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Using the combination of the kinetic theory of gases (KTG), Boltzmann transport equation 

(BTE), and molecular dynamics (MD) simulations, we study the transport phenomena in the 

Knudsen layer near a planar evaporating surface. The MD simulation is first used to validate the 

assumption regarding the anisotropic velocity distribution of vapor molecules in the Knudsen 

layer. Based on this assumption, we use the KTG to formulate the temperature and density of 

vapor at the evaporating surface as a function of the evaporation rate and the mass 

accommodation coefficient (MAC), and use these vapor properties as the boundary conditions to 

find the solution to the BTE for the anisotropic vapor flow in the Knudsen layer. From the study 

of the evaporation into a vacuum, we show the ratio of the macroscopic speed of vapor to the 

most probable thermal speed of vapor molecules in the flow direction will always reach the 

maximum value of √1.5 at the vacuum boundary. The BTE solutions predict that the maximum 

evaporation flux from a liquid surface at a given temperature depends on both the MAC and the 

distance between the evaporating surface and the vacuum boundary. From the study of the 

evaporation and condensation between two parallel plates, we show the BTE solutions give good 

predictions of transport phenomena in both the anisotropic vapor flow within the Knudsen layer 

and the isotropic flow out of the Knudsen layer. All the predictions from the BTE are verified by 

the MD simulation results. 
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1. Introduction. 

Evaporation is a liquid-vapor phase change process that occurs at the surface of a liquid. A 

fundamental understanding of the evaporation process is of great importance to a variety of 

industrial and environmental applications. From the standpoint of the kinetic theory [1-3], at 

liquid surfaces liquid molecules are emitted and change to the vapor phase, and vapor molecules 

strike the surface and change into the liquid phase. When the liquid is in thermal equilibrium 

with its saturated vapor, the microscopic evaporation rate is the same as the microscopic 

condensation rate, and thus no macroscopic (net) evaporation occurs. Therefore, the macroscopic 

evaporation process must be a non-equilibrium process.  

As the net evaporation rate increases, the vapor evaporating from the liquid surface will 

deviate more from the equilibrium state. Hence, there is no reason to suppose that a vapor 

evaporating from a liquid surface is isotropic in the immediate vicinity of liquid-vapor interface 

[4]. Near an evaporating surface, the kinetic temperature of vapor in the direction of evaporation 

could be different from that perpendicular to the evaporation direction. This region is referred to 

as the Knudsen layer. Only when the evaporating vapor is many times of molecular mean free 

paths from the liquid surface, the vapor molecules will have enough time to collide with each 

other so that the vapor becomes isotropic. The region out of the Knudsen layer is often referred 

to as the region of gas-dynamic flow. One can investigate the transport phenomena in the gas-

dynamics flow based on continuum transfer equations such the Fourier’s law of conduction and 

Newton’s law of viscosity [5]. To obtain the appropriate boundary conditions (BCs) for these 

continuum transfer equations, however, it is necessary to study the transport phenomena in the 

Knudsen layer [6].  
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Within the Knudsen layer, the continuum transfer equations turn to be invalid [4-6]. To study 

the transport phenomena in a non-equilibrium gas flow, one has to use the Boltzmann transport 

equation (BTE). To solve the BTE, one must choose an appropriate distribution function for 

vapor molecules in the Knudsen layer and formulate the BCs for the BTE based on the kinetic 

theory of gases (KTG). Although the BTE has been widely used to study the transport 

phenomena in the Knudsen layer in literature [5-11], the verification of the accuracy and even 

validity of these solutions to the BTE is very difficult. The experimental quantification of 

transport processes in the Knudsen layer requires a local measurement of fluid temperature and 

density at a very thin layer near the evaporating surfaces with sufficient accuracy, which remains 

challenging [12]. It is even more challenging to measure the temperatures perpendicular and 

parallel to the vapor flow direction to verify the temperature anisotropy of vapor in the Knudsen 

layer. Moreover, it is also difficult to directly measure the velocity distribution (VD) of vapor 

molecules in the Knudsen layer to validate the non-equilibrium VD assumed in the theoretical 

analysis. 

To mitigate the aforementioned experimental challenges, we resort to molecular dynamics 

(MD) simulations. MD simulations can determine fluid properties near the evaporating surface 

with high fidelity, which allows us to test the accuracy of the BCs formulated by the KTG and 

the solutions to the BTE. Additionally, the VD of vapor molecules in the Knudsen layer can be 

readily determined from MD simulations, which allows us to validate the key assumption 

regarding the non-equilibrium distribution function made in the theoretical analysis. Although 

the temperature anisotropy near an evaporating surface has been observed in multiple MD 

studies [13-16], there is a lack of fundamental and quantitative understanding of the MD 

simulation results on how the evaporating flow properties including flow speed, density and the 
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extend of temperature anisotropy vary in the flow direction within the Knudsen layer. 

Understanding the transport phenomena in Knudsen layer requires the treatment from the BTE. 

To address the above-described gap in our knowledge, we use the combination of the KTG, BTE 

and MD simulations to study transport phenomena in the Knudsen layer near an evaporating 

surface. 

In this work, we consider a simple case of evaporation of a monoatomic liquid. Using the 

combination of the KTG, BTE and MD simulations, we study the mass, momentum and energy 

transfer in the Knudsen layer near an evaporating surface. In Sec. 2, we introduce the key 

assumptions made in the theoretical analysis. Applying these assumptions to the KTG, we derive 

the BCs at the evaporating surface for the BTE. In Sec. 3, we discuss the moment solution to the 

BTE and the speculations about the transport phenomena from the BTE solutions. In Sec. 4, we 

use MD simulations to validate the key assumptions made in the theoretical analysis. In Sec. 5 

we carry out MD simulations to study two evaporation cases (1) evaporation into a vacuum, and 

(2) evaporation and condensation between two parallel plates. The MD simulation results will be 

used to verify the predictions from the BTE solutions. Finally, we close with conclusions. 

 

2. The temperature anisotropy derived from the KTG. 

2.1. The velocity distribution (VD) function. 

Firstly, we use the KTG to study the transfer of mass, momentum and energy at an 

evaporating liquid surface as shown in Fig. 1. In Fig. 1, the evaporating vapor flows in the 

positive x direction with an average (macroscopic) velocity of va. The origin of the x coordinate 

is located at the liquid surface. It is commonly assumed that the distribution function of 

molecules emitted from the liquid surface at a temperature of TL has the form [4,5] 
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where ρg(TL) is the saturated vapor density at a temperature of TL, m is the mass of fluid 

molecule, kB is the Boltzmann constant, vx, vy, and vz are velocity components in the x, y and z 

directions, respectively. Accordingly, the molar, momentum and energy flux of fluid molecules 

emitted from the liquid surface is given by Eqs. (2a), (2b) and (2c), respectively. [3,12,17] 
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To determine the net molar, momentum and energy flux at liquid surface, one also needs to 

know the molar, momentum and energy flux of vapor molecules that strike the liquid surface. To 

this end, one must choose an appropriate distribution function for vapor molecules near the 

evaporating surface. Multiple distribution functions were proposed in literature to describe the 

non-equilibrium behavior of vapor within the Knudsen layer [4,5,6]. To account for the 

anisotropy in the vapor near the evaporating surface, we use Crout’s approximation [4] to assign 

two temperatures to the anisotropic vapor. Accordingly, the local distribution function of vapor 

molecules near the liquid surface is given by: 
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where ρv(x) is the local vapor density, va(x) is the local average (macroscopic) velocity of vapor, 

Tx and Ty are temperatures parallel and perpendicular to the vapor flow direction, respectively. In 
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this work, we will use MD simulations to directly determine the VD of vapor molecules near the 

evaporating liquid surface and validate the distribution function approximation shown in Eq. (3). 

Using the distribution function in Eq. (3), one can readily obtain the molar (Jv), momentum 

(Mv) and energy (Ev) flux of vapor molecules moving in the positive (+) and negative (–) x 

directions: 

( )
2

B x
v v R

k TJ v
m

ρ
π

± = Γ ±  (4a) 

( )B x
v v R

k TM v
m

ρ± = Φ ±  (4b) 

( )
2

B x
v v B x R

k TE k T v
m

ρ
π

± = Ε ±  (4c) 

where vR, is the ratio of the macroscopic speed of vapor, va, to the most probable thermal speed 

of vapor molecules in the x direction 

2R a B xv v k T m= . (5) 

In Eq. (4), Γ(vR), Φ(vR) and E(vR) are given by [4] 

( ) ( )2

1Rv
R R Rv e v erf vπ−Γ = + +⎡ ⎤⎣ ⎦  (6a) 

( ) ( ) ( )( )2 21
2 1Rv

R R R Rv v e v erf vπ−Φ = + + +  (6b) 

( ) ( ) ( ) ( )( )22 23
21 1Rv

R R R R R R Rv v T e v T v erf vπ−Ε = + + + + + +  (6c) 

where TR = Ty/Tx. Based on the aforementioned approximations of the VD functions, we study 

the net mass, momentum and energy transfer at a liquid surface undergoing a steady state 

evaporation in the following sections. By applying mass, momentum and energy conservation 

equations, we will show the relationship between the net evaporation rate and the extent of 

anisotropy in vapor at the evaporating surface. 

 

2.2. Mass conservation at the evaporating surface. 
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Of those molecules that are emitted from the liquid surface a fraction, α, will change to the 

vapor phase. The remaining part of molecules will not enter the vapor phase. The quantity α is 

known as the mass accommodation coefficient (MAC) [3,12,17]. Therefore, the molar flux of 

molecules that are emitted from the liquid surface and change to vapor is αJL
+ where JL

+ is given 

by Eq. (2a). Similarly, not all vapor molecules that strike the liquid surface will change to liquid. 

A fraction of vapor molecules will return to vapor phase without phase change. The fraction of 

incident vapor molecules that are accommodated to the liquid phase is α (i.e. MAC) [2,3,12,17]. 

Accordingly, the molar flux of vapor molecules that cross the liquid-vapor interface and change 

to liquid phase is ܬߙ௩,௫ୀି . Therefore, the net molar flux across the liquid surface is given by 

( ), 0 , 0net x L v xJ J Jα + −
= == −   (7) 

Substituting Eqs. (2a) and (4a) into Eq. (7), we obtain a relation very similar to the well-known 

Schrage relation [3,17] 

( ) ( )( ), 0 ,0 ,0 ,02
B

net x g L L R v x
kJ T T v T

m
α ρ ρ

π= = − Γ −  (8) 

where ρv,0, Tx,0, vR,0 represent the density, Tx and vR of vapor at x = 0 (i.e. the evaporating 

surface), respectively. The only difference between Eq. (8) and the original Schrage relation is 

that we consider the temperature anisotropy in vapor near the evaporating surface while Schrage 

assumed isotropic temperature in vapor.  

As shown in Fig. 1, the molar flux of vapor at a plane Δx away from the evaporating surface 

is given by 

, , ,net x x v x x v x xJ J J+ −
=Δ =Δ =Δ= −  (9) 

Using the mass conservation in the 1-D steady state evaporation process, we have 

, 0 ,net x net x xJ J= =Δ=  (10) 
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Substituting Eqs. (7) and (9) into Eq. (10) and using Lagrange's mean value theorem, Eq. (10) 

becomes 

1 2

, 0 , 0 , 0
v v

L v x v x v x
x x x x

dJ dJJ J J x J x
dx dx

α α
+ −

+ − + −
= = =

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− = + Δ − + Δ
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (11) 

where x1 and x2 lie somewhere between 0 and Δx. Rearranging Eq. (11) and letting Δx → 0, we 

obtain 

( ), 0 , 01L v x v xJ J Jα α+ + −
= == − −  (12) 

Substituting Eqs. (2a) and (4a) into Eq. (12), we have the following relation at the evaporating 

surface. 

( ) ( ),0
,0 ,02 2

B xB L
g L v R

k Tk TT v
m m ααρ ρ

π π
= Γ  (13) 

In Eq. (13), Γα(vR) is given by  

( ) ( ) ( )2

2Rv
R R Rv e v erf vα α π α α−Γ = + − +⎡ ⎤⎣ ⎦  (14) 

One can easily see that Γα(vR) is reduced to Γ(vR) (i.e. Eq. (6a)) if α = 1. Finally, by dividing both 

sides of Eq. (13) by JL
+ (i.e. Eq. (2a)), we obtain the following dimensionless equation 

corresponding to the mass conservation at the evaporating surface: 

( ), ,0R x R RT vαα ρ= Γ  (15) 

where ( ),0R v g LTρ ρ ρ=  and , ,0x R x LT T T= . The above derivations are similar to those in 

Crout’s work [4]. The difference is that Crout’s analysis did not take into account the MAC, α, at 

the evaporating surface, while our equations consider the effect of α on mass transfer at the 

surface. 
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2.3. Momentum and energy conservation at the evaporating interface. 

In the similar manner, we obtain Eq. (16) and Eq. (17) corresponding to the conservation of 

momentum and energy at the evaporating liquid surface, respectively.  

( ), 0 , 01L v x v xM M Mα α+ + −
= == − − , (16) 

( ), 0 , 01L v x v xE E Eα α+ + −
= == − − . (17) 

Substituting Eqs. (2b) and (4b) into Eq. (16) and substituting Eqs. (2c) and (4c) into Eq. (17), we 

have the following equations at the evaporating liquid surface: 

( ) ( ),0
,0 ,02

B xB L
g L v R

k Tk TT v
m m ααρ ρ= Φ , (18) 

( ) ( ),0
,0 ,0 ,0

2
2
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g L B L v B x R
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m m ααρ ρ

π π
= Ε , (19) 

where  

( ) ( ) ( ) ( ) ( )2 21
22 2Rv

R R R Rv v e v erf vα α π α α−Φ = − + + + −⎡ ⎤⎣ ⎦ , (20) 

( ) ( ) ( ) ( ) ( )22 23
21 2Rv

R R R R R R Rv v T e v T v erf vα α π α α−Ε = + + + + + − +⎡ ⎤⎣ ⎦ . (21) 

If α = 1, Φα(vR) and Eα(vR) are reduced to Φ(vR) (i.e. Eq. (6b)) and E(vR) (i.e. Eq. (6c)), 

respectively. 

Finally, by dividing both sides of Eq. (18) by ML
+ (i.e. Eq. (2b)) and both sides of Eq. (19) by EL

+ 

(i.e. Eq. (2c)), we obtain the following two dimensionless equations corresponding to the 

momentum and energy conservation at the liquid-gas interface: 

( ), ,02 R x R RT vαα ρ= Φ  (22) 

( )1
, , ,02 R x R x R RT T vαα ρ= Ε  (23) 

 

2.4. Temperature, density and molar flux of vapor at the evaporating surface. 
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Recent MD simulations [13,14] show that as the fluid density drops dramatically across the 

a-few-nm-thick interphase layer at the evaporating surface, the VD of evaporating molecules 

within the interphase layer changes rapidly in the flow direction, and the isotropic temperature 

profile in the liquid phase is rapidly split into the longitudinal Tx and transverse Ty in the flow 

direction within the interphase layer. Using the combination of Eqs. (15), (22) and (23), one can 

obtain the dimensionless temperatures, Tx,R and Ty,R, of vapor and the dimensionless density, ρR, 

of vapor at the position right out of the interphase layer. In this work, we define the evaporating 

surface at the position right out of the interphase layer. For a given α, all these three 

dimensionless quantities are a function of dimensionless macroscopic velocity, vR,0, of vapor 

only. 
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Furthermore, the dimensionless molar flux, JR, of the evaporating vapor can be also written as a 

function of vR,0. 

( )
, 0 ,0

,0

2net x R
R

L R

J v
J

J vα

πα=
+= =

Γ
 (25) 

In Fig. 2, we plot dimensionless density, temperature and molar flux of vapor at the 

evaporating surface as a function of vR,0. In the case of α = 1, our theoretical predictions exactly 

reproduce Crout’s results [4] as was to be expected. Our model further extends Crout’s model to 

include the effects of MAC on mass, momentum and energy transfer at the evaporating surface. 
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We will verify the effects of MAC predicted by our theoretical model by comparing to MD 

simulation results. 

According to the Schrage relationship shown in Eq. (8), the evaporation process could be 

driven by the temperature difference TL – Tx across the liquid-vapor interface and/or the density 

difference ρg(TL) – ρv. Therefore, it is reasonable to see in Figs. 2(a) and 2(b) that the vapor 

temperature Tx,R and the vapor density ρR decrease as the evaporation rates vR,0 and JR increase. 

The lower Tx,R at higher vR,0 can be also understood as the result of conversion from the 

microscopic kinetic energy in the direction of evaporation to macroscopic kinetic energy in the 

vapor flow. This leads to a lower Tx,R than Ty,R in the evaporating vapor. As shown in Fig. 2(b), 

the extent of anisotropy in evaporating vapor increases with increasing evaporation rate. 

With the increase of the macroscopic velocity, vR,0, of vapor at the liquid surface, the vapor 

molecules that strike the liquid surface become rarer. As a result, the net evaporation flux is 

essentially determined by the molar flux from liquid to vapor phase, i.e. αJL
+. As shown in Fig. 

2(c), the dimensionless molar flux, JR, approaches the value of α in the limit of large vR,0 as was 

to be expected. Of course, the magnitude of vR,0 depends on the condensing BC applied at the 

right side of the model system. 

In this section, we used the KTG to find the anisotropic temperature and density of vapor at 

the evaporating surface, which will be used as BCs for the BTE. In the next section, we will 

resort to the BTE to study the transport phenomena in the non-equilibrium vapor flow in the 

Knudsen layer. 

 

3. The BTE for 1-D steady state evaporation. 

3.1. The BTE. 
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We consider steady state evaporation of a pure monoatomic fluid. For a 1-D steady flow 

without external forces, the BTE can be written as 

( )x coll
fv Q f
x

∂ =
∂

, (26) 

where f is the distribution function. For an anisotropic vapor flow in the Knudsen layer near an 

evaporating surface, we assume the distribution function is in the form of Eq. (3). The term on 

the right side of Eq. (26) is the collision term accounting for the effect of collisions between 

molecules. To obtain the form of the collision term, Qcoll(f), we use the well-known 

approximation made by Bhatnagar, Gross and Krook (BGK) [18]. The BGK approximation 

assumes that the molecular collisions forces a non-equilibrium distribution function, f, back to a 

Maxwellian equilibrium distribution function, fe, at a rate proportional to the molecular collision 

frequency. Using the BGK approximation, the BTE is modified to 

( )e
x

f ffv
x τ

−∂ =
∂

, (27) 

where τ is the molecular collision time. Since mass, momentum and energy are conserved during 

molecular collisions, the local equilibrium distribution function, fe, should have the form: 

( ) ( )

( )( )( )
( )

2 2 23
2

2( , , , )
2

x a y z

B e

m v v x v v

k T x
e x y z v

B e

mf v v v x x e
k T x

ρ
π

− + +
−⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

. (28) 

where Te = (Tx + 2Ty)/3 for dilute monoatomic gases. 

 

3.2. The solution to the BTE. 

The distribution function, Eq. (3), for the non-equilibrium vapor in the Knudsen layer 

contains four unknown parameters, namely, ρv, Tx, Ty, and va. To determine the variation of these 
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four parameters in the vapor flow direction, we solve the 1-D BTE by applying a four-moment 

method: 

( )e
x x y z x y z

f ffv dv dv dv dv dv dv
x

φ φ
τ
−∂ =

∂∫∫∫ ∫∫∫ , (29) 

where we substitute the function � with four functions, namely, 1, ݒറ, ݒറଶ, and ݒ௫ଶ and obtain 

differential equations (30a) through (30d), respectively. 

( ) 0v av
x

ρ∂ =
∂

, (30a) 

2 0B x
v a

k T v
x m

ρ⎡ ⎤∂ ⎛ ⎞+ =⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦
, (30b) 

( )2 31
2 2 0v a a B x B yv mv k T k T

x
ρ∂ ⎡ ⎤+ + =⎣ ⎦∂

, (30c) 

2 3 B x e xB
v a a v

k T T Tkv v
x m m

ρ ρ
τ

⎡ ⎤ −∂ ⎛ ⎞+ =⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦
. (30d) 

Using Eqs. (4a) through (4c), one can readily find the net molar, momentum and energy fluxes in 

the vapor flow are given by 

net v aJ vρ= , (31a) 

2B x
net v a

k TM v
m

ρ ⎛ ⎞= +⎜ ⎟
⎝ ⎠

, (31b) 

( )2 31
2 2net v a a B x B yE v mv k T k Tρ= + + . (31c) 

Hence, Eqs. (30a) through (30c) indicate that Jnet, Mnet and Enet remain constant in the vapor flow 

direction, which is a direct result of mass, momentum and energy conservation in a steady flow. 

Rearranging Eqs. (30a) through (30d), we obtain the following four equations which can be used 

to determine the variation of ρv, va, Tx, and Ty in the vapor flow direction. 

( )22 3
v e x v

a x R

T T
x v T v
ρ ρ

τ
∂ −=
∂ −

 (32a) 

2

1 1
2 3

a e x

x R

v T T
x T vτ

∂ −= −
∂ −

  (32b) 
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2

2

2 11
2 3

x e x R

a R

T T T v
x v vτ

∂ − −=
∂ −

 (32c) 

1
2

y e x

a

T T T
x vτ

∂ −= −
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 (32d) 

Four BCs are required to solve the above four coupled differential equations. In Sec. 2, we have 

derived three BCs (i.e. Eqs. (24a) through (24c)) for Tx, Ty and ρv at the evaporating surface. The 

fourth BC will be specified at the right boundary of the model system shown in Fig. 1. Once 

these four BCs are known, we will solve these equations by numerical integrations. 

An important parameter in the above four equations is the molecular collision frequency 1/τ. 

According to the KTG, the molecular collision frequency can be estimated by [19] 

21 4 B e
v

k Td
m

ρ π
τ π

=  (33) 

where d is the kinetic diameter of vapor molecules. Eq. (33) shows the collision frequency, 1/τ, is 

proportional to ߩ௩ඥ ܶ. Similarly, the KTG indicates the molecular mean free path, λ, is inversely 

proportional to the density of vapor [19]. We will see from subsequent MD simulations that the 

density and temperature of vapor in the Knudsen layer may change significantly in the flow 

direction. Therefore, it is not appropriate to assign a single value of τ or λ to the vapor molecules 

throughout the Knudsen layer. Moreover, the temperature anisotropy also makes it hard to define 

a molecular mean free path unambiguously in the non-equilibrium vapor flow. As τ and λ could 

vary significantly in the Knudsen layer, it is inappropriate to scale x by a constant λ, and further 

nondimensionalize Eqs. (32a) through (32d). Nevertheless, we are still able to speculate several 

general features about the transport phenomena in the Knudsen layer. 

(i) Eqs. (32a) through (32d) all contain the term (Te – Tx)/τ. Fig. 2(b) shows Tx is always 

lower than Ty at the evaporating surface. Hence, Tx and Ty will approach each other due to 
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molecular collisions, but will never cross each other in the Knudsen layer. As a result, (Te – Tx)/τ 

should always be positive in the Knudsen layer. Therefore, Eq. (32d) indicates Ty will decrease 

monotonically in the flow direction. This is the result of molecular collisions in the vapor which 

brings Tx and Ty closer to each other. 

(ii) The right side of Eqs. (32a) through (32c) contains the term 2vR
2 – 3 in the denominator. 

The integral of these equations will be divergent at vR
2 = 1.5. This implies the maximum 

dimensionless velocity of vapor flow, vR, should be less than √1.5. Accordingly, Eq. (32a) 

indicates that the vapor density, ρv, will decrease monotonically in the flow direction. The mass 

conservation requires ρvva to be a constant in the flow direction. Hence, it is reasonable to see 

from Eq. (32b) that the vapor flow speed, va, will increase monotonically in the flow direction. 

(iii) According to Eq. (32c), Tx will increase in the flow direction if 2vR
2 – 1 is less than zero. 

If vR
2 is greater than 0.5, Tx will decrease in the flow direction. Since Eq. (32b) shows the vapor 

flow velocity always increases in the flow direction and the maximum vR
2 can approach 1.5, it is 

possible to observe the crossover from a negative slope to a positive slope in the Tx profile in the 

Knudsen layer. The variation of Tx is affected by two physical processes. First, the molecular 

collision process tends to increase Tx. Second, the monotonic increase of vapor flow velocity 

indicates a conversion from microscopic kinetic energy (i.e. thermal energy) to macroscopic 

kinetic energy in the vapor flow direction. The second process decreases Tx. The competition 

between two processes results in the variation of slope in Tx vs. x profile. 

All the aforementioned speculations will be verified by the MD simulations in following 

sections. 

 

4. Validation of key assumptions in the theoretical model. 
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4.1. The MD model. 

We will use MD simulations to validate the key assumptions made in the aforementioned 

theoretical analyses. As depicted in Fig. 3, the typical model system consists of a liquid Ar thin 

film on an Au substrate. The Au substrate is formed by three (100) oriented Au atomic layers. To 

prevent drifting of the model system, the atoms in the leftmost Au layer are fixed in the 

simulation. On the right of the liquid Ar surface is its own vapor. The embedded-atom-method 

(EAM) potential [20] is used for Au-Au interactions. The Lennard-Jones (LJ) potential with 

parameters σ = 3.41 Å and ε = 10.3 meV [21] is employed for both Ar-Ar and Ar-Au 

interactions. The cutoff distance for all LJ interactions is 3.2σ. In all MD simulations we use a 

velocity Verlet algorithm [22] with a time step size of 4 fs to integrate the equations of motions. 

The thickness of the liquid layer on the Au surface is ~ 6 nm which is large enough to avoid 

the effects of disjoining pressure on the equilibrium properties of fluid Ar [23,24]. The thickness 

of the liquid-vapor interfacial layer is a few nm for LJ Ar [13,14]. The left boundary of what we 

define as the vapor region is ~ 3 nm away from the liquid surface so that the vapor region does 

not overlap with the interfacial layer. The length of the vapor region, Lvap, is 100 nm as depicted 

in Fig. 3. To determine the variation of temperature, density and macroscopic velocity of fluid 

along the vapor flow direction, we evenly divide the liquid layer into six bins and divide the 

vapor region into ten bins in the x-direction. The width of each bin in liquid and in vapor is 1 nm 

and 10 nm, respectively. The contribution from macroscopic vapor velocity is subtracted in the 

calculation of vapor temperature in each bin.  

In the non-equilibrium MD (NEMD) simulation of the evaporation process, we maintain the 

temperature of the Au substrate at Th = 85 K by velocity rescaling [25]. To obtain a good 

statistics of fluid properties, particularly in the vapor region, we set the cross section area of the 



17 
 

model system to 38.76 nm by 38.76 nm. Periodic boundary conditions (PBCs) are applied in the 

y and z directions. To further improve the accuracy of the calculated properties, ten independent 

runs are carried out in each case. The uncertainties of the MD simulation results are determined 

by analyses of these independent runs.  

 

4.2. The temperature anisotropy in the Knudsen layer. 

An important assumption made in the aforementioned theoretical model is that the 

temperature of vapor is anisotropic in the Knudsen layer near an evaporating surface and the 

corresponding VD function of vapor is given by Eq. (3). Based on this assumption, the KTG 

predicts that the extent of temperature anisotropy increases with increasing evaporation rate. To 

exhibit an evident temperature anisotropy, therefore, we carry out a MD simulation of 

evaporation into a vacuum in which the maximum evaporation rates will be achieved.  

To apply the vacuum BC, we remove all vapor atoms flying out the right boundary of the 

vapor region as shown in Fig. 3. The NEMD simulation is carried out for 3.5 ns to allow the 

system to reach steady state evaporation, and then additional 3.5 ns for data collection and 

averaging. At steady state, we calculate the density, temperature and the macroscopic vapor 

velocity in each bin of the simulation box. Using these vapor properties and Eqs. (31a) through 

(31c), we further calculate the net molar flux, Jnet, momentum flux, Mnet, and energy flux, Enet, in 

the vapor flow direction. It is shown in Fig. 4 that Jnet, Mnet and Enet are constant in the vapor 

flow direction as was to be expected at steady state. 

Now we focus on the temperature of vapor in the Knudsen layer from MD simulations. It is 

clearly shown in Fig. 3 that the temperature of vapor near an intensive evaporating surface is 

anisotropic while the temperature of liquid Ar and solid Au is isotropic. To validate the VD 
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approximated by Eq. (3), we further calculate the VD of vapor molecules in each bin of the 

vapor region. In Fig. 5, we show the representative MD simulation result of VD of vapor 

molecules in the second bin of the vapor region where Tx = 51 K and Ty = 69 K. It is seen from 

Fig. 5 that the distribution of the velocity component perpendicular to the vapor flow direction 

closely follows the Maxwell velocity distribution (MVD) of Ar at T = 69 K, and the distribution 

of the velocity component along the flow direction agrees well with the shifted MVD (SMVD) 

of Ar at  T = 51 K. The good agreement between the VD given by Eq. (3) and that obtained 

directly from the MD simulation is found in all other bins in the vapor region. Therefore, the VD 

obtained from MD simulations validates that the VD of vapor molecules near an evaporating 

surface can be well approximated by the distribution function given by Eq. (3).  

To ensure the anisotropic temperature in vapor is not caused by the artifact of vacuum 

boundary applied in the MD simulation, we replace the vacuum boundary with a low-

temperature condensing Ar surface on the right side of the simulation cell. As shown in Fig. 6, a 

5-nm-thick solid Ar layer is placed on a cold Au plate maintained at Tl = 35 K. At such a low 

temperature, the saturated vapor density is approximately zero and the MAC on the Ar surface is 

~ 1 [23], which means all vapor Ar molecules striking on the surface will deposit on the solid Ar 

surface and no molecules will be emitted from the surface. Therefore, such a condensing surface 

should have the same effect as a vacuum boundary. In this case, the steady state molar flux and 

the anisotropic temperature profile (see Fig. 6) are essentially the same as that in the case with 

the vacuum boundary (see Fig. 3). We further vary the temperature in the right Au plate to 0 K. 

The same molar flux and temperature profile in the vapor phase are obtained. Hence, the MD 

simulation results verify that a very cold condensing surface has the same effect as a vacuum 

boundary. 
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4.3. The molecular collision time. 

An important parameter in the BTE is the molecular collision time, τ, for the collision term in 

the BTE. Although the KTG gives an equation (i.e. Eq. (33)) to estimate the molecular collision 

time, a more accurate evaluation of τ is needed for a quantitative comparison between the MD 

simulation results and the solutions from the BTE. In this work, we use MD simulations to 

directly evaluate τ of the model fluid. 

The collision time, τ, is a function of temperature and density. First, we find local 

temperature (Tx and Ty) and density (ρv) of vapor in each bin in the vapor region from the NEMD 

simulation described in the Sec. 4.2. Second, we carry out a separate equilibrium MD (EMD) 

simulation in a cubic simulation box containing 500,000 Ar atoms. The box size is fixed such 

that the density of Ar equals to ρv. The PBCs are applied in all three directions. We equilibrate 

the vapor Ar at a temperature of Ty for 1.5 ns to let the system reach thermal equilibrium. After 

thermal equilibrium, we multiply the vx of each Ar atom by ඥ ௫ܶ ௬ܶ⁄  to create an initial non-

equilibrium velocity distribution: 

( )
( )

( )

( )
( )

2 22

22( , , , )
2 2

y zx

B yB x

m v vmv
k T tk T t

ne x y z v
B x B y

m mf v v v t e e
k T t k T t

ρ
π π

+
−− ⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

. (34) 

Subsequently, we carry out an NVE simulation and monitor how Tx and Ty vary with time, t. 

Since the PBCs are applied in all three directions, the above distribution function is spatially 

independent. In this case, the BTE becomes 
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 (35) 
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The collision between vapor molecules will bring the non-equilibrium vapor into thermal 

equilibrium. The equilibrium distribution function in Eq. (35) is given by 
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where Te = (Tx + 2Ty)/3. To solve Eq. (35), we use the moment method described in Sec. 3.2 and 

set 2
xvφ = . Accordingly, we obtain 

x e xT T T
t τ

∂ −=
∂

 (37) 

Applying the initial condition Tx(t=0) = Tx,i, the solution to Eq. (37) is 
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Eq. (38) indicates that we can evaluate the molecular collision time, τ, from Tx(t).  

In Fig. 7(a), we show the variation of Tx and Ty with t obtained from EMD simulation of 

vapor Ar whose density is ρv = 0.0636 mol/L and initial temperatures are Tx,i = 51.5 K and Ty,i = 

68.5 K. The density and temperature are taken from the vapor property in the second bin of the 

vapor region in Fig. 3. The inset of Fig. 7(a) shows ln[(Tx(t) – Te)/(Tx,i – Te)] is indeed a linear 

function of t. This indicates the BGK approximation accurately describes the collision term for 

the model fluid. The slope of the linear fit gives 1/τ = 0.00681 ps-1. Since the density and 

temperature of vapor are different in different bins, we use the same method to find 1/τ for vapor 

properties in all other bins in the vapor region. The MD data in Fig. 7(b) shows 1/τ is 

proportional to ߩ௩ඥ ܶ as was predicted by the KTG. If ρv and T are in unit of mol/L and K, 

respectively, we find from Fig. 7(b) that 1 ߬⁄ ெ ൌ ௩ඥߩ0.0133 ܶ ps-1. For comparison, the KTG 

predicts the molecular collision frequency 1 ߬⁄ ்ீ ൌ ௩ඥߩ0.0072 ܶ  ps-1 if we use the LJ 
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parameter σ = 3.41 Å as the kinetic diameter, d, in Eq. (33). The calculation result shows 1/τMD is 

higher than 1/τKTG by a factor of two. This difference can be probably explained by the following 

reasoning. All molecules are equivalent in the anisotropic vapor. Each collision between two 

molecules will bring both molecules close to equilibrium. As a result, Tx and Ty of vapor 

approach each other at a rate that is about two times of the molecular collision rate predicted by 

the KTG. We will use the τ predicted by MD simulations to solve the BTE for 1-D steady state 

evaporation. 

 

5. MD verification of predictions from the BTE. 

5.1. The vapor property profiles in the Knudsen layer.  

As discussed in Sec. 3.2, the four-moment solution to the BTE requires four BCs. To specify 

the three BCs (i.e. Eqs. (24a) through (24c)) at the evaporating liquid surface, one needs to know 

the saturated vapor density, ρg(TL), and the MAC, α(TL). The temperature-dependent saturated 

vapor density and the MAC of the model fluid Ar with a cutoff distance of 3.2σ have been 

determined by EMD simulations in our previous work [23]. We have successfully used the 

calculated ρg(TL) and α(TL) to predict evaporation and condensation rates and thermal 

conductance at liquid-vapor interfaces of fluid Ar [23,26,27]. In this section, we will use the 

ρg(TL) and α(TL) from our previous work in the solution to the BTE. Additionally, one also needs 

to know vR,0 (i.e. vR of vapor at the evaporating surface) to determine the three BCs, i.e. Tx, Ty 

and ρv of vapor, at the evaporating surface. The value of vR,0 depends on the fourth BC applied at 

the right boundary of the vapor region. In this section, we simply assume that vR,0 is known, and 

show the general features of solutions to the BTE for different values of vR,0. We will discuss the 

methods that can be used to find vR,0 from the fourth BC in Secs. 5.2 through 5.4. 
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In the following, we show the solution to the BTE for 1-D steady state evaporation of liquid 

Ar at a temperature of TL = 82.8 K. At TL = 82.8 K, our previous work [23] shows ρg = 0.142 

mol/L and α = 0.92. We choose TL = 82.8 K because it is the temperature at the evaporating 

surface shown in Fig. 3. The MD simulation results will be used to verify the predictions from 

the BTE for different evaporation rates. In Fig. 8, we show the four-moment solution to the BTE 

for vapor Ar near an evaporating liquid Ar surface (located at x = 0) at TL = 82.8 K. Each line in 

Fig. 8 represents the BTE prediction at a given vR,0. According to the results shown in Fig. 2, a 

higher vR,0 corresponds to a higher evaporation rate, a larger extent of temperature anisotropy 

and a lower density of vapor at the evaporating surface. A lower vapor density results in a lower 

collision rate between molecules, and thus a longer time for the anisotropic vapor to become 

isotropic. Hence, it is reasonable to see the thickness of the Knudsen layer (i.e. the region where 

Tx is different from Ty) gradually increases as the evaporation rate increases. For all cases shown 

in Figs. 8(c) and 8(d), ρv decreases monotonically and vR increases monotonically in the vapor 

flow direction within the Knudsen layer as was predicted by Eqs. (32a) and (32b). In the case of 

vR,0 = 0.6, vR of vapor increases to a value close to 1.224 (i.e. approximately √1.5) at x ≈ 38 nm. 

At this point, the integral of Eq. (32) becomes divergent and vR of vapor cannot increase 

anymore. We believe vR = 1.224 at x ≈ 38 nm corresponds to the case of evaporation into a 

vacuum where the vacuum boundary is applied at the position 38 nm from the evaporating 

surface. To verify this speculation, we study the evaporation into a vacuum in the next section. 

 

5.2. Evaporation into a vacuum. 

In the case of evaporation into a vacuum, the maximum evaporation rate is achieved. When 

the vacuum boundary is applied, the vapor density on the right side of the vacuum boundary is 
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zero. However, the vapor density on the left side of the vacuum boundary must not be zero. 

Otherwise, the macroscopic vapor velocity will be infinite according to mass conservation, 

which  is impossible. This implies the density gradient at the vacuum boundary becomes infinite. 

According to Eq. (32a), the infinite density gradient is obtained when vR = √1.5. Therefore, the 

BC we can apply at the vacuum boundary is vR = √1.5. Combining the BC at the vacuum 

boundary and the other three BCs at the evaporating surface, we have all four BCs required for 

the BTE.  

With these four BCs, we solve the BTE for the case of evaporation of liquid Ar at TL = 82.8 

K into a vacuum where the vacuum boundary is located 103 nm from the liquid surface (i.e. the 

case shown in Fig. 3). Since three BCs are formulated at the evaporating surface and the fourth 

one is at the vacuum boundary, we apply a shooting method to find the solution to the BTE. In 

the shooting method, we gradually increase the value of vR,0 until the integration of Eq. (32) 

starts to diverge at the vacuum boundary. As shown in Fig. 9(c), when vR,0 = 0.539, vR keeps 

increasing in the vapor flow direction and approaches 1.224 at x = 103 nm. A slight increase in 

vR,0 will result in a divergent integral of Eq. (32) before x = 103 nm. At vR,0 = 0.539, therefore, 

we obtain the corresponding solution to the BTE. As shown in Fig. 9, the Tx, Ty, ρv and vR 

profiles predicted by the BTE all agree with the MD simulation results very well. Furthermore, 

one can readily find from Eq. (25) that the KTG prediction of the evaporation molar flux at vR,0 = 

0.539 and TL = 82.8 K is 0.59 mol/cm2s, which is in agreement with 0.60±0.01 mol/cm2s 

obtained directly from the MD simulation. For further reference, we estimate the mean free path 

of vapor molecules in the vapor region using λ = 1/(√2ߩߨ௩݀ଶ) [19]. With τMD determined from 

Sec. 4.2 and Eq. (33), we find d ≈ 0.46 nm. Fig. 9(b) shows ρv reduces from 0.078 mol/L to 

0.039 mol/L in the vapor region. Accordingly, the mean free path of vapor molecules increases 
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from 22 nm at the position near the evaporating surface to 45 nm at the position close to the 

vacuum boundary. 

As shown in Fig. 9(a), the vapor temperature is anisotropic in the vapor region, which 

indicates the whole vapor region is within the Knudsen layer. In the Knudsen layer, Fig. 9(a) 

shows Ty decreases monotonically due to the collisions between molecules in the non-

equilibrium vapor. Unlike Ty, both the MD model and the BTE predict that Tx first increases in 

the flow direction, and then starts to decrease after it reaches the maximum value at x ≈ 30 nm. 

The solution to the BTE (i.e. Eq. (32c)) predicts the maximum Tx is reached at vR = √0.5 (i.e. ~ 

0.707). The MD data in Fig. 9(c) show vR ≈ 0.706 at x ≈ 30 nm, which verifies the crossover 

point of Tx profile predicted from the BTE. As we discussed in Sec. 3.2, the decrease of Tx in the 

flow direction is caused by the conversion from the thermal energy to the macroscopic kinetic 

energy in vapor as the vapor flow accelerates in the flow direction. 

To further verify the speculations from the BTE, we increase the temperature in the Au plate 

to Th = 95 K (see Fig. 10) and study evaporation of liquid Ar into a vacuum at a higher 

temperature. In this case, the temperature at the evaporating surface is TL = 90.5 K, and the 

corresponding ρg = 0.288 mol/L and α = 0.88 [23]. With these properties, we specify the BCs at 

the liquid surface and apply the aforementioned shooting method to find vR,0 which makes vR 

approach 1.224 at x = 103 nm. As shown in Fig. 10(c), we obtain the solution to the BTE when 

vR,0 = 0.518. At vR,0 = 0.518 and TL = 90.5 K, the KTG (i.e. Eq. (25)) predicts the evaporation 

molar flux equals 1.17 mol/cm2s, which is again in agreement with 1.20±0.01 mol/cm2s obtained 

directly from the MD simulation. In Fig. 10, we show the predictions from the BTE in this case 

also agree with the MD simulation results very well. The speculation that the maximum Tx in the 

vapor appears at vR ≈ 0.707 is again verified by the MD simulation results shown in Fig. 10.  
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The speculations from the BTE are also consistent with the experimental results of the 

evaporation of iodine to a condensing surface cooled by liquid nitrogen [9]. As we shown in Fig. 

6, the condensing surface at a very low temperature is equivalent to a vacuum boundary. By 

means of fluorescence spectroscopy with a tunable continuous-wave dye layer, Mager et al. 

measured the flow velocity and the temperatures along and perpendicular to the flow direction 

[9]. The experimental results show vR is approaching 1.224 at the condensing surface, which is 

equivalent to the vacuum boundary, and the maximum Tx is obtained at vR ≈ 0.707. 

 

5.3. The maximum evaporation flux. 

The maximum evaporation flux has been extensively studied, using the KTG, in literature 

[3,4,10,29,30]. Most of studies assumed that the vacuum boundary is infinitely far from the 

evaporating surface and the MAC at the evaporating surface is 1. In this section, we will extend 

the existing KTG based model to study the impact of the MAC, α, and the distance, Lvap, 

between the vacuum boundary and the evaporating surface on the maximum evaporation flux, 

Jmax. 

To determine Jmax from the KTG, one can define a dimensionless quantity [4]: 

2
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Substituting Eqs. (31a) through (31c) into Eq. (39), we obtain 
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where TR = Ty/Tx. Since the net molar flux, Jnet, momentum flux, Mnet, and energy flux, Enet, 

remain constant in a steady flow, RJME should also be constant in the vapor flow direction. If the 

vacuum boundary is sufficiently far from the evaporating surface, the evaporating vapor will 
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move through a long distance such that the vapor molecules have sufficient time to collide with 

each other and become isotropic before they reach the vacuum boundary. In an isotropic vapor 

flow, TR = 1 and thus RJME is a function of vR only. Accordingly, it can be readily proved that the 

maximum value of RJME in the isotropic vapor is 1.5625. Since RJME is constant in the vapor flow 

direction, the maximum RJME at the evaporating surface should also be 1.5625. From the 

theoretical analysis by Crout [4], Jmax occurs when RJME reaches the maximum value. To 

evaluate Jmax, we consider the expression of RJME at the evaporating surface. According to Eq. 

(40), RJME is a function of vR and TR. At the evaporating interface located at x = 0, vR = vR,0 and 

TR = Ty,R/Tx,R. Eqs. (24a) and (24b) show both Tx,R and Ty,R are a function of vR,0 and α (i.e. the 

MAC). Therefore, RJME at the evaporating surface only depends on vR,0 and α. For a given value 

of α, we can find the value of vR,0 which makes RJME reach its maximum value, i.e. 1.5625. Once 

the vR,0 is known, we use Eqs. (25) and (24) to find Jmax, and the corresponding temperature and 

density of vapor at the evaporating interface for a given α.  

In Tab. 1, we show the dimensionless Jmax, i.e. JR,max, and the corresponding dimensionless 

vapor properties at the evaporating interface calculated from the aforementioned KTG based 

model. Note that the results in Tab. 1 is obtained based on the assumption that the distance, Lvap, 

between the vacuum boundary and the evaporating surface is infinite. When α = 1, our 

calculation results show Jmax(Lvap→∞)  = 0.83843JL
+, where JL

+ is given by Eq. (2a). This 

implies ~ 83.8% of the vapor molecules emitted from the liquid surface eventually leave the 

vacuum boundary, and ~ 16.2% of them return to the liquid surface due to molecular collisions 

in vapor [30]. This result is exactly the same as the Jmax(Lvap→∞) predicted by Crout [4]. The 

difference between our model and Crout’s model is that we generalize Crout’s model to include 
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the effect of α on Jmax as shown in Tab. 1. To validate the theoretical predictions of Jmax(Lvap→∞) 

as a function of α, we compare the calculation results to the MD simulation results.  

For the model liquid Ar at TL = 82.8 K, the MD simulation shows ρg = 0.142 mol/L and α = 

0.92 [23]. At an evaporating surface with α = 0.92, the KTG based model predicts that 

Jmax(Lvap→∞) = 0.77994JL
+ is achieved when vR,0(Lvap→∞) = 0.50513 (see Tab. 1). Using Eq. 

(2a), we find JL
+ = 0.744 mol/cm2s for the model liquid Ar surface at TL = 82.8 K. Accordingly, 

the KTG based model predicts Jmax(Lvap→∞) = 0.58 mol/cm2s.  To validate this prediction, we 

compare it to the MD simulation result. As shown in Fig. 9, Lvap = 103 nm in the MD model. It is 

clearly shown in Fig. 9(a) that 103 nm is too short to allow evaporating vapor to become 

isotropic. Therefore, Lvap = 103 nm is not long enough to be considered as Lvap→∞ in the model 

system. Although at Lvap = 103 nm the MD simulation shows Jmax,MD = 0.60±0.01 mol/cm2s 

which is close to the KTG based prediction Jmax(Lvap→∞) = 0.58 mol/cm2s, it is inappropriate to 

directly use this MD result to validate the KTG based prediction. 

To obtain Jmax(Lvap→∞) from the MD simulation, therefore, we vary Lvap from 0.3 nm to 203 

nm as shown in Fig. 11, determine Jmax at each Lvap, and extrapolate the MD simulation results to 

Lvap→∞. To understand the dependence of Jmax on Lvap found in MD simulations, we use the 

BTE and the shooting method described in Sec. 5.2 to obtain vR,0 and Jmax at each Lvap. As the 

vacuum boundary approaches the evaporating surface, the vapor molecules emitted from the 

liquid surface have smaller possibility to collide with each other in the vapor region and return to 

liquid surface. As a result, it is seen in Fig. 11 that vR,0 and Jmax both increase as Lvap decreases. 

For the smallest Lvap (0.3 nm) in the MD study, molecules are evacuated immediately after they 

are emitted from the liquid surface and change to vapor. In this case, the BTE solution predicts 

that vR,0 approaches 1.224 (i.e. the maximum possible vR in the vapor) and Jmax ≈ 0.68 mol/cm2s 
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which is close to αJL
+ = 0.684 mol/cm2s (i.e. the molar flux of molecules that are emitted from 

the liquid surface and change to vapor). As Lvap increases, the BTE predicts that Jmax gradually 

reduces to Jmax(Lvap→∞) = 0.58 mol/cm2s, and vR,0 reduces to vR,0(Lvap→∞) = 0.505. As shown in 

Fig. 11, the MD simulation results are consistent with the BTE predictions. In the limit of large 

Lvap, the Jmax obtained directly from MD simulations also approaches Jmax(Lvap→∞) = 0.58 

mol/cm2s predicted by the KTG based model. 

The above analysis indicates that Jmax depends on both α and Lvap. For an evaporating surface 

with a given value of α, Jmax approaches αJL
+ if the vacuum boundary is infinitely close to the 

evaporating surface (i.e. Lvap→0). As Lvap increases, Jmax decreases monotonically to 

Jmax(Lvap→∞). For a given α, the dimensionless Jmax(Lvap→∞), i.e. JR,max, is determined by the 

KTG based model described in this section and its value can be found in Tab. 1. The above 

modeling results also validate the NEMD method that was often used in literature to determine α. 

The NEMD method calculated the MAC, α, as the ratio of net evaporation flux into vacuum, Jnet, 

to the outgoing flux, JL
+ [14,28]. The vacuum boundary in the NEMD simulations of MAC [14] 

was very close to the evaporating surface. In this case, our modeling results verify that the ratio 

of net evaporation flux into vacuum, Jnet, to the outgoing flux, JL
+ equals to α. 

 

5.4. Evaporation and condensation between two parallel plates. 

Secs. 5.2 and 5.3 focus on the case of evaporation into a vacuum in which the whole vapor 

region is in the Knudsen layer. We now replace the vacuum boundary with a condensing surface 

and study the transport of vapor between two parallel plates. To ensure that the condensing 

surface is different from the vacuum boundary in the MD model, we increase the temperature in 

the right Au plate to 65 K. As shown in Fig. 12, the temperatures at the evaporating and 
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condensing surface at steady state are 82.9 K and 67.3 K, respectively. From EMD simulations 

of the model fluid Ar at these two temperatures [23], we obtain ρg(82.9 K) = 0.144 mol/L, α(82.9 

K) = 0.92 at the evaporating surface, and ρg(67.3 K) = 0.017 mol/L, α(67.3 K) = 1.0 at the 

condensing surface. The nonzero ρg at the condensing surface implies the molar flux of 

molecules emitted from the condensing surface is nonzero. Hence, such a condensing surface is 

different from the vacuum boundary. The molar flux at the evaporating surface will be affected 

by the molecular flux emitted from the condensing surface. We will continue using the BTE and 

MD simulations to understand the transport phenomena of vapor in this case. 

The MD simulation results shown in Figs. 12(a) and 13(a) indicate the temperature of vapor 

near the evaporating surface is still anisotropic in this case and the local velocity distribution of 

vapor molecules can be well approximated by Eq. (3). Therefore, the key assumptions made in 

our theoretical analysis are still valid. Since the condensing surface in this case is different from 

a vacuum boundary, we cannot apply the BC, vR = 1.224, at the condensing surface. Instead, we 

can use Eqs. (24) and (25) to find the vapor temperature and molar flux at the condensing surface. 

The only thing we need to change in these equations is to replace vR,0 by vR,c, i.e. vR at the 

condensing surface. The vapor flow is leaving the evaporating surface and coming to the 

condensing surface. Therefore, a negative vR,c value should be used in Eqs. (24) and (25) to find 

the vapor temperature and molar flux at the condensing surface. 

To find the solution to the BTE, the key issue is to determine the vR,0 at the evaporating 

surface. Since both vR,0 and vR,c are unknown, we resort to RJME defined in Eq. (40) to determine 

vR,0. At steady state,  

,0 ,JME JME cR R= . (41) 
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where RJME,0 and RJME,c are RJME at the evaporating and condensing surfaces, respectively. Since 

α at the given evaporating surface is known, RJME,0 is a function of vR,0 only. Similarly, RJME,c is a 

function of vR,c only. Accordingly, there are two unknown variables, namely, vR,0 and vR,c in Eq. 

(41). To find vR,0, therefore, we need one more equation. Using mass conservation, we have 

, 0 ,net x net cJ J= = .  (42) 

According to Eq. (25), Jnet,x=0, i.e. Jnet at the given evaporating surface, is a function of vR,0 only. 

Similarly, Jnet,c, i.e. Jnet at the given condensing surface, is a function of vR,c only. Thus, we have 

two equations for two unknown variables, i.e. vR,0 and vR,c. To solve these equations, we 

calculate RJME,0 and Jnet,x=0 as a function of vR,0, and RJME,c and Jnet,c as a function of vR,c. In Fig. 

13(b), we plot RJME vs. Jnet for evaporating and condensing surfaces. The intersection of the two 

curves satisfies both Eq. (41) and Eq. (42). It is seen in Fig. 13(b) that the KTG based model 

predicts Jnet = 0.53 mol/cm2s which is consistent with Jnet = 0.55±0.01 mol/cm2s obtained directly 

from the MD simulation. From Jnet, we find the corresponding vR,0 and use vR,0 to evaluate Tx, Ty 

and ρv of vapor at the evaporating surface. With these BCs, we integrate Eq. (32) to find the 

solution to the BTE.  

It is shown in Fig. 12 that the BTE solutions are in good agreement with the MD simulation 

results. Eq. (32c) predicts Tx of vapor will decrease in the vapor flow direction only when vR is 

greater than 0.707. For the case studied in this section, Fig. 12(c) shows vR is less than 0.6 in the 

whole vapor region. Therefore, it is reasonable to see in Fig. 12(a) that Tx increases 

monotonically in the vapor flow direction. Near the right boundary of the vapor region, Tx is 

almost the same as Ty which means the length of the Knudsen layer in this case is comparable to 

that of vapor region in the model system. When we double the length of the vapor region, we 

clearly see a region of isotropic flow as shown in Fig. 14. In this case, the vapor region is longer 
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than the Knudsen layer and the evaporation flux is not affected by the length of vapor region. 

The good agreement between the BTE predictions and the MD simulation results shown in Fig. 

14 indicates that the BTE also gives a good prediction of transport phenomena of isotropic flows 

as was to be expected. 

 

6. Conclusions.  

In the Knudsen layer near a planar evaporating surface, the vapor temperature is anisotropic 

and the temperature of vapor perpendicular to the vapor flow direction (i.e. Ty) is always higher 

than that in the vapor flow direction (i.e. Tx). The distribution function for vapor molecules near 

the evaporating surface can be well approximated by Eq. (3). In the case of steady state 

evaporation, the vapor density, ρv, and vapor temperature, Ty, decrease monotonically, and the 

vapor flow speed increases monotonically in the vapor flow direction in the Knudsen layer. The 

variation of vapor temperature, Tx, in the vapor flow direction is determined by two physical 

processes. One is the molecular collisions in vapor, which tends to increase Tx. The other is the 

energy conversion from the microscopic kinetic energy of vapor molecules to the macroscopic 

kinetic energy in the vapor flow direction, which tends to decrease Tx. The maximum Tx in the 

Knudsen layer is obtained when vR defined by Eq. (5) is equal to √0.5. 

From the study of evaporation into a vacuum, we find the BC that can be applied at the 

vacuum boundary is vR = √1.5, and √1.5 is the upper limit of vR in the Knudsen layer. The 

maximum evaporation flux from a liquid surface at a given temperature depends on both the 

MAC, α, and the distance, Lvap, between the evaporating surface and the vacuum boundary. As 

Lvap increases from 0 to ∞, the ratio of evaporation molar flux, Jnet, to the molar flux of 

molecules emitted from the liquid surface, JL
+, decreases from α to JR,max, where JR,max is a 
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function of α only and its value is given in Tab. 1. From the study of the evaporation and 

condensation between two parallel plates, we show the BTE solutions give good predictions of 

transport phenomena in both the anisotropic vapor flow within the Knudsen layer and the 

isotropic flow out of the Knudsen layer. All the predictions from the KTG and BTE combined 

theoretical model are verified by MD simulations in this work. 

This study focused on evaporation of monoatomic fluids. It is imperative in the future to 

extend the theoretical and MD model in this work to investigate evaporation of more complex 

fluids such as water and organic fluids. 
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Fig. 1. The schematic diagram of the one-dimensional (1-D) steady-state evaporation of a 

monoatomic liquid to its own vapor. va is the average local velocity of vapor evaporated from the 

liquid surface.  
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Fig. 2. The dimensionless (a) density, (b) temperature and (c) molar flux of vapor at the 

evaporating surface as a function of dimensionless macroscopic velocity of vapor at the 

evaporating surface for different values of MAC. 
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Fig. 3. (Top panel) A snapshot of the model system for the MD study of evaporation of liquid Ar 

on a Au surface at Th =  85 K into a vacuum, and (bottom panel) the temperature profile in the 

vapor flow direction. The uncertainty of Tx and Ty is smaller than the size of symbols. 
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Fig. 4. The (a) molar, (b) momentum and (c) energy flux in each bin of the vapor region. The 

horizontal dashed lines show the average value of molar, momentum and energy flux in the 

vapor region. The uncertainties are smaller than the size of symbols. 
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Fig. 5. The velocity distribution of vapor molecules in the second bin (~ 18 nm from the 

evaporating surface) in the vapor region. The red circles and blue diamonds are MD simulation 

results for the velocity components along the vapor flow direction and perpendicular to the flow 

direction, respectively. The dashed line is the Maxwell velocity distribution (MVD) of Ar 

molecules at T = 69 K. The solid line is the shifted MVD (SMVD) of Ar molecules at T = 51 K. 
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Fig. 6. (Top panel) A snapshot of the model system for the MD simulation of evaporation of 

liquid Ar on a hot Au surface at Th =  85 K and condensation of vapor Ar on a cold Au surface at 

Tl = 35 K, and (bottom panel) the temperature profile in the vapor flow direction. The 

uncertainty of Tx and Ty is smaller than the size of symbols. 
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Fig. 7. (a) Dependence of Tx and Ty on t obtained from EMD simulation of vapor Ar with a 

density of ρv = 0.0636 mol/L and an initial temperature of Tx,i = 51.5 K and Ty,i = 68.5 K. The 

inset shows a linear fit of ln[(Tx(t) – Te)/(Tx,i – Te)] vs. t. (b) The dependence of molecular 

collision frequency, 1/τ, on ߩ௩ඥ ܶ obtained from MD simulations. The dashed line shows a trend 

line for the linear dependence between 1/τ and ߩ௩ඥ ܶ. 
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Fig. 8. The distributions of (a) and (b) temperature, (c) density, and (d) dimensionless 

macroscopic velocity of vapor near an evaporating liquid Ar surface (located at x = 0) and at a 

surface temperature of TL = 82.8 K. The results are the prediction from the four-moment solution 

to the BTE. vR,0 is the vR of vapor at x = 0, i.e. the liquid-vapor interface. 
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Fig. 9. (Top panel) A snapshot of the model system for the study of evaporation of liquid Ar at 

TL = 82.8 K into a vacuum. The vacuum boundary is 103 nm from the evaporating surface. 

(Bottom panels) The (a) temperature, (b) density, and (c) dimensionless macroscopic velocity in 

the vapor region. The scatters are MD simulation results. The lines are predictions from the BTE.  
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Fig. 10. Same as Fig. 9 except that the temperature at the evaporating surface is increased to TL = 

90.5 K. 
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Fig. 11. The predictions from the BTE and the MD model on vR,0 and Jmax as a function of Lvap 

for the case of evaporation of liquid Ar at TL = 82.8 K into a vacuum. The top horizontal dash-

dot line indicates αJL
+, i.e. the molar flux of molecules that are emitted from the liquid surface 

and change to vapor phase. The bottom dash-dot line indicates vR,0(Lvap→∞), i.e. the vR,0 

predicted by the KTG shown in Tab. 1. 
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Fig. 12. (Top panel) A snapshot of the model system for the study of evaporation and 

condensation of fluid Ar between two parallel plates. The separation between the evaporating 

and the condensing surfaces is 106 nm. (Bottom panels) The (a) temperature, (b) density, and (c) 

dimensionless macroscopic velocity in the vapor region. The scatters are MD simulation results. 

The lines are predictions from the BTE. 
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Fig. 13. (a) The velocity distribution of vapor molecules in the second bin of the vapor region. 

The red circles and blue diamonds are MD simulation results for the velocity components along 

the vapor flow direction and perpendicular to the flow direction, respectively. The dashed line is 

the Maxwell velocity distribution (MVD) of Ar molecules at T = 71 K. The solid line is the 

shifted MVD (SMVD) of Ar molecules at T = 61 K. (b) RJME vs. J at the evaporating and 

condensing surfaces. 
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Fig. 14. Same as Fig. 12 except that the length of vapor region is doubled.  
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Tab. 1. The theoretical prediction of the dimensionless maximum evaporation flux, JR,max, as a 

function of the MAC, α, when the vacuum boundary is far from the evaporating surface. vR,0, Tx,R, 

Ty,R and ρR are the corresponding dimensionless macroscopic velocity, temperature, and density 

of vapor at an evaporating interface. The case of α = 0.92 is highlighted because it is relevant to 

the MD study of evaporation of liquid Ar at TL = 28.2 K into a vacuum in this work. 

α vR,0 JR,max Tx,R Ty,R ρR 

1.00 0.50805 0.83843 0.60617 1.04328 0.59794 

0.92 0.50513 0.77994 0.60179 1.04531 0.56148 

0.90 0.50438 0.76514 0.60068 1.04583 0.55215 

0.80 0.50059 0.69007 0.59496 1.04851 0.50415 

0.70 0.49666 0.61306 0.58901 1.05132 0.45371 

0.60 0.49258 0.53392 0.58281 1.05428 0.40052 

0.50 0.48834 0.45245 0.57633 1.05740 0.34428 

0.40 0.48391 0.36841 0.56954 1.06071 0.28458 

0.30 0.47929 0.28152 0.56241 1.06422 0.22094 

0.20 0.47443 0.19144 0.55490 1.06796 0.15281 

0.10 0.46933 0.09776 0.54696 1.07197 0.07945 
 


