i

~

1

V
θ(t− t′) 〈[δn̂i(k, t), δn̂i(−k′, t′)]〉i

in a solid at temperature Ti in the phonon approxima-
tion, where ni(k) =

∑

I e
−ik·RI is the ion density and

〈. . . 〉i denotes the thermal average at temperature Ti,
and δn̂i = n̂i − 〈n̂i〉i. In the phonon approximation,
RI(t) = R0

I + uI(t), where the harmonic displacement
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uI of ion I around its equilibrium position R0
I is given

by

uI =
1√
N

∑

q,λ

√

~

2Mωq,λ
(b̂qλ + b̂†−qλ)ǫqλe

iq·R0
I

=
1√
N

∑

q

uqe
iq·R0

I (D17)

where q is in the first Brillouin zone. To lowest order in
the displacements,

δn̂i(q+G, t) ≃ −i(q+G) · uq(t)

= −i
√

~

2Mωq,λ
(b̂qλ + b̂†−qλ)(q +G) · ǫqλ .

This implies

χ(q+G,q+G′, t) ≡ χph
G,G′(q, t)

=
∑

λ

~ni

2Mωqλ
Dλ

R(q, t)(q +G) · ǫqλ(q +G′) · ǫqλ

where Dλ
R(q, t) = − i

~
θ(t)〈[Âqλ(t), Â

†
qλ(0)]〉 with Âqλ =

b̂qλ(t) + b̂†−qλ is the retarded phonon Green’s func-

tion [52]. Using the definition of the spectral function
Aλ(q, ω) = −ImDλ

R(q, ω)/π, we find the relation

Imχph
G.G′(q, ω) =

= −
∑

λ

π~ni

2Mωqλ
Aλ(q, ω)[(q+G) · ǫqλ][(q+G′) · ǫqλ]

(D18)

used in Sec. D 1.

Appendix E: Quick remarks about Eq.(71).

The passage from Eq.(68) to Eq.(71) in the limit of
non-interacting electrons is non-trivial but can be found
in several papers; e.g., see Sec. Section III-c of Ref. [62].
For completeness, we recall the main steps, which rely on
standard results of scattering theory. The Kubo relation
is developed as follows

Γ = − π~

3M

∑

x

∫

dǫ
dnFD(ǫ)

dǫ

∑

k,k′

∑

σ,σ′

〈Ψ−
k′σ′ |F̂x|Ψ+

kσ〉〈Ψ+
kσ|F̂x|Ψ−

k′σ′〉δ(ǫ − ǫk)δ(ǫ− ǫk′) ,

over the basis of the so-called scattering states defined as

|Ψ±
kσ〉 =

(

1 + Ĝ± t̂±
)

|kσ〉 . (E1)

Here |kσ〉 is a plane wave of momentum ~k, energy ǫk =

(~k)2/2me and spin σ; t̂± = t̂(ǫk±0+) and Ĝ± = Ĝ(ǫk±

0+) with the t-matrix t̂(z) and resolvent operator Ĝ(z) =
[

z − p̂2

2me

]

satisfy the Lippman-Schwinger equation

t̂(z) = v̂ie + v̂ieĜ(z)t̂(z) . (E2)

We then use the property

〈Ψ±
k′σ′ |F̂x|Ψ±

kσ〉 = i(k′x − kx)〈k′σ′|t̂±|kσ〉 ,

which results from F̂x = i
~
[p̂x, v̂ie] and of properties of

Eq.(E2). We obtain

Γ =
π~

MkBTe

∑

kk′

∑

σσ′

nFD(ǫk)[1− nFD(ǫk)]

×(k′ − k)2|〈k′σ′|t̂+|kσ〉|2δ(ǫk − ǫk′) .

Equation (71) is then obtained from the well-known rep-
resentation of the matrix elements 〈k′σ′|t̂+|kσ〉 in terms
of the phase shifts δl(k) for the spherically symmetric
potential vie(r),

〈k′σ′|t̂+|kσ〉 = −δσσ′

2π~2

meV k

×
∑

l

(2l + 1)eiδl(k) sin δl(k)Pj(cosΩ)

with cosΩ = k′ · k/k′k.
The Te = 0 limit (73) is obtained using dnFD(ǫ)/dǫ→

δ(ǫ− ǫF ) with ǫF = ~
2k2F /2me is the Fermi energy.

The non-degenerate limit (74) is obtained using
nFD(ǫ)[1 − nFD(ǫ)] ∼ e(µ−ǫ)/kBTe and eµ/kBTe =

ne
(2π~)3

2 (2πmekBTe)
2/3

.

Appendix F: Derivation of Eq.(81).

First, we neglect the correction term δγ̃
[R]
αβ in Eq.(57)

and expand the expression (54) for γ̃
[R]
αβ over the Kohn-

Sham states as follows

γ̃
[R]
αβ = −π~

M

∑

n,m

nFD(ǫn)− nFD(ǫm)

ǫn − ǫm

× (δf̃L
α )nm(δf̃R

β )mnδ (ǫn − ǫm)

= −π~
M

∫∫

dǫdǫ′
p(ǫ)− p(ǫ′)

ǫ− ǫ′
δ(ǫ− ǫ′)

×
∑

n,m

δ(ǫ − ǫn)δ(ǫ
′ − ǫm)(δf̃L

α )nm(δf̃R
β )mn , (F1)

where the matrix elements fnm
Ix =

〈

n
∣
∣f̂

(sc)
Ix

∣
∣m

〉

and f̂
(sc)
Ix

is the effective force along the x-direction between ion I
and a Kohn-Sham electron screened by other electrons.
Assuming that the matrix elements depend weakly on
the energies, they can be factorized outside the sum in
Eq.(F1), and we obtain

γ̃
[R]
αβ ∝

∫

dǫ

(

−dnFD(ǫ)

dǫ

)[

g[R](ǫ)
]2

,
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where g[R](ǫ) =
∑

n δ(ǫ − ǫn) is the density of states of
the Kohn-Sham system in the frozen ionic configuration

R.
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220301(R) (2016).

[19] L. Waldecker, R. Bertoni, R. Ernstorfer, and J. Vor-
berger, Phys. Rev. X 6, 021003 (2016).

[20] S. Sadasivam, M.K.Y. Chan and P. Darancet, Phys. Rev.
Lett. 119, 136602 (2017).

[21] P. Maldonado, K. Carva, M. Flammer, and P.M. Oppe-
neer, Phys. Rev. B 96, 174439 (2017).

[22] Z. Lu, A. Vallabhaneni, B. Cao and X. Ruan, Phys. Rev.
B 98, 134309 (2018).

[23] L. Spitzer, Jr., Physics of Fully Ionized Gases, 2nd Ed.
(Interscience, New York, 1962).

[24] R.R. Ramazashvili, A.A. Rukhadze and V.P. Silin, J.
Exptl. Theoret. Phys. 43, 1323 (1962).

[25] T. Kihara and O. Aono, J. Phys. Soc. Jpn. 18, 837
(1963).

[26] H. Brysk et al., Plasma Phys. 17, 473 (1975).
[27] G. Hazak, Z. Zinamon, Y. Rosenfeld, and M. W. C.

Dharma-wardana, Phys. Rev. E 64, 066411 (2001).
[28] M.W.C. Dharma-wardana and F. Perrot, Phys. Rev. E

58, 3705 (1998).
[29] J. Vorberger and D.O. Gericke, AIP Conf. Proc. 1464,

572 (2012).
[30] D.O. Gericke, M.S. Murillo and M. Schlanges, Phys. Rev.

E 65 036418 (2002).
[31] J. Daligault and D. Mozyrsky, Phys. Rev. E 75, 026402

(2007).
[32] J. Daligault and D. Mozyrsky, High Energy Density Phys.

4, 58 (2008).
[33] J. N. Glosli, F. R. Graziani, R. M. More, M. S. Murillo,

F. H. Streitz, M. P. Surh, L. X. Benedict, S. Hau-Riege,
A. B. Langdon, and R. A. London, Phys. Rev. E 78,
025401(R) (2008).

[34] G. Dimonte and J. Daligault, Phys. Rev. Lett. 101,
135001 (2008)

[35] L.S. Brown and R.L. Singleton, Phys. Rev. E 79, 066407
(2009).

[36] J. Daligault and G. Dimonte, Phys. Rev. E 79, 056403
(2009).

[37] G. Faussurier, C. Blancard, P. Cossé and P. Renaudin,
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