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We revisit the problem of how energy transfer through the turbulent cascade operates in compress-
ible hydrodynamic turbulence. In general, there is no conservative compressible cascade since the
kinetic and internal energy reservoirs can exchange energy through pressure dilatation. Moreover,
statistically stationary turbulence at high Mach number can only be maintained in nearly isothermal
gas, i.e. if excess heat produced by shock compression and kinetic energy dissipation is continuously
removed from the system. We mimic this process by a linear cooling term in numerical simulations
of turbulence driven by stochastic forcing. This allows us to investigate turbulence statistics for a
broad range of Mach numbers. We compute the rate of change of kinetic and internal energy in
wavenumber shells caused by advective, compressive, and pressure dilatation effects and constrain
power-law fits to compressible turbulence energy spectra to a range of wavenumbers in which the
total energy transfer is close to zero. The resulting scaling exponents are significantly affected by the
forcing. Depending on the root mean square Mach number, we find a nearly constant advective com-
ponent of the cross-scale flux of kinetic energy at intermediate wavenumbers for particular mixtures
of solenoidal and compressive modes in the forcing. This suggests the existence of a natural, Mach
number dependent mixture of forcing modes. Our findings also support an advection-dominated
regime at high Mach numbers with specific scaling exponents (Burgers scaling for the pure velocity

fluctuation u and Kolmogorov scaling for the mass-weighted variable v = ρ1/3u).

I. INTRODUCTION

Kolmogorov’s theory of incompressible isotropic turbu-
lence states that the flux of kinetic energy across a given
wavenumber is constant for wavenumbes in the inertial
subrange in which both large-scale features of the flow
(stirring, boundary conditions, etc.) and viscous dissipa-
tion are negligible [1, 2]. An important consequence is
the two-thirds law for the scaling of the squared velocity
fluctuation, corresponding to the famous k−5/3 energy
spectrum. However, it has proven to be difficult to carry
over the concepts of this theory to compressible turbu-
lence. A key problem is that, in general, kinetic energy
does not cascade conservatively because it can be con-
verted into internal energy and vice versa through pres-
sure dilatation. An important step in addressing this
problem was the demonstration of scale-locality for the
transfer of kinetic energy in compressible turbulence by
Aluie [3]. Under certain assumptions (sufficiently fast
decline of the pressure dilatation cospectrum), it can be
shown that the exchange of kinetic and internal energy
becomes subdominant and the two energy budgets are
decoupled on sufficiently small scales. In this case, a
compressible turbulent cascade with constant kinetic en-
ergy flux can exist. At about the same time, the gen-
eralization of the relation between the energy flux and
two-point-correlation functions for the fully compressible
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case was analytically derived by Galtier & Banerjee [4].
In addition to a term that reduces to the Kolmogorov re-
sult in the incompressible limit, there are contributions
related to compression effects (non-zero divergence of the
flow) and deviations from a conservative kinetic energy
cascade.

A further difficulty is the ambiguity in the scale-
decomposition of energy density and fluxes in the com-
pressible case. For example, the energy density in spec-
tral space can be based on the Fourier transforms of the
primitive velocity variable u and momentum density ρu
[5]. Alternatively, the energy density can be considered
as square of the variable w =

√
ρ u [6] in analogy to the

incompressible case (where the energy is simply given
by u2). For energy flux, there are even more variants
[2]. For example, two-point correlation functions of ve-
locity and momentum increments inspired by the deriva-
tion of the four-fifth law are used in [4, 7, 8], while spatial
coarse-graining results in expressions linked to subgrid-
scale terms in large eddy simulations [9–11]. In addition,
different flavors of spectral decomposition are applied to
compute energy transfers between scales (basically, the
transfer is the rate of change of the energy flux within
a range of wave numbers). This is the most common
method to analyze numerical data [5, 12–14].

Numerical experiments play a crucial role in studying
the phenomenology of compressible turbulence. While it
remains challenging to produce strongly compressible or
even supersonic turbulent flows under laboratory condi-
tions, the regime of high Mach numbers is accessible in
massively parallelized simulations on supercomputers. In
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astrophysics, substantial interest into supersonic turbu-
lence was triggered by the theoretical investigation of star
formation in interstellar gas clouds [15, 16]. In a land-
mark work on scaling properties of supersonic isother-
mal turbulence [17] the hypothesis was put forward that
mass-weighing of the velocity with ρ1/3 allows for the
extension of Kolmogorov scaling into the compressible
regime. This idea was to some extent questioned in [18–
20]. However, the results of these studies remained in-
conclusive, as only particular Mach numbers were inves-
tigated and turbulence was driven by either solenoidal or
compressive (dilatational) forcing modes. Further exam-
ples for numerical studies of driven hydrodynamic turbu-
lence are [7, 8, 21–24].

In this article, we pick up ideas formulated in [6, 12]
to compute the shell-to-shell transfer of kinetic energy
in compressible turbulence based on the velocity vari-
able w =

√
ρ u (Section II). By defining q =

√
ρ cs,

where cs is the speed of sound, we incorporate inter-
nal energy transfers along the same lines as for magnetic
energy transfers in compressible magnetohydrodynamic
(MHD) turbulence with B =

√
ρ va (va is the Alfvénic

velocity) as basic variable for the spectral decomposi-
tion [14]. This also guarantees positivity of the spectral
energy densities. A similar approach was recently put
forward by [25]. Our goal is to investigate whether there
is a compressible inertial subrange defined by zero en-
ergy transfer (corresponding to constant flux) and how it
is affected by pressure-dilatation effects for Mach num-
bers ranging from transonic to supersonic (Sections III B
and III C). Moreover, we investigate the impact of dif-
ferent mixtures of solenoidal and compressive modes in
the forcing. Based on our results we attempt to deter-
mine scaling exponents of turbulent energy spectra with
different mass-weighing (Section III D).

Since time-averaging over many snapshots of the flow
is paramount to obtain meaningful statistics, we need
to maintain a statistically stationary state over several
dynamical timescales. As in most simulations of com-
pressible turbulence mentioned above, we perform im-
plicit large eddy simulations, where dissipation results
from numerical truncation terms, instead of explicitly
treating viscous dissipation (see [26] and references cited
therein). Explicit physical viscosity (bulk and shear) is
neglected since Reynolds numbers in typical astrophysi-
cal systems are by far too high to allow for direct numer-
ical simulations. Regardless of the nature of dissipation,
the mean heating rate due to the dissipation of kinetic
energy approximately equals the rate of energy injected
by the forcing. To avoid a declining Mach number of su-
personic turbulence, excess heat has to be continuously
removed from the system. This is commonly achieved
in numerical simulations of driven turbulence either by
applying an isothermal equation of state (i.e. setting the
speed of sound cs indentical to a constant, which reduces
the system of dynamic variables to mass density and mo-
mentum) or by artificially increasing the internal energy
by setting the adiabatic exponent to a value that differs

by a tiny fraction from unity (in this case, only the pres-
sure is physical). Both methods are not suitable for our
study because we need a physically meaningful (i.e. nei-
ther constant nor artificially increased) internal energy
to compute transfers between the kinetic and internal
energy reservoirs. For this reason, we define internal en-
ergy on the basis of the ideal gas equation and apply a
simple toy model to mimic radiative cooling of the gas
with finite cooling time. Details about the numerical sim-
ulations are outlined in Section III A and Appendix A.
The outcome of our analysis is discussed in Section IV.

II. THEORY AND METHODS

A. Dynamical equations

The equations of compressible gas dynamics in conser-
vative form are given by

∂tρ+ ∂i(ρui) = 0 , (1)

∂t(ρui) + ∂j(ρuiuj) + ∂ip = fi , (2)

∂t(ρe) + ∂j(ρuje) + p ∂juj = ΛHC . (3)

The density is denoted by ρ, the velocities by u, the in-
ternal energy density by ρe, and the thermal pressure by
p = (γ − 1)ρe, where γ is the adiabatic exponent of the
gas. The source term f = ρa on the right hand side of
the momentum equation (2) represents an external force
density and ΛHC on the right hand side of the internal
energy equation (3) a heating and cooling function (see
Section III for the modeling of these terms in our simu-
lations).

1. Decomposition of kinetic energy

As discussed in [14], there is no unambiguous defini-
tion of the spectral kinetic energy density Ekin in the
compressible case. Since the symmetrized expression
Re
[
u
∧
iρu
∧∗

i

]
/2 used in [5] does not guarantee positive def-

initeness in wavenumber space, we use for our analysis
kinetic energy densities defined by∫

1

2
wiwi︸ ︷︷ ︸

≡Ekin(x)

dx =
1

(2π)
3

∫
1

2
w
∧
iw
∧∗
i︸ ︷︷ ︸

≡Ekin(k)

dk , (4)

where w ≡ √ρu [6].
The corresponding dynamical equations are derived in

Kida and Orszag [6] for the hydrodynamic case and in
[14] for the general MHD case. In the hydrodynamic case,
the dynamical equation for the kinetic energy density in
real space reduces to

∂tEkin(x) =− wiuj∂jwi −
1

2
wiwi∂juj

− wi√
ρ
∂ip+ wi

√
ρai .

(5)
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An equivalent representation of the energy equation in
terms of the mass-weighted variable v = ρ1/3 u cannot be

obtained, although this variable seems to be the natural
choice for flux terms on the right-hand side [17].

In wavenumber space, the kinetic energy density is given by

∂tEkin(k) = Re

[
−wi
∧
uj∂jwi
∧∗

− 1

2
wi
∧
wi∂juj
∧∗

− wi
∧

1√
ρ∂ip
∧∗

+ wi
∧√

ρai
∧∗

]
, (6)

where wide hats signifiy Fourier transforms and an asterisk complex conjugation.

2. Decomposition of internal energy

The internal energy density Eint = ρe can be expressed
in terms of the speed of sound cs as

Eint =
p

γ − 1
=

ρc2s
γ(γ − 1)

(7)

This suggests a decomposition of the internal energy den-
sity in terms of the variable

q =
√
ρ cs (8)

such that

Eint =
q2

γ(γ − 1)
(9)

and total energy can be written as

Etot = Ekin + Eint =
|w|2

2
+

q2

γ(γ − 1)
. (10)

The dynamical equations can be derived in much the
same way as for the kinetic energy densities. Starting
from equation (3), it is straightforward to show that

∂tq
2 =− 2quj∂jq − q2∂juj
− (γ − 1)q2∂juj + γ(γ − 1)ΛHC .

(11)

This representation differs from the one used in [6] given
that we use q as a building block and allows for a more
straightforward interpretation of the terms. The second
term on the right hand side is analogous to the corre-
sponding term in equation (5). Although the second and
third term could be combined, we will show in the follow-
ing that they have different interpretations in the context
of energy transfers.

The representation of the internal energy equation in Fourier space thus reads

∂tEint(k) = Re

[
− 2

γ(γ − 1)
q
∧
uj∂jq
∧∗

− 1

γ(γ − 1)
q
∧
q∂juj
∧∗

− 1

γ
q
∧
q∂juj
∧∗

+ q
∧
q−1ΛHC

∧∗
]
. (12)

To conclude this section, we consider the isothermal
limit q2 → c20ρ, where c0 is the constant isothermal sound

speed given by c0 =
√
P/ρ with γ = 1. Formally, this

corresponds to infinite internal energy, as P/(γ − 1) di-
verges. However, q2 remains a finite quantity. In the
isothermal limit, equation (11) becomes

∂tq
2 = −uj∂jq2 − q2∂juj . (13)

Division by c20 yields

∂tρ = −∂j(ujρ) . (14)

This is, of course, the continuity equation (1), as q2 is pro-
portional to the density.1 Thus, we consistently recover

1 By taking the logarithm, equation (13) can also be rewritten in

the reduction of the system of three partial differential
equations (1)-(3) to the two equations of isothermal gas
dynamics if the temperature is constant.

B. Shell-to-shell transfer functions

Following the notation introduced in [14], the spectral
energy transfer (for T > 0) from a wave number shell Q
of energy reservoir X to shell K of energy reservoir Y is
generically denoted by TXY(Q,K). The definition of a
shell K (or Q) is generally arbitrary from a formal point

terms of s or c20s, where s = log ρ is the logarithmic density
fluctuation which is commonly used in the context of isothermal
compressible turbulence.
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of view. We are using shells with equal distance in log
space as describe in Sec. III B. Here, we use the symbols
U and S for the energy reservoirs associated with the shell
filtered w and q variables, respectively. For example,

wK (x) =

∫
K

w
∧

(k) eik·xdk , (15)

where the integral is over all wavevectors within shell K.
The sum over all shells yields the field value in real space:

w (x) =
∑
K

wK (x) . (16)

In contrast to momentum, the spatial average 〈w〉 does
not vanish if the forcing is statistically isotropic. For
this reason, modes at wavenumber zero in Fourier space
(which correspond to mean values in physical space) are
discarded for the computation of energy spectra and
transfers. For a detailed discussion of shell averages, we
refer the reader to [13, 14].

The proper turbulent energy cascade is essentially
given by energy transfers within the kinetic energy reser-
voir, corresponding to the first two terms on the right
hand side of the kinetic energy equation (6):

TUU(Q,K) = TUUa(Q,K) + TUUc(Q,K) , (17)

where the advective and compressive components are de-
fined by

TUUa(Q,K) = −
∫

wK · (u · ∇)wQdx , (18)

TUUc(Q,K) = −1

2

∫
wK ·wQ∇ · udx . (19)

For the incompressible case (d ≡ ∇ · u = 0), TUUc(Q,K)
vanishes.

From the internal energy equation (12), analogous for-
mulas are obtained for the internal energy reservoir:

TSS(Q,K) = TSSa(Q,K) + TSSc(Q,K) , (20)

where

TSSa(Q,K) = − 2

γ(γ − 1)

∫
qK · (u · ∇) qQdx , (21)

TSSc(Q,K) = − 1

γ(γ − 1)

∫
qK · qQ∇ · u dx . (22)

Both TUU and TSS satisfy antisymmetry with them-
selves. Generally, antisymmetry states that energy
gained in a shell K of budget Y from a shell Q of budget
X must be equal to the energy that is lost from a shell Q
of budget X to a shell K of budget Y. The antisymmetry
property can be formally expressed as

TXY(Q,K) = −TYX(K,Q) . (23)

However, individual components such as TSSa and TSSc
are not antisymmetric.

In [14] transfers from the internal to the kinetic energy
reservoir are defined by

TPU(Q,K) = −
∫

1
√
ρ
wK · ∇pQdx . (24)

Since the total energy (10) is a conserved quantity (ex-
cluding sources and dissipation), exchanges between ki-
netic and internal energy integrated over all shells must
cancel each other out. This can be shown by applying
Parseval’s theorem and integration by parts:∑
K

∑
Q

TPU(Q,K) = −
∫
ui(∂ip) dx

= −
∫
∂i(uip) dx︸ ︷︷ ︸

=0 (periodic BC)

+

∫
p∂iuidx =

∫
q2

γ
(∂iui) dx

= −(γ − 1)
∑
K

∑
Q

TSSc(Q,K) ,

where (γ−1)TSSc(Q,K) corresponds to the third term in
equation (12).

While TPU(Q,K) and TSSc(Q,K) follow directly form
equations (6) and (12), antisymmetric transfer functions
from internal to kinetic energy and vice versa can be
defined in terms of the variable q as

TSU(Q,K) = − 1

γ

∫
wK

√
ρ
· ∇qqQdx , (25)

TUS(Q,K) = − 1

γ

∫
qKq∇ ·

(
wQ

√
ρ

)
dx . (26)

Owing to their antisymmetry, TSU(Q,K) and TUS(Q,K)
cancel each other for individual shell-to-shell transfers
between kinetic and internal energy. In contrast, TPU

and (γ−1)TSSc compensate each other only in the global
energy budget (sum over all Q and K)).

In our approach, information about the coupling of the
density field to other quantities is implicitly contained
in the transfer functions by using the density weighted
variables w and q. Thus, we consider a simplified case of
triadic interactions instead of quartic interactions arising
from variable density.

C. Shell energy equations

The rate of change of the kinetic and internal energy
contained in a shell at wavenumber K is given by the
transfer functions defined in Section II B:

∂tE
K
kin = T K

UUa + T K
UUc + T K

SU + FK (27)

∂tE
K
int = T K

SSa + T K
SSc + T K

US + SK (28)

The shell energies EK
kin and EK

int are obtained by integrat-
ing the energy densities over all wavenumbers belonging
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to shell K [14]:

EK
kin =

∫
K

Ekin(k)dk =

∫
K

1

2
w
∧
iw
∧∗
i dk (29)

EK
int =

∫
K

Eint(k)dk =

∫
K

1

2
q
∧
q
∧∗dk (30)

Apart from a factor ∆K, which is the shell thickness, the
shell energies can be understood as discrete energy spec-
tra specifying the mean energy density at wavenumbers
around K (see Section III D).

All transfer terms T K
XY in equations (27) and (28) are

defined as

T K
XY =

∑
Q

TXY(Q,K). (31)

Generally, they specify the total rate of energy exchange
between reservoirs X and Y through transfer from all
shells Q to shell K. In other words, they provide a mea-
sure of how energy within a particular shell K evolves
via different interactions. Unless stated otherwise, en-
ergy transfer refers to T K

XY, not individual shell-to-shell
transfer, in the following. The sources FK and SK stem
from the forcing and cooling/heating terms, respectively.
These terms are not considered in more detail here, as
we are mainly interested in the dynamics of the turbu-
lent cascade. One should bear in mind, however, that the
sources may change the energy content of shells on top
of the energy transfer mediated by nonlinear interactions
(see also [14]).

For a realistic model of turbulent flow, a dissipation
mechanism is essential. The numerical truncation errors
of finite volume methods employed in many codes for
compressible fluid dynamics usually mimic viscous dissi-
pation, an approach which is sometimes called implicit
large eddy simulation (ILES). Formally this can be writ-
ten as

∂tE
K
kin = T K

UUa + T K
UUc + T K

SU + FK −DK , (32)

where DK is not explicitly known if dissipation is of nu-
merical origin (this applies to the simulations presented
in this article). In those cases where the compressible
Navier-Stokes equations are solved or an explicit subgrid-
scale model is applied, DK can be computed explicitly
from the expression for the rate of energy dissipation ε
[26]. In the absence of sources, finite volume methods
usually conserve total energy to machine precision. As
a result, dissipation of kinetic energy is compensated by
increasing internal energy:

∂tE
K
int = T K

SSa + T K
SSc + T K

US + SK +DK , (33)

The flow becomes statistically stationary once energy
injection due to forcing is balanced by numerical dissipa-
tion and transfers to internal energy, i.e.∑

K

(
T K
SU + FK −DK

)
∼ 0 . (34)

Isothermal turbulence with a steady Mach number can
only be produced if the excess heat produced by transfer
from kinetic energy and dissipation is in turn removed by
cooling, i.e. ∑

K

(
T K
US + SK +DK

)
∼ 0 . (35)

In the case of incompressible turbulence, the inertial
range is defined by T K

UUa ' 0 for shells with negligible
forcing and dissipation. Equivalently, the compresible
kinetic energy transfer function must vanish in an ideal
inertial range:

∂tE
K
kin ' T K

UUa + T K
UUc ' 0 . (36)

However, the condition for an inertial range can be re-
laxed if we only require that the total energy is approx-
imately constant in shells for which forcing, dissipation,
and cooling are negligible:

∂t(E
K
kin + EK

int) ' T K
tot ' 0 , (37)

where

T K
tot = T K

UU + T K
SU + T K

SS + T K
US ' 0 . (38)

Here, the transfers across energy budgets, T K
SU and T K

US,
do not necessarily cancel out for a given shell K (the an-
tisymmetry relation holds in diagonal directions in the
QK-plane, while the shell equations are obtained by in-
tegration in Q-direction for constant K; see Fig. 1). Of
course, it is not clear that any of the above conditions
are met for compressible turbulence with external forcing
and cooling. Regardless of whether an acceleration field a
or a force field f = ρa is used to inject energy in the sim-
ulation, the source term uifi = (ρui)ai in the kinetic en-
ergy equation always couples small and large scale modes,
even for smooth acceleration (or force) fields (see [14]
for a more detailed discussion). Moreover, heating and
cooling can affect any wavenumber. In Section III B we
will address the question of whether shells exist in which
the energy transfers approximately sum up to zero (com-
pared to their maximal values).

D. Cross-scale energy fluxes

By integrating transfer functions over all wavenumbers
Q ≤ k and K > k for a given wavenumber k, the cross-
scale energy fluxes are obtained [14, 27]:

ΠX<

Y>(k) =
∑
Q≤k

∑
K>k

TXY(Q,K), (39)

The energy flux specifies the total rate of energy exchange
between energy in reservoir X at wavenumbers smaller
than k and energy in reservoir Y at wavenumbers larger
than k (i.e. smaller length scales). This can be inter-
preted as scale-by-scale separation of the energy budget
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K

K'

Q Q'

FIG. 1. Schematic view of energy transfer in the Q-K plane
for a local energy cascade. Shell-to-shell transfers are shown
in color, with red and green indicating positive and negative
transfers, respectively. The long dashed line for which Q = K
is the median line. The transfer terms on the right hand side
of the shell energy equations (29) and (30) are given by sum-
mation over all Q for given K (equation 31), corresponding to
the horizontal dashed lines. Cross-scale fluxes are obtained by
summing over rectangular regions Q ≤ k and K > k, where
k is an arbitrary but fixed wavenumber. If the local energy
transfers vanish sufficiently fast with distance from the me-
dian line (locality of energy transfer), the cross-scale fluxes
for the gray-shaded regions are approximately constant.

via low-pass and high-pass filters (see Section 2.4 in [1]).
Summation over shells Q ≤ k corresponds to length scales
larger than 2π/k and over shells K > k to smaller length
scales. The energy flux is positive if there is a net trans-
port of energy from larger to smaller scales.

For incompressible turbulence, the constant kinetic

energy flux ΠU<

U>(k) is the defining property of the in-
ertial subrange of wavenumbers. In general, the con-
stancy of any cross-scale flux defined by equation (39)
requires two properties of the underlying shell-to-shell
energy transfers in the inertial range. Firstly, TXY(Q,K)
must be invariant under a diagonal wavenumber shift
(Q,K) → (Q′,K′), where Q′ − Q = K′ − K. Secondly,
TXY(Q,K) has to vanish sufficiently fast away from the
median line Q = K in the Q-K plane. In other words,
non-local transfers between distant shells must be negli-
gibly small. This can be seen geometrically by observing
that the index range in equation (39) covers a rectangular
region to the left (Q ≤ k) and above (K > k) the median
line in the Q-K plane, with the lower right corner touch-
ing the line at wavenumber k, as illustrated in Fig. 1.
The numerical data in [14] demonstrate that invariance
and locality of TUU(Q,K) is approximately satisfied for a
limited range of wavenumbers in compressible MHD tur-
bulence. However, deviations can be seen for transfers

between kinetic and magnetic energy budgets.

III. NUMERICAL SIMULATIONS

To run numerical simulations of statistically stationary
and isotropic turbulence in a box with periodic bound-
ary conditions, we implemented the stochastic forcing
method from [21, 28] into the astrophysical fluid and N-
body dynamics code Nyx [29]. A dimensionally unsplit
Godunov method with full corner coupling and piecewise
linear reconstruction is applied to solve equations of gas
dynamics [30, 31]. This solver is particularly suitable for
turbulence because it avoids spurious instabilities stem-
ming from directional splitting [32]. For further details
about the code and the postprocessing, see Appendix A.

We follow the reasoning of [7, 10] in maintaining com-
pressible turbulence by a large-scale acceleration rather
than a body force. The basic idea of stochastic forcing is
to compose a random acceleration field a(x, t) that varies
smoothly not only in space, but also in time. It was re-
cently demonstrated that the autocorrelation time of this
field has a significant impact on statistical properties of
forced turbulence [33]. We set the autorcorrelation time
equal to the dynamical time scale T , which is in turn de-
termined by the amplitude and length scale of the forcing.
In the following, we use the basic parameters L, V , and ζ
introduced in [21, 28] to specify the properties of the forc-
ing (see Table I). The length scale L is defined such that
2π/L is the wavenumber at which the spectrum of the
forcing has its peak (we choose L to be half the box size).
By scaling the forcing amplitude with V 2/L, the large-
scale velocity fluctuations induced by the forcing become
comparable to V in the statistically stationary regime
(for this reason, V is called the characteristic velocity of
the flow). The dynamical time scale is given by T = L/V .
The relative strength of the solenodial (divergence-free)
and compressive (rotation-free) components of the forc-
ing can be chosen by means of a Helmholtz decomposi-
tion in spectral space with weight coefficients ζ and 1−ζ,
respectively. The two limiting cases of purely solenoidal
(ζ = 1) and compressive (ζ = 0) forcing were investigated
in [18–20].

A. Existence of a statistically stationary regime

The initial mass and energy densities in code units are
ρ0 = 1 and energy Eint,0 ≈ 0.25, respectively, for all
simulations. Since turbulence is scale-free, the absolute
value of the energy is of no particular significance and we
will consider mostly dimensionless relative quantities.

In contrast to most simulations of isothermal turbu-
lence in the literature, we do not enforce an isothermal
equation of state (p ∝ ρ) or use an artificially increased
internal energy Eint = ρe = p/(γ − 1), where γ − 1 is a
small fraction of unity. In our simulations, γ = 5/3 and
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FIG. 2. Time evolution of the mean internal energy minus initial energy (code units) and RMS Mach number for different
cooling coefficients α in simulations with forcing parameters V = 1.0 and ζ = 2/3 (see also I).

FIG. 3. Phase diagrams for cooling coefficients α = 1000 (left) and 1 (right) at the end of simulations with V = 1.0 and
ζ = 2/3. The temperature T and density ρ are normalized to their initial values.

cooling of the gas is mimicked by the term

ΛHC = −αρ(e− e0) (40)

in equation (3), where e0 is the initial gas energy per unit
mass. Excess heat e−e0 is removed at a rate given by the
cooling coefficient α (if the energy difference is negative,
the gas is heated). In the following, we show that this
simple model results in a steady state with approximately
constant mean thermal energy if α is chosen sufficiently
large. In this case, the Mach number of the turbulent flow
can be adjusted by changing the forcing parameter V .

First we consider the impact of the the cooling coeffi-
cient α in equation (40) for the case V = 1.0 and ζ = 2/3.
As shown in Figure 2 (a), the mean internal energy be-
comes approximately constant for α & 10 after an initial
phase in which the gas is set into motion by the forcing

and eventually becomes turbulent. The root mean square
(RMS) Mach number

〈Ma2〉1/2 = 〈u2/c2s 〉1/2 = 〈w2/q2〉1/2 (41)

saturates at about 1.7 (b; see also Table I for time av-
erages). This indicates a steady state in which the rate
of mechanical energy injection is balanced by the rate of
dissipation into heat, which in turn is balanced by the net
cooling rate of the system. In this case, the mean kinetic
and thermal energies are roughly constant and the gas is
quasi isothermal with larger fluctuation for lower α. The
distribution of the temperature fluctuations for α = 1000
is shown in the left phase diagram in Fig. 3. For the
smallest cooling coefficient α = 1.0, one can see in Fig. 3
that the internal energy gradually increases and the RMS
Mach number slowly drifts into the subsonic regime (the
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FIG. 4. Slices of the vorticity ω (a,d), divergence d (b,e), and q (c,f) defined by equation (8) for cooling coefficients α = 1000
(a,b,c) and 1 (d,e,f) at the end of simulations with V = 1.0 and ζ = 2/3 (the corresponding phase diagrams are shown in
Fig. 3).

adiabatic case, α = 0, is shown as gray line). This marks
the transition to more or less adiabatic behaviour (see
the phase diagram of a simulation with α = 1.0 in the
right panel of Fig. 3). Figure 4 illustrates the turbulent
flow for these two cases. Panels (a,d) show slices of the
vorticity modulus ω = |∇ × u|. In the nearly isothermal
case (a,b,c), the vorticity appears to be more intermittent
with pronounced front-like features which are associated
with strongly negative divergence d = ∇ · u (b,e). This
is indicative of shock fronts. Shocks are also reflected in
the pronounced jumps of q (c,f), which is approximately
the square root of the mass density ρ if the gas is nearly
isothermal. In contrast, q is generally larger, i.e. the gas
is hotter, and jumps are less pronounced for α = 1 (d,e,f).

In Fig. 5, mean values for varying integral velocity scale
V are shown in the statistically stationary regime start-
ing at t = t1. We choose t1 = 3T for V = 1.0 or lower (see

Fig. 2). For higher V , the forcing magnitude is ramped
up in steps from 1.0 to 2.0 to 4.0 in order to avoid CFL vi-
olations triggered by very strong shocks and rarefactions
in the initial phase (turbulence reduces these effects) and
t1 is accordingly adjusted. In all four cases, ζ = 2/3 and
α = 1000. Figure 5 (a) shows that the deviation of the
mean internal energy from Eint,0, which is proportional to
the net cooling rate (see equation 40), increases with the
rate of energy injection by the forcing, while the mean
energy remains at a nearly constant level. The RMS
Mach numbers (b) indicate that α = 1000 is sufficient to
maintain statistically stationary and nearly isothermal
turbulence up to V = 4.0. The resulting time-averaged
RMS Mach numbers are listed in Table I.

For supersonic isothermal turbulence, density fluctu-
ations are expected to follow a log-normal distribution
[17, 21, 34–37]. In terms of the logarithmic density fluc-
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FIG. 5. Time evolution of the mean internal energy minus initial energy (a; in code units) and RMS Mach number (b) for
different forcing amplitudes in combination with ζ = 2/3 and α = 1000 in the statistically stationary phase starting at t = t1.

V ζ α 〈w2〉1/2 〈Ma2〉1/2
0.25 1 1000 0.183 0.497
0.5 1 1000 0.338 0.948
0.5 2/3 1000 0.329 0.920
1.0 1 1000 0.596 1.715
1.0 2/3 1000 0.587 1.691
1.0 2/3 100 0.592 1.694
1.0 2/3 10 0.606 1.688
1.0 2/3 1 n/a n/a
1.0 1/2 1000 0.554 1.585
2.0 2/3 1000 1.114 3.189
2.0 1/2 1000 1.044 3.018
2.0 1/4 1000 0.830 2.452
4.0 2/3 1000 2.160 6.090
4.0 1/2 1000 2.066 5.860
4.0 1/4 1000 1.705 5.114
4.0 1/4 10 n/a n/a
4.0 1/8 1000 1.596 4.929

TABLE I. Overview of simulation parameters (integral veloc-
ity scale V , solenoidal weight parameter ζ, cooling cofficient
α). Also listed are the time-averaged RMS mass-weighted ve-
locity w and RMS Mach number defined by equation (41) in
the statistically stationary regime.

tuation s = log ρ (here it is assumed that the mean den-
sity in code units is unity), this distribution is defined
by

P (s)ds =
1√

2πσs
exp

(
− (s− s0)2

2σ2
s

)
ds , (42)

where s0 = −σ2
s/2 is implied by mass conservation (it

should be noted that s0 does not correspond to the mean
density, which would imply s0 = 0). The function P (s) is
a probability density function (PDF), i.e. the cumulative
probability for finding s in a given interval is obtained by
integrating P (s).

Samples of time-averaged PDFs from our simulations

are plotted in Fig. 6. Plot (a) shows the dependence
on the forcing magnitude for ζ = 2/3. The width of the
PDF increases with the characteristic velocity of the flow,
which simply reflects the stronger density contrast at
higher Mach number [37, 38]. This trend can also be seen
by fitting equation (42) to the data. The resulting values
of the standard deviation σs are summarized in Table II.
If the PDFs were exactly log-normal, s0 would be fixed
by σs. The deviation of s0+σ2

s/2 from zero is thus a mea-
sure for the deviation of the PDF from log-normal shape.
The deviations tend to increase with the Mach number.2

Figure 6 (b) reveals that the PDF in the supersonic case
depends strongly on ζ. Depending on ζ, the RMS veloc-
ity produced for a given forcing magnitude (characteris-
tic velocity V ) varies somewhat (see Table I). Since RMS
Mach numbers are slightly lower for strongly compressive
forcing (as discussed in [21], this is related to stronger in-
termittency), PDFs should become narrower if the varia-
tions were solely due to Mach-dependent compressibility
of the turbulent flow. The PDFs for V = 4.0 are, on the
contrary, substantially broader if the forcing is dominated
by compressive modes (σ ≈ 2.5 for ζ = 1/8 compared to
1.6 for ζ = 2/3). The skewness also becomes more pro-
nounced for low ζ, as indicated by the large discrepancy
between the log-normal fits and the data toward high
overdensities (ρ & 10). This effect of the forcing is exten-
sively discussed in [19–21, 24, 36, 37, 39]. However, the
log-normal density PDF is an idealization that applies
to exactly isothermal gas with a self-similar hierarchy of
density structures, which can exist only in the strongly
supersonic case. Since the gas in our simulations is only
approximately isothermal (particularly shock-heated gas
does not cool instantaneously) and Mach numbers cover
a range from below unity to about five, we find significant

2 Improved fits with intermittency correction were proposed in [39]
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FIG. 6. Time-averaged PDFs of the logarithmic mass density s = log(ρ/ρ0), where ρ0 = 1, for different Mach numbers and fixed
ζ = 2/3 (a) and for varying ζ (b). The thin solid lines indicate log-normal fits defined by (42) in the range −3σs ≤ s−s0 ≤ 3σs.

V ζ σs s0 + σ2
s/2

0.25 1 0.117 0.013
0.5 1 0.373 0.021
0.5 2/3 0.366 0.016
1.0 1 0.735 0.023
1.0 2/3 0.754 0.017
1.0 1/2 0.778 0.035
2.0 2/3 1.147 0.047
2.0 1/2 1.227 0.086
2.0 1/4 1.612 0.340
4.0 2/3 1.574 0.188
4.0 1/2 1.689 0.247
4.0 1/4 2.326 0.798
4.0 1/8 2.474 1.006

TABLE II. Standard deviations of two-parameter (s0, σs) log-
normal fits to the PDFs of the mass density for α = 1000.
For an exact log-normal distribution, mass conservation im-
plies s0 + σ2

s/2 = 0. The actual values obtained from the fit
functions are listed in the column on the very right.

deviations in the far tails (beyond a few σs) in all cases.
For our purpose it is sufficient that PDFs are close to
log-normal, as a further indication of nearly isothermal
turbulence.

B. Transfer function

In Fig. 7, we plot transfer functions T K
UU, T K

SS, T K
SU,

and T K
US defined as rate of change of energy in shell K for

simulations representing moderate and high Mach num-
bers as well as strong and weak cooling (see Table I). We
adopt octave binning, i.e. K ≡ k ∈ [K/2, 2K[, as in [14].
In each case, the transfer functions are averaged over an
interval of at least five dynamical timescales T in steps
of 0.2T .

Figure 7 (a,b,c,d) shows the total energy transfers T K
tot

(solid black lines) and the sum of kinetic and internal
energy transfers, T K

UU + T K
SS (dot-dashed black lines) in

comparison to T K
UU and T K

SS. The energy-containing range
at low wavenumbers is excluded here. It is rather obvi-
ous that there is no extended range of wavenumbers that
could be interpreted as inertial range in the sense dis-
cussed in Section II C, i.e. neither T K

tot or T K
UU vanishes

in between negative (energy-containing range) and posi-
tive (dissipation range) peaks. However, T K

tot crosses zero
in three out of four cases. As a working hypothesis, we
adopt the criterion that an approximate inertial range
requires |T K

tot| to be less than 0.1 times its peak value
and T K

tot to be negative or sufficiently close to zero (0.01
times the maximum) in at least one shell K ≥ 10 (at lower
wavenumbers, the forcing significantly contributes to the
energy transfer, which we checked for selected cases).
The resulting wavenumber ranges are gray shaded in the
plots and summarized for all simulations in Table III. At
best, there is a marginal inertial range for nearly isother-
mal turbulence (α = 1000) in Fig. 7 (a) and (c). For
α = 10, there appears to be an imbalance of energy at
intermediate scales and, as a result, no inertial range de-
fined by our criterion exists in the case V = 1.0, corre-
sponding to Mach numbers around 1.7 (b). In contrast,
we find a relatively wide inertial range for V = 4.0 (d)
with forcing dominated by compressive modes (ζ = 0.25),
even though the flow does not enter a statistically sta-
tionary regime in this case (the Mach number gradually
decreases, as the cooling is not efficient enough). This
shows that inertial-range behavior is limited by the inter-
play between the compressibility of the flow, the forcing,
and thermodynamics. This particularly applies to the
forcing, as the coupling of the acceleration field to the
velocity field through density variations in the compress-
ible regime introduces significant net transfer of energy
on the largest scale (k . 10), see also Fig. 7 in [14].

Figure 7 (a,b,c,d) also shows that T K
UU does not differ
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FIG. 7. Time-averaged transfers T K
XY into shell K (see equation 31) for energy reservoirs X and Y indicated by the legends in

the right column. Forcing with V = 1.0 and ζ = 2/3 was applied for the transfer functions in plots (a,e,i,m) and (b,f,j,n), while
V = 4.0 and ζ = 1/4 for (c,g,k,o) and (d,h,l,p). In both cases the cooling coefficient was varied: α = 1000 for (a,e,i,m) and
(c,g,k,o), α = 10 for (b,f,j,n) and (d,h,l,p). See also Table I for an overview. All transfers are scaled by V 3. The range between
one standard deviation above and below the time average is filled (except for the top panels). The estimated inertial range on
the basis of near zero transfer is indicated by gray shaded wavenumber ranges.

much from the total transfer T K
tot in the strongly super-

sonic case. Consequently, we could base our estimate of
the inertial range just as well on T K

UU as on T K
tot. In other

words, the kinetic energy is roughly an ideal invariant, as
expressed by (36). This is simply a consequence of the in-
ternal energy being small in comparison to the kinetic en-
ergy in the limit of high Mach numbers. As observed for
MHD turbulence in [14], the advective and compressive
components of T K

UU (e,f,g,h) roughly cancel each other at
intermediate wavenumbers (second row of plots), which

results more or less in inertial-range behaviour of the ki-
netic energy. The peak between k = 100 and 200, which
can be seen in all cases, indicates that energy received
from lower wavenumbers (larger eddies) per unit time
exceeds the energy that is drawn by higher wavenum-
bers (smaller eddies) in the forward cascade. This can
be attributed to the increasing damping of eddies by nu-
merical viscosity toward high wave numbers. Depending
on the properties of the solver, this imbalance may result
in a so-called bottleneck effect (see Section III D).
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For low α (i.e. the gas is close to adiabatic), the in-
ternal energy transfer T K

SS is about zero at intermediate
wavenumbers (panels (j,l) in Fig. 7). This can be inter-
preted as an internal energy cascade in analogy to the
usually considered cascade of turbulent kinetic energy,
with shell-to-shell interactions between fluctuations of q
rather than w. There is also a similar peak at high wave
numbers. The transfer of internal energy can be under-
stood as turbulent mixing, which redistributes internal
energy from larger to smaller scales. The mixing agent is
the turbulent flow, corresponding to the advection oper-
ator u · ∇ occuring in equations (18) and (21) for kinetic
and internal energy transfer, respectively (and the di-
vergence operator in the expressions for the compressive
components). In the case of nearly isothermal turbulence
(α = 1000), the internal energy transfer in the estimated
inertial range is negative (i,k). This reflects net energy
losses due to cooling on top of the redistribution of in-
ternal energy through turbulent mixing. Naturally, the
component T K

SSc becomes more significant in comparison
to T K

SSa with stronger shock compression at higher Mach
numbers.

Transfers from kinetic to internal energy reservoirs are
of the same order of magnitude as T K

SS (panels (m,n,o,p)
in Fig. 7). However, T K

US and T K
US nearly cancel each

other, particularly at low to intermediate wavenumbers.
This is in agreement with results reported in [40] us-
ing a filtering approach to analyze sub- and transonic
solenoidally forced turbulence simulation with explicit
viscosity. For this reason, T K

UU + T K
SS can be used as a

proxy for T K
tot (solid black vs dot-dashed lines in top pan-

els). We thus computed only T K
UU and T K

SS for most other
simulations with α = 1000 to reduce the postprocess-
ing time. Our results for T K

US and T K
US reveal a stronger

exchange between the energy reservoirs for isothermal
turbulence in the range of wavenumbers where the com-
pressive components T K

UUc and T K
SSc are large. This is to

be expected since T K
UUc, T K

SSc, and T K
US are related to the

divergence of the flow (see equations 19, 22, and 26) and
T K
SU is the antisymmetric counterpart of T K

US.

C. Cross-scale flux

The total flux of energy across a given wavenumber
is defined by equation (39). In this section, we investi-
gate the dependence of the kinetic and internal energy
flux on the characteristic velocity V and the mixture of
solenoidal and compressive forcing modes specified by ζ.
We do not consider the inter-budget cross-scale fluxes

ΠU<

S> (k) and ΠS<

U>(k), which produce only minor contri-
butions to the total energy flux (we confirmed this in
representative cases; see also the above discussion of the
corresponding transfer functions).

First we consider the dependence of the energy flux
and its components on V (i.e. the forcing magnitude and
the resulting Mach number changes). Figure 8 shows
our results for the case ζ = 2/3. The most strik-

ing trend is that the advective component of the ki-

netic energy flux ΠU<

U>(k) changes systematically with the
Mach number of the flow (blue dashed lines in panels
(e,f,g,h)). For V = 1.0 (〈Ma2〉1/2 ≈ 1.7), the advective
component is nearly constant. For lower Mach number
(〈Ma2〉1/2 ≈ 0.9), it decreases slightly with wavenumber,
while there is a steep increase for RMS Mach numbers
above 3 (see Table I). This is partially compensated by
the negative compressive component. As shown in panels
(a,b,c,d), the range of wavenumbers with energy transfer
around zero is not only narrow, but is displaced from the
maximum cross-scale flux in the case of the highest Mach
number.3 This suggests a break-down of inertial range
scaling toward high Mach numbers for a fixed fraction of
solenoidal forcing.

Figure 9 (e,f,g,h) unravels a trend with the forcing pa-
rameter ζ: From forcing dominated by solenoidal modes
(ζ = 2/3) to mostly compressive forcing (ζ < 1/2),

the advective component of ΠU<

U>(k) becomes flatter and
nearly constant over the inertial-range wave numbers in-
ferred from the transfer functions. In the case ζ = 1/4,
the gray shaded region in the plot is centered at the peak
of the total energy flux (c). In other words, inertial-range
properties are restored at higher Mach numbers if the
fraction of compressive forcing modes is sufficiently high.
There is an influence of the RMS Mach number as well
(see also the discussion of density PDFs in Section III A
and Table I), but the changes are larger than what could
be expected solely on the basis of slightly lower Mach
numbers for decreasing ζ. Moreover, there appears to
be a relatively sharp transition between ζ = 1/2 (steep
increase of advective component, narrow and displaced
inertial subrange) and ζ = 1/4 (flat advective compo-
nent, rather broad inertial subrange around peak of total
energy flux). In the next section, we will show that these
observations become also manifest in the turbulence en-
ergy spectra.

D. Turbulence energy spectra

The energy spectrum function is analytically defined
as derivative of the cumulative energy up to a given
wavenumber k. Formally, this corresponds to shell ener-
gies in the limit of infinitesimally thin shells (i.e. surface
integrals). Since shell energies can be evaluated from nu-
merical data only for shells of finite thickness ∆K, we
define the energy spectrum on the basis of the shell en-
ergy as

Ew(k)∆K ' EK
kin (43)

3 This is not, as it might seem, a contradiction because the the
total energy transfers defined by equation (31) do not directly
correspond to derivatives of the cross-scale fluxes (39), which are
obtained by integrating over a subregion Q ≤ k and K > k in
the QK-plane.
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FIG. 8. Time-averaged cross-scale fluxes of kinetic and internal energy in nearly isothermal turbulence (α = 1000) for increasing
forcing magnitude (V = 0.5 for (a,e,i), V = 1.0 for (b,f,j), V = 2.0 for (c,g,k), and V = 4.0 for (d,h,l)) and a constant mixing
ratio ζ = 2/3. All fluxes are normalized by V 3.

In addition to Ew(k), we also compute energy spectra for
the primitive variable u,

Eu(k)∆K '
∫
K

1

2
u
∧
iu
∧∗
i dk , (44)

and for the variable v = ρ1/3u introduced by Kritsuk
et al. [17]:

Ev(k)∆K '
∫
K

1

2
v
∧
iv
∧∗
i dk . (45)

The three definitions of the turbulence energy spec-
trum convey different information. The spectrum of pure
velocity modes is given by Eu(k) ∝ k−5/3 in the weakly
compressible case, while Eu(k) ∝ k−2 is the expected
scaling in shock-dominated flow at high Mach numbers.
This trend is indeed observed for the exponents βu of
power-law fits Eu(k) ∝ kβu in the range of wavenumbers
inferred from the transfer functions (see Table III). For
example, the Kolmogorov slope βu ≈ −1.67 is recovered
in the subsonic case (V = 0.25) with purely solenoidal
forcing and a slope βu ≈ −1.93 close to Burgers scal-
ing is found for Mach numbers of about 5 (V = 4.0)

with mainly compressive forcing (ζ = 1/4 and 1/8). In
Fig. 10, sample spectra are plotted for V = 1.0 (a,b,c)
and V = 4.0 (d,e,f). In the high-Mach case, the strong
impact of the forcing parameter ζ is palpable. As ob-
served for the cross-scale fluxes, the spectrum functions
for ζ > 1/2 are markedly different from those with a
stronger solenoidal component. In the latter case the es-
timated inertial range shown as thin black line segments
is implausible, as it falls within the bottleneck bump at
high wavenumbers. It appears that the bottleneck effect
becomes even more pronounced for lower Mach numbers.
This might explain why the energy transfer fails to van-
ish at intermediate wavenumbers in some cases, such as
V = 1.0 and ζ = 2/3. In this case, the inferred inertial
subrange shrinks to zero and no power law fits are ap-
plied (the corresponding simulations are thus omitted in
Table III).

For each spectrum, we also show the sonic wavenumber
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FIG. 9. Cross-scale fluxes for supersonic turbulence (V = 4.0) with decreasing fraction of solenoidal forcing modes (ζ = 2/3
for (a,e,i), ζ = 1/2 for (b,f,j), ζ = 1/4 for (c,g,k), and ζ = 1/8 for (d,h,l)) as in Fig. 8.

ks, which is implicitly defined by4∫ ∞
ks

2Eu(k)dk = c2s , (46)

i.e. the velocity fluctuation exceeds the speed of sound
for k < ks [19, 21]. Although the inertial-range fits for
V = 1.0 cover wavenumbers well above ks ≈ 4.2, the
relatively steep slopes in Table III reflect a significant
impact of compressibility effects. The spectra plotted
in Fig. 11 show that ks is shifted with increasing V to-
ward higher wavenumbers in the inertial subrange, thus
indicating the transition from moderately compressible
to supersonic turbulence. Comparing to Fig. 7, however,
one can see that compression-related transfers T K

SSc, T K
SU,

and T K
US have peaks at wave numbers significantly above

ks. As a consequence, wavenumbers for which compres-
sion effects are relatively strong are not limited by the
sonic wavenumber.

4 Here we use the initial value of cs, which is close to the mean
speed of sound for α = 1000.

Motivated by the dimensional expression ρu3/L =
v3/L for energy flux, it was suggested that the incom-
pressible k−5/3 scaling can be extended into the com-
pressible regime for the variable v [17]. The fits to
Ev(k) listed in Table III show that βv is close to −5/3
for solenoidal forcing at low to moderate Mach numbers
(V ≤ 1.0). At higher Mach numbers, it appears that
βv = −5/3 can be reached for increasingly compressive
forcing, although the results for V = 4.0 are not fully con-
clusive. The corresponding spectra are shown in Figs 10
(b,e) and 11 (b). Similar to the cross-scale energy flux
discussed in the previous section, we see a transition of
the shape of Ev(k) for V = 4.0 when the forcing becomes
dominated by compressive modes. A prominent feature
for ζ = 1/4 and 1/8 is the shift of the kink at which
the forcing peak joins into the flat part of the spectrum
to wavenumbers above 10. It turns out that this is also
the lower bound of the fit range (solely established on
the basis of the transfer functions). For higher ζ (mainly
solenodial forcing), these two points move apart and the
spectra become flatter (see Fig. 10 and corresponding fit
parameters in Table III)

The spectrum function Ew(k) corresponds to the ki-
netic energy density of compressible density (see Sec-
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FIG. 10. Normalized turbulence energy spectra for the three velocity variables u (a,d), v = ρ1/3u (b,e), and w =
√
ρu (c,e)

compensated with k5/3. The mixture of solenoidal and dilatational forcing modes is varied for integral velocity scales V = 1.0
(a,b,c) and V = 4.0 (d,e,f). The power-law fits listed in Table III are shown as thin black line segments for 0.5kmin < k < 2kmax.
The vertical gray lines in the left plots indicate the sonic wave numbers ks defined by equation (46).

V ζ kmin kmax βu βv βw
0.25 1 9.5 45.2 -1.667 -1.663 -1.661
1.0 1 9.5 22.6 -1.766 -1.672 -1.611
1.0 2/3 9.5 19.0 -1.826 -1.721 -1.651
2.0 2/3 9.5 32.0 -1.792 -1.542 -1.391
2.0 1/2 9.5 32.0 -1.772 -1.528 -1.387
2.0 1/4 9.5 22.6 -1.867 -1.684 -1.584
4.0 2/3 22.6 38.1 -2.110 -1.587 -1.337
4.0 1/2 22.6 38.1 -2.101 -1.609 -1.363
4.0 1/4 13.5 32.0 -1.925 -1.578 -1.402
4.0 1/8 11.3 32.0 -1.936 -1.647 -1.492

TABLE III. Power-law fits for statistically stationary turbu-
lence in the estimated inertial range [kmin, kmax] following
from the criteria formulated in Section III B (gray shaded
wavenumber ranges in Fig.s 7, 8, and 9). The slopes of the
energy spectra Eu(k), Ev(k), and Ew(k) are given by the ex-
ponents βu, βv, and βw, respectively. For details about the
fitting procedure see Appendix A.

tion II C). It has previously been noted that Ew(k) tends
to be flatter than both Eu(k) and Ev(k) [14, 17, 19],
possibly approaching k−4/3 in the strongly supersonic
case. Qualitatively, the plots in Fig. 10 (c,f) indicate that
Ew(k) becomes flatter than the reference k−5/3 spectrum
for high Mach number (V = 2.0 and V = 4.0). As can
be seen from the power-law fits listed in Table III, βw is
closer to −4/3 if the forcing is dominated by solenoidal
modes. This trend can also be seen in the plot show-

ing Ew(k) for fixed ζ = 2/3 in Fig. 10 (c). In view
of our analysis of energy transfer and cross-scale fluxes,
it follows that a slope of −4/3 for the energy spectrum
function Ew(k) is incommensurate with an inertial-range
cascade.

IV. CONCLUSIONS

We investigated energy transfer functions and the re-
sulting cross-scale fluxes of kinetic and internal energy
in implicit large eddy simulations of forced compressible
turbulence. To maintain a statistically stationary state
even at high Mach numbers, the net increase of internal
energy caused by the dissipation of kinetic energy is com-
pensated by a simple linear cooling function. We varied
both the amplitude of the forcing, resulting in Mach num-
bers ranging from subsonic to supersonic, and the mix-
ture of solenoidal and compressive modes. Indicators of
nearly isothermal turbulence are approximately constant
RMS Mach numbers and log-normal density PDFs with
significant skewness in the highly compressible regime
[19, 20, 39].

To compute transfer functions we apply a spectral de-
composition into shells based on the variables w =

√
ρ u

(kinetic energy transfer) and q =
√
ρ cs (internal energy

transfer), where u and cs are the gas velocity and speed of
sound, respectively. For a numerical resolution of 10243,
we find only limited regimes of vanishing energy trans-
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FIG. 11. Normalized compensated turbulence energy spectra as in Fig. 10 for different Mach numbers and ζ = 2/3.

fer, which is a defining property of an inertial subrange.
In a resolution study (see Appendix B) we find that ex-
tended regimes of vanishing transfers and, thus, an iner-
tial subrange just begins to emerge for 10243 grid cells.
For the majority of simulations, the total transfer func-
tion crosses zero at intermediate wavenumbers and we
consider shells to be close to inertial-range scaling if the
modulus of the total transfer is less than 10 % of the peak
value at higher wavenumbers.

For the comparison of the kinetic and internal energy
budgets, cumulative quantities are better suited than the
transfer functions. Cross-scale fluxes quantify the total
amount of energy that is passed from all shells below
a given wavenumber into shells above that wavenumber
(we do not consider the question of interaction locality of
energy transfer here). Our analysis shows that the cross-
scale flux is always dominated by kinetic energy. This is
of course expected in the weakly compressible case, where
density fluctuations contribute only little to the energy
transfer between different shells. Since the gas is nearly
isothermal, changes in q do not play a significant role.
The flux of internal energy becomes more important at
transonic Mach numbers, but decreases relative to the
kinetic energy flux toward higher Mach numbers. This
is simply a consequence of the large fluctuation of the
velocity compared to the speed of sound. Moreover, the
small transfers between the kinetic and internal energy
reservoirs, which are related to pressure dilatation, sup-
port the theoretical reasoning in [3]. As a consequence, it
appears that the kinetic energy cascade becomes asymp-
totically invariant in the limit of high Mach numbers.

We also find a strong sensitivity of the energy trans-
fers on the composition of the forcing for supersonic tur-
bulence similar to the previously reported sensitivity of
density PDFs or energy spectra [19]. Particularly the
advective component of the kinetic energy flux turns out
to be nearly constant for intermediate wavenumbers if
the compressive fraction of the force field is sufficiently
large. At lower Mach numbers, roughly constant kinetic
energy flux is only found for mostly solenoidal forcing.
Together with the compressive component of the kinetic
energy flux and the internal energy flux, the behaviour is
less clear. A simple statistical argument suggests a ratio

of two to one for the power of solenoidal and compressive
large-scale modes (corresponding to ζ = 1/2; see [19]) in
the strongly compressible regime. Although our results
indicate that there is a preferred mixture of solenoidal
and compressive forcing, it appears that the ratio changes
depending on the Mach number. This is probably a con-
sequence of the increasingly strong coupling of solenoidal
and compressive modes. To disentangle the coupling and
its effect on the inertial range, further separation of the
transfers into divergence-free and rotation-free modes is
required.

The impact of the forcing mixture is corroborated by
power-law fits to turbulent energy spectra in a range
that is solely based on the transfer functions. Although
the resolution is barely sufficient to resolve inertial-range
scaling (for high Mach numbers, the fit range is shifted
toward the bottleneck range in which the spectrum func-
tions are tilted), we can nevertheless discern some trends.
The slopes βu of the pure velocity spectra Eu(k) show
the expected dependence on the Mach number. While
βu ≈ −5/3 for the lowest Mach number, the slope ap-
proaches −2 (Burgers turbulence) for higher Mach num-
bers (if the forcing is mainly solenoidal, the slope even
falls below −2). We do not find a clear separation of scal-
ings below and above the sonic wavenumber, as proposed
in [4]. Based on our analysis, the inertial range crosses
the sonic wavenumber and the slope gradually changes
with increasing Mach number. However, as mentioned
above, this also entails a stronger bias by the bottleneck
effect. The compressible energy density spectrum Ew(k)
tends to become shallower with increasing Mach number,
with βw between about −4/3 and −5/3 depending on the
forcing. The dependence of the slope βv for the variable
v = ρ1/3u on the weighing of solenoidal and compressive
modes deserves closer attention. In [17], the Kolmogorov
value of −5/3 was proposed for βv as a universal scaling
exponent. With increasing Mach number, we find that
βv tends to be closer to −5/3 for increasingly compres-
sive forcing. In contrast to [19, 20], we do not find a
much steeper slope provided that the range of power-law
fits is constrained by vanishing transfer functions (e.g.
βv = −2.1 for 〈Ma2〉1/2 ≈ 5.5 and ζ = 0 in [19] was
obtained for a wavenumber range that is more strongly
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affected by the forcing term FK in the shell-energy equa-
tion (27) than in the range we obtain from our transfer
analysis). Taken by themselves, the spectrum functions
Ev(k) do not exclude steeper fits. Galtier & Banerjee [4]
indeed favor a broader definition of compressible turbu-
lence, with a scale-dependent compressible contribution
to the energy flux in addition to a scale-invariant ma-
jor component that can be identified with the advective
component of the kinetic energy flux. Interpreted in this
theoretical framework, our findings indicate that inertial-
range scaling in the more specific sense of nearly constant
energy flux is limited to a certain region in parameter
space in which the net compressible contribution is rela-
tively small. A direct comparison to observational data
is difficult because the full three-dimensional structure
of the velocity and density fields has to be reconstructed.
For example, observations of star-forming clouds favor
scaling exponents in between the Kolmogorov and Burg-
ers exponents [19, 41]. By using indicators such as den-
sity PDFs, some evidence has been found that the driving
mechanism resembles mixed forcing [42].

It has to be stressed that turbulence in a periodic box
driven by stochastic forcing is an idealistic model. For
turbulent flows occurring in nature, the actual mode of
energy injection and realistic boundary conditions and
maybe even initial conditions have to be taken into ac-
count. In the case of astrophysical turbulence, gravity,
magnetic fields, and highly non-linear cooling increase
the complexity even further. Moreover, microphysical ef-
fects such as deviations from local thermodynamic equi-

librium are expected to play a role. However, this is
beyond the scope of our simple model (as implied by the
EOS and cooling function) and is left for more advanced
studies in the future. Our numerical study demonstrates
that even under the most ideal circumstances (statisti-
cally homogeneous and isotropic flow in a steady state),
compressible turbulence exhibits a rich phenomenology.
Apart from the incompressible limit (q � w), the notion
of a compressible inertial-range cascade probably has to
be regarded as asymptotic property in the limit of high
Mach numbers (q � w). However, compressible turbu-
lence in astrophysical systems is often found in the inter-
mediate regime (q ∼ w). An important example is the
intracluster medium in clusters of galaxies [43, 44].
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Appendix A: Computational aspects

Nyx uses a hierarchical parallelisation scheme based on
the AMReX framework5. The grid is decomposed into a
suitable number of boxes, which are distributed among
MPI tasks. Each box in turn is split into several tile boxes
[46], which extend over the full size of a box in x-direction
(corresponding to the innermost loops in the Fortran core
routines of the code) and covering quadratic tiles of size
16 × 16 in the yz-plane. Each OMP thread computes
one or more tile boxes. This scheme is also beneficial for
efficient vectorization. For high performance, it is of par-
ticular importance to enable vectorization for the inverse
Fourier transform of the forcing spectrum to spatial grid,
which is basically a multiply-add operation over an array
with more than 100 elements for each grid cell (corre-
sponding to the number of non-zero Fourier modes; the
spectrum of the forcing is exactly as specified in [21]).
Source terms (forcing and heating/cooling) are treated
with a Strang splitting method which is described in de-
tail in [29]. The full code including the implementation
of stochastic forcing is publicly available on Github.6

The simulations presented in this article were per-
formed on Xeon Phi (Knights Landing) processors with
AVX-512 vectorization. We used 32 nodes for the largest
grids with 10243 cells. On each node, 8 MPI tasks ran
with 32 OMP threads per task on 64 physical cores (i.e.
we employed the maximal number of hyperthreads, re-
sulting in a speedup by a factor of about 2 compared to
no hyperthreading). The nodes were operated in cache
mode with Sub-NUMA-2 clustering. With this configu-
ration, the wallclock time per CFL timestep was about
7 seconds. The total number of timesteps required for
a sufficient number of dynamical time scales varied be-
tween roughly 20000 and 40000.

The postprocessing was carried out with Python,
using parallel Fourier transforms implemented in the
mpi4py-fft package7 to compute transfer functions. To
read data cubes from the simulations, we used the
AMReX frontend implemented in yt8 [45].

To fit power laws to energy spectra, we applied the
scipy library function curve fit to logarithmic data,
i.e. the data model is y = βx + y0 with x = log k and
y = logE(k). Since our basis hypothesis is that the en-
ergy transfer vanishes in the inertial range, we assume
the uncertainty sigma of the data in curve fit to be
proportional to the deviation of the energy transfer from
zero. As a result, shells with energy transfer close to
the upper bound of 0.1 relative to the peak value have
less weight in relation to the shell in which the transfer
crosses zero.

5 See https://amrex-codes.github.io/amrex
6 AMReX repo: github.com/AMReX-Codes/amrex,

Nyx repo: github.com/AMReX-Astro/Nyx.
7 See mpi4py-fft.readthedocs.io.
8 See yt-project.org/doc.
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FIG. 12. Time evolution of the mean internal energy minus initial energy (a) and kinetic energy (b) for different numerical
resolutions in the case V = 1.0 and ζ = 2/3.

Appendix B: Resolution study

Figure 12 shows the time evolution of the mean inter-
nal (a) and kinetic (a) energies for V = 1.0 and ζ = 2/3.
For this particular case we performed simulations with
2563, 5123, and 10243 grid cells. Within statistical vari-
ations due to the randomness of the forcing, the energies
saturate at comparable levels. This implies that dissipa-
tion and cooling are insensitive to numerical resolution
(see also [28, 47]).

The resolution dependence of the total transfer func-
tions is shown in Fig. 13. In this case, we also com-
puted the energy transfer due to the forcing, FK ≡ T K

FU
in eq. (27) (see also [14]). Figure 13 (a,b,c) shows that
the contribution of forcing is significant in comparison to
non-linear kinetic energy transfer for wavenumbers lower
than about 20. For small wave numbers, the forcing
dominates and T K

tot ' −T K
FU (this can be seen in panel

(a) for the highest resolution). The kinetic and inter-
nal energy transfer functions, T K

UU (d,e,f) and T K
SS (g,h,i),

are qualitatively similar. However, an important feature
that clearly changes with resolution is the location of
the positive peaks. Particularly for the advective compo-
nents, the peaks are shifted to the left as the range of nu-
merically resolved wavenumbers decreases. This demon-
strates that these peaks are coupled to the numerical
dissipation scale, as explained in Section III B. The com-
pressive components, on the other hand, are less affected
by the grid resolution (at least for resolutions 5123 and
10243), which suggests a physical origin of the maximum.
For resolutions below 10243, the total transfer is positive
down to low wavenumbers. As a consequence, there is no
wavenumber interval qualifying as inertial subrange ac-
cording to the criterion defined in Section III B. This is
also reflected by the transfers T K

SU and T K
SU (j,k,l), which

are relatively weak in the inertial subrange for the high-
est resolution. For 5123, the minima (of the absolute

values) at k ≈ 10 are only marginal and they disappear
completely for the lowest resolution. This supports the
proposition of [3] that pressure-dilation effects causing
exchange of kinetic and internal energy should be weak
in the inertial subrange.

The resulting energy spectrum functions are plotted in
Fig. 14. The dissipative cutoff of the spectra shows the
expected dependence on the numerical resolution. Even
at intermediate wavenumbers, the spectra hardly con-
verge as an inertial subrange only begins to emerge for
10243 grids. This highlights the difficulty of applying
power-law fits based on the appearance of the spectrum
functions. One could certainly determine fits also for the
lower resolutions. Depending on the chosen wavenumber
range, this would result in significantly different slopes.
It can also be seen that the bottleneck effect tends to
become stronger with increasing resolution. These dif-
ficulties in establishing inertial range scalings were also
reported in [17, 20] for resolutions up to 40963.
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