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We present results on a meso-scale model for amorphous matter in athermal, quasi-static (a-AQS),
steady state shear flow. In particular, we perform a careful analysis of the scaling with the lateral
system size, L, of: i) statistics of individual relaxation events in terms of stress relaxation, S, and
individual event mean-squared displacement, M , and the subsequent load increments, ∆γ, required
to initiate the next event; ii) static properties of the system encoded by x = σy − σ, the distance
of local stress values from threshold; and iii) long-time correlations and the emergence of diffusive
behavior. For the event statistics, we find that the distribution of S is similar to, but distinct
from, the distribution of M . We find a strong correlation between S and M for any particular
event, with S ∼ Mq with q ≈ 0.65. The exponent q completely determines the scaling exponents
for P (M) given those for P (S). For the distribution of local thresholds, we find P (x) is analytic
at x = 0, and has a value P (x)|x=0 = p0 which scales with lateral system length as p0 ∝ L−0.6.
The size dependence of the average load increment 〈∆γ〉 appears to be asymptotically controlled by
the plateau behavior of P (x) rather than by a subsequent apparent power-law behavior. Extreme
value statistics arguments lead thus to a scaling relation between the exponents governing P (x)
and those governing P (S). Finally, we study the long-time correlations via single-particle tracer
statistics. The value of the diffusion coefficient is completely determined by 〈∆γ〉 and the scaling
properties of P (M) (in particular from 〈M〉) rather than directly from P (S) as one might have
naively guessed. Our results: i) further define the a-AQS universality class, ii) clarify the relation
between avalanches of stress relaxation and diffusive behavior, iii) clarify the relation between local
threshold distributions and event statistics.

I. INTRODUCTION

Amorphous solids such as amorphous alloys [1],
foams [2], emulsions [3], pastes [4, 5], colloidal glasses [6],
granular materials [7, 8], etc. exhibit avalanches of stress
relaxation when driven slowly at low temperature. This
has been observed in experiments [1, 8, 9] and computer
simulations. The computer simulations can be either of
particulate [10, 11] or meso-scopic nature [12–14]. In the
meso-scopic models, space is broken into local regions,
any one of which may suffer a yielding event, after which
it must redistribute at least some portion of the stress
it had been supporting. The avalanches arise from cas-
cades of local yielding events, so called shear transforma-
tions [15, 16], which interact with each other elastically.

The distribution of avalanche sizes, P (S), has been
shown to exhibit critical scaling [12] as in other driven
critical systems such as sand piles [17], contact lines [18]
etc. P (S) is also related to other properties of the sys-
tem beyond the spectrum of avalanches. Recently, Lin
and co-workers [13] have argued that the avalanches and
P (S) place strong constraints on the form of the distri-
bution, P (x) of local residual stress, x = σy − σ, where
σy is the local threshold and σ is the local stress. It is
also well known that particulate computer simulations
show an anomalous diffusion coefficient, D [10, 11], and
Lemaitre and Caroli have argued [10] that the size de-
pendence of D can be understood in terms of the geo-
metrical properties of the deformation; in particular how
avalanches organize into lines in two dimensions (2D).
We have recently shown [19] that the meso-scopic models

also show an anomalous system size dependent diffusion
coefficient similar to that observed in particulate simu-
lations. However, in either case, the precise connection
between the scaling properties of diffusive quantities and
the avalanche spectrum has not been studied.

In the present paper, using a meso-scale lattice model
of amorphous plasticity we perform a careful finite-size
scaling analysis simultaneously on: i) the distribution of
event sizes, ii) the distribution of local residual stress and
iii) the single particle displacement statistics at longer
time.

For the event size distribution, we characterize individ-
ual events both in terms of the stress released, S/L2, and
also in terms of the mean squared displacement (MSD),
M . We find a surprising, non-trivial relation between
the individual event stress relaxation, S, and its MSD,
M with M ∼ Sq with q ≈ 0.65. We do not provide
any deep understanding on the origin of this relation or
the value of the new scaling exponent, however, we show
that it completely determines the form of the distribu-
tion P (M) from the distribution P (S). We also study
the distribution of load increments, ∆γ, effectively like
the waiting time between events of any size, and show
that it is essentially exponential with an average 〈∆γ〉
equal to 〈S〉/L2 as it must be in steady state.

For the thresholds embodied in the P (x) distribu-
tion, we agree with Lin et. al. [13] that the scaling of
〈xmin〉 = 〈∆γ〉 = 〈S〉/L2 is consistent with what one
would obtain from the minima of uncorrelated samples
of P (x). However, the form of our P (x) distribution is
qualitatively different than what was found by Lin et. al..
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In Ref. [13] they found a power-law form for P (x) and
point out the distinction with other depinning systems
where P (x) is analytic. Here, we will show that P (x) is
actually analytic at x = 0, but with the value of P (x) at
x = 0 scaling in a non-trivial way with L such that the
extreme value statistics prediction for 〈xmin〉 based on
P (x) is consistent with our explicit measurement of it.

Finally, for the diffusive behavior, in agreement with
our earlier results [19], we find an anomalous size depen-
dence, D ∼ L1.05. One might have naively expected
D ∼ Ld−df where df is the fractal dimension one would
infer from the P (S) distribution. Our data is inconsistent
with this naive expectation. However, we find that taking
into account the non-trivial relation between S and M for
individual events, one simply finds that D = 〈M〉/〈∆γ〉.
Thus the P (M) distribution along with the q exponent
completely determine the size dependence of D.

II. A MESOSCOPIC MODEL OF AMORPHOUS
PLASTICITY

We use a coarse-grained, depinning-like lattice model
of amorphous plasticity (for a recent review of such me-
somodels see [20, 21]). These models provide a semi-
continuous description, preserving the two key ingredi-
ents of amorphous plasticity: the elastic interations be-
tween the shear transformations and the disordered po-
tential landscape. Shear transformations are “replaced”
by Eshelby inclusions and the disorder is introduced via
activation stress barriers. In what follows, we provide
some insight into mesomodels.

A. Elastic interactions: Eshelby

Mesomodels attempt to preserve the elastic interac-
tion between shear transformations upon coarse graining.
Shear transformations are therefore replaced by their
continuous counterpart of material inclusions known as
Eshelby inclusions. These inclusions have the same elas-
tic properties as the material, however, they can undergo
permanent deformation, just as the shear transforma-
tions do. Fig. 1 shows such interacting inclusions.

Here we consider a scalar, two dimensional description
where the plastic deformation of the inclusions obeys the
symmetry of the external loading. In other words, a pure
shear loading σ = σxy can only result in a plastic strain
along the same orientation εp = εpxy. From here on we
work in pure shear geometry.

When an inclusion undergoes a plastic deformation, it
induces an elastic field in the rest of the bulk. The elastic
field is the solution of the Eshelby inclusion problem [22]
and it is known that its far-field solution is independent
of the inclusion’s shape. In two dimensions, the far-field
solution of the Eshelby inclusion problem resulting from
a plastic deformation εp in a zone of area A0 gives an
induced stress of the form G(r, θ) ∼ µA0ε

p cos(4θ)/r2.

(a) (b)

FIG. 1. (a) Interacting Eshelby inclusions in an elastic bulk.
(b): discretized kernel associated to pure shear deformations.

The stress induced by an inclusion thus has a quadrupo-
lar symmetry as shown on Fig. 1 and has positive signs
along certain directions and negative signs along others.
The triggering of further rearrangements is therefore fa-
vored along the positive directions, but the material is
stabilized along the negative ones.

Note that the elastic kernel G(r, θ) ∝ 1/r2 in two di-
mensions, hence it is long ranged. Therefore, discretizing
the elastic fields induced by the Eshelby inclusions in pe-
riodic geometries is not a trivial task. There are various
discretization schemes to discretize the Eshelby fields on
a square lattice, in periodic geometries such as Fourier-
space discretization [23, 24] or finite element (FE) meth-
ods [14, 24, 25]. Here we chose a FE scheme as shown
on Fig. 1. Details regarding the discretization are pre-
sented in the Appendix of ref. [19], here we just mention
that the finite element kernels give realistic near field in-
teractions. The Eshelby inclusions associated to shear
transformations then live on square lattice sites. Once
a site deforms plastically, the stress is redistributed over
the system according to the discretized version of G.

B. Disorder: distributed thresholds vs distributed
slip amplitudes

The activation of shear transformations is related to
energy or stress barriers. Here we consider an athermal
model, therefore the plasticity of inclusions is governed
by local stress barriers: whenever the stress on a partic-
ular site exceeds a threshold value σc, the site slips some
amount εp. The structural disorder of the material is then
reflected in the distributions and correlations of σc and
εp. Here we consider two particular forms of the disor-
der: either σc is uniformly distributed from [0.5, 1.5] and
εp = ε0/2 or σc = 1 and εp uniformly distributed from
[0, ε0] with ε0 = 1. We name the distributed threshold
model Y1 and the distributed slip increment model Y0.
Recalling the depinning analogy, Y1 introduces disorder
as fluctuations of the depths of the potential wells, while
Y0 accounts for disorder as the fluctuations of the widths
of the wells as shown in Fig. 2. We were experimenting
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FIG. 2. Disorder enters into the model either (a) via ran-
dom activation thresholds or (b) random slip increments. The
main plots show the stress landscape experienced by one of
the discrete elements, whereas the side plots show the corre-
sponding threshold and slip increment distributions.

with the combination of the two protocols (random ini-
tial stresses with constant thresholds and constant slip
increments or random initial plastic strains with the as-
sociated residual stresses with constant thresholds and
constant increments), these however resulted in a single
narrow and persistent shear band, consistent with [21],
showing that disorder in the initial conditions only is not
enough.

We choose a quasistatic, strain driven loading as fol-
lows: the strain of the system is increased up until the
point one of the sites yield. The strain is then held con-
stant as long as further events are triggered and only
after all events stopped is adjusted again to trigger the
next one. This loading allows for true quasistatic loading
without a finite strain step.

III. ELEMENTARY EVENTS: AVALANCHES

The flow of amorphous materials is characterized by
intermittent dynamics [26, 27] resulting in sudden stress
drops in the flow curve (Fig. 3). These drops correspond
to the collective activation of many shear transforma-

tions so plasticity happens in terms of bursts known as
avalanches. In this section first we investigate the size
distribution of such elementary events in terms of the
stress drop. We then study the distribution of subsequent
load increments and show that it is exponential with a
characteristic scale determined completely by the aver-
age stress drop. Finally, we study the individual event
MSDs, showing that there is a strong correlation for any
given event between its stress drop and its MSD. This
allows us to map the distribution of stress drops, P (S),
to the distribution of MSDs, P (M). We will show below
that both of these distributions are required to determine
the diffusion coefficient.

FIG. 3. Serrated flow curve. Fluctuations of the stress (i.e.
the sudden stress drops) correspond to individual avalanches.
The stress (strain) increase between successive avalanches is
2µ∆γ (∆γ).

A. Stress drops

Cascades are usually power-law distributed around
the yielding transition and their upper cutoff’s finite
size scaling gives valuable information about the spatial
structure of the avalanches. The normalized distribu-
tion of avalanches however looses an important infor-
mation when it comes to size dependence, namely the
cumulative number of avalanches in a given strain win-
dow. We therefore define the avalanche rate R(S,L)
(rather than the avalanche distribution) as the num-
ber of events of size S per unit loading strain [28] as
R(S,L) = n(S, S+dS,∆ε)/dS∆ε, where n(S, S+dS,∆ε)
is the number of avalanches of size between [S, S + dS)
within a strain window ∆ε. L is the linear size of the
system, so if the lattice constant is a, there are (L/a)2

sites in the system. The avalanche size S is defined as
S = L2∆Σ/2µ as shown in Fig. 3. This definition
is equivalent to that of particle simulations [28] and in
the mesomodel, in the case of uniform slip increments
S would simply give the number of plastic events (flips)
within the avalanche. Normalizing R(S,L) then gives the
usual probability distribution P (S,L) of the avalanche
sizes [13]. In particle simulations [28] it was found that
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R(S,L) obeys the scaling

R(S,L) = Lβg(S/Ldf ) (1)

with β = 0.2 ± 0.1 for an overdamped system. df is
known as the fractal dimension of the avalanche and is
a characteristic exponent of its spatial structure. The
scaling function g(y) is such that it recovers the power
law g(y) ∼ y−τ for y � 1. For S � L therefore we
have R(S,L) ∼ LβS−τ/L−dfτ . Well below the cutoff
we then have R(S,L) ∼ LγS−τ with the scaling relation
γ = β + dfτ .

Another scaling relation can be obtained by comput-
ing the cumulative event number within a unit strain
window:

Scum =

∫ ∞
0

SR(S,L)dS

= L2df+β

∫ ∞
0

ug(u)du ∼ L2df+β (2)

On the other hand, in the steady state, the stress cannot
increase nor decrease on average thus no elastic strain can
be accumulated. This means that in steady state, on av-
erage, all the energy is dissipated and all the accumulated
strain is plastic strain. Then in a strain window ∆ε the
cumulative number of events is given by Scum = L2∆ε/ε0
where ε0 is the typical plastic strain within an inclusion.
Projected to a unit strain window ∆ε = 1, Scum ∼ L2

and we arrive to the scaling relation 2df + β = 2.

FIG. 4. Avalanche rates rescaled with the system size, for
the two disorder types. For clarity, plots of Y0 and Y1 were
shifted apart horizontally. The left plot corresponds Y0, the
right one to Y1. The dashed line is a guide for the eye with
τ = 1.3. All models are well described by the same set of ex-
ponents: τ ≈ 1.3, β ≈ −0.2, df ≈ 1.1. Inset: Avalanche rates
of the Y1 model flattened by various exponents τ . Figure is
intended to give an idea about the accuracy in the measure-
ment of τ .

Fig. 4 shows the rescaled avalanche rate R(S,L)/Lβ as
a function of the rescaled avalanche size S/Ldf for various
system sizes and the two types of disorder. We find an
excellent collapse for the various system sizes, indepen-
dently of the kernel or the type of disorder. Moreover,

the values of the exponents τ, β, γ, df are also robust for
both disorder types. For the avalanche exponent we find
τ ≈ 1.3 ± 0.05 which is very close to the value obtained
from previous particle simulations [28] τ = 1.25, Durian
model simulations [29] τ = 1.2 and other mesomodels
τ = 1.3± 0.05 [12, 14, 30–32], however considerably less
than the mean field value τ = 1.5 [33–35]. For the fractal
dimension df we find a value df = 1.1 which is larger than
the value df = 0.9 reported in particle simulations [28] or
df = 1 obtained in a similar lattice model with extremal
dynamics [12], however the same value was reported in
other lattice models [30]. For both disorder types we find
γ = 1.25± 0.05 which is again close to the molecular dy-
namics value γ = 1.3 ± 0.05 [28]. For the exponent β
we find β = −0.2 which is considerably different from
the particle result β = 0.2. Note that previous lattice
models [12, 23, 30] focused on the normalized avalanche
distribution P (S), hence did not have access to the β and
γ exponents. Note furthermore that the two scaling re-
lations involving τ, β, γ, df are verified by our measured
values.

A finite size scaling was revealed by Lin et al. [30]
by considering the normalized avalanche distribution
P (S,L) having the form

P (S,L) ∼ S−τf(S/Sc) (3)

where Sc is the upper cutoff of the avalanches and
scales with the system size as Sc ∼ Ldf . The average
avalanche size 〈S〉 can be computed and one finds 〈S〉 ∼
Ldf (2−τ). The average stress drop 〈∆Σdrop〉 is then given
by 〈∆Σdrop〉 = 〈S〉/Ld ∼ L−α with α = d−df (2−τ). In-
serting df = 1.1, τ = 1.3 and d = 2 one obtains α = 1.23.

As shown on Fig. 6 inset, this prediction is close to the
simulation, but does not precisely match it: our mea-
sured α is slightly larger, α = 1.35. This latter value
matches results by Lin et. al.[30]. The discrepancy be-
tween the predicted value α = 1.23 and the measured one
α = 1.35 may stem from the fact that the distribution
function in Eq. (3) is not properly normalized. A proper
normalization would involve knowledge about the lower
cutoff Sm of the power law P (S,L). Eq. (3) does not in-
clude such a normalization factor, therefore corrections
may arise.

To show the effect of the lower cutoff, we compute 〈S〉
from the unnormalized avalanche rate R(S,L), approxi-
mating the bounds by a hard lower cutoff Sm and a hard
upper cutoff Sc ∼ Ldf :

〈S〉 =

∫ Sc

Sm
SR(S,L)dS∫ Sc

Sm
R(S,L)dS

∼ S2−τ
c − S2−τ

m

S1−τ
c − S1−τ

m

(4)

If 1 < τ < 2, at L→∞, the leading term in the numer-
ator is S2−τ

c and in the denominator, S1−τ
m . We find:

〈S〉 ∼ S2−τ
c

S1−τ
m

(5)

Recall that Sc ∼ Ldf . Assuming that Sm is size-
independent, we recover 〈S〉 ∼ Ldf (2−τ) at the thermo-
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dynamic limit. At intermediate system sizes, however,
Sm cannot be neglected. Fig. 5 shows that the presence
of a lower cutoff gives rise to an apparent scaling at in-
termediate system sizes with α = 1.35.

FIG. 5. Apparent scaling at intermediate L. Dots indicate
the mean avalanche size estimate from Eq. (4), considering a
lower cutoff value Sm = 1.0. The infinite-size scaling is visible
only above very large systems, L > 2000.

FIG. 6. Load increment distribution between avalanches for
models Y0 and Y1. P (∆γ) distributions follow a simple wait-
ing time distribution with a mean 〈∆γ〉 ∼ L−α for both mod-
els. For readability, curves for different models were shifted
horizontally and are Y0 (left), Y1 (right). Inset: average
stress drop 〈S〉/Ld (crosses) and average strain increment
〈∆γ〉 (filled circles) as a function of the system size, for the two
models. Note that these two must be equal in steady state by
construction in this family of models. To avoid overlap, data
for Y0 and Y1 were shifted and are: Y0 (left), Y1 (right). The
dashed line shows our best fit, 〈S〉/Ld ∼ L−α with α = 1.35.

The infinite size scaling prediction 〈S〉/Ld ∼ Ldf (2−τ)−d pro-
vides a smaller value, df (2− τ)− d = −1.23.

B. Load increments

In Fig. 6, we plot the distribution of loading incre-
ments, ∆γ, required to trigger new events. We can think

of this equivalently as the inter-event waiting time dis-
tribution. Since, in steady state, all loading increments
must be offset by load drops occurring in avalanches, we
must have that the average intensive stress drop is equal
to the average load increment: 〈S〉/Ld = 〈∆γ〉. Fig. 6
shows that the load increments follow a waiting time dis-
tribution and they are essentially distributed exponen-
tially. The inset shows that indeed 〈S〉/Ld = 〈∆γ〉 and
verifies the finite size scaling of 〈S〉/Ld or 〈∆γ〉:

〈S〉
Ld

= 〈∆γ〉 ∝ L−α , α = 1.35± 0.05 (6)

C. Individual event mean-squared displacement

FIG. 7. Distribution of mean square displacements in individ-
ual avalanches. Inset: the average per-avalanche mean square
displacement as a function of system size: 〈MSD〉 ∼ L−0.28.
(a): Y0, (b): Y1.

Similarly to avalanche sizes, one can measure the accu-
mulated mean square displacement during an avalanche.
Cartesian components of displacements are calculated
similarly to stresses, via convolving an x− and a y− dis-
placement kernel with the accumulated plastic strain field
during an avalanche. The mean square displacement ac-
cumulated over the avalanche is then calculated from the
cartesian components of displacements. We find a similar
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τ df β q τM dfM βM γ

Y0 1.3 1.1 -0.2 0.65 1.2 0.1 0.85 1.25

Y1 1.3 1.1 -0.2 0.65 1.2 0.1 0.85 1.25

TABLE I. Exponents measured. Precision on all exponents is
±0.05

scaling ansatz for the rates of mean square displacements,
namely:

RM (M,L) = LβM gM (M/LdfM ) (7)

Fig. 7 shows data rescaled according to the above ansatz.
The function gM (x) is such that gM (x) ∼ x−τM for x�
1. Values of the βM , dfM , τM exponents along with their
avalanche size counterparts are summarized in table I.

FIG. 8. Representation of individual avalanches. We find
an almost one-to-one match between the avalanche size and
the corresponding mean square displacement: S/Ldf ∼
(M/LdfM )q with q ≈ 0.65. (a): Y0, (b): Y1.

As the stress drops and the associated mean square dis-
placements behave in such a similar manner, the question
whether we can relate the individual stress drops to the
individual mean square displacements naturally arises.
Strikingly, we find an almost one-to-one correspondence
between the individual avalanche size S and the associ-
ated mean square displacement M : S/Ldf ∼ (M/LdfM )q

with q ≈ 0.65. Fig. 8 shows the M = M(S) dependence:

each point represent a single avalanche and they are all
narrowly distributed along the S ∼Mq line.

Starting from this relation and the conservation of the
number of events R(S,L)dS = RM (M,L)dM we can de-
rive two scaling relations:

q(τ − 1) + 1 = τM (8)

dfM [τM − q(τ + 1)] + df + β = βM (9)

In the ideal case of perfect slip-line avalanches dfM → 0
and the second scaling relation reduces to df + β = βM .
We observe, however a slightly larger value, dfM ≈ 0.1
hence the more complicated scaling form. Similarly, for
perfect slip-lines one would expect q = 1/2. Our q ≈
0.65 value indicate that avalanches have a more complex
structure. Nevertheless, the existence of an S = S(M)
relationship completely determines the form of R(M,L)
from the distribution P (S,L).

IV. RESIDUAL STRENGTH STATISTICS

It has been pointed out previously [13, 36] that after
a given avalanche, the load increment required to trig-
ger a successive avalanche, ∆γ, is completely determined
by the weakest site, ∆γ = mini{xi}, with xi = σyi − σi
where σyi is the local value of the yield stress and σi is the
current stress at site i. Under quasistatic loading condi-
tions, at the beginning of an avalanche there is precisely
one site with x = 0 and after an avalanche x > 0 for
all the sites, and the incremental load required to trig-
ger the next event is precisely the minimum value of x
at the end of the previous one. Therefore, one expects a
relationship between the distribution of load increments,
P (∆γ) = P (xmin), and the distribution of local residual
stress values, P (x).

In similar automaton models to ours, Lin et. al. argued
that P (x) ∼ xθ with θ ≈ 0.6 as x→ 0 [13]. They used an
argument going back to Karmarkar et. al. [36] and as-
sumed that P (∆γ) could be reconstructed from uncorre-
lated sampling of the P (x) distribution. They then used
extreme value statistics concepts to relate the size depen-
dence of the mean strain increase between avalanches,
〈∆γ〉, to the exponent in the power-law for P (x). In

extreme value statistics, one has
∫ 〈xmin〉
0

P (x)dx ∼ 1/N
where N is the number of uncorrelated samples of x from
P (x) and 〈xmin〉 is the average minimum of the N -fold
sample. In [13] the authors assumed that P (x) had a
power law from all the way down to x = 0 with no finite
size effect and from this, they argued that the exponent
in the P (x) power law determined the exponent in the
size dependence of 〈∆γ〉 = 〈xmin〉 ∝ L−d/(1+θ) with d
the dimension of the system. This results thus lead to
the scaling relation α = d/(1 + θ).

As we show below, although the relationship we find
between 〈xmin〉 and P (x) is consistent with an extreme
value statistics argument, the form of our P (x) distri-
bution is qualitatively different from Lin et. al.. Rather
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than seeing a power law down to arbitrarily small x, we
observe a clear plateau in P (x) at small enough x. The
height of the plateau scales like L−ϕ, with ϕ = 0.6 and
the characteristic x value for crossover to the plateau
scales like x∗ ∝ L−ψ with ψ = 0.9.

Note that independently of the present work and of the
previous results obtained by Tyukodi in his Ph.D the-
sis [24], a simultaneous study of Jagla and Ferrero [37]
leads to the same observation of a plateau behavior of
P (x) at low x values. We show below that this plateau
asymptotically controls the extremal statistics of the
residual strengths.

FIG. 9. P (x) distributions. Note the size dependent lower
cutoff. Dots indicate the positions of 〈xmin〉 = 〈∆γ〉 and we
observe that they fall off the P (x) ∼ xθ power law regime.

Fig. 9 (top) shows our measured P (x) distributions.
Dots represent positions of 〈xmin〉. It is clear that i) we
observe a plateau at the lower end of the distribution
and ii) all 〈xmin〉 values lie between the plateau and a
power-law like regime. Up until 〈xmin〉 thus P (x) is not
a power law. Although the level of the plateau decreases
with the system size, so does 〈xmin〉.

Interestingly, we observe in Fig. 9 (bottom) that at low
x values the distribution P (x) remains invariant under
the rescaling:

P (x) = L−ϕg(x/x∗) , x∗ ∝ L−ψ ,
with g(u)→ const for u� 1

(10)

where ψ ≈ 0.6 and ψ ≈ 0.9.

Whereas P (x) is not a power law around 〈xmin〉, we
still may find a scaling relationship for 〈xmin〉. As P (x)
is not a power law, one can approximate it via a simple
Taylor expansion P (x) = p0 + p1x + O(x2) where the
coefficients p0 and p1 are both L-dependent. We can fix
p0 = P (x = 0) and adjust p1 to obtain the best overlap
with the measured P (x). Fig. 10 shows the linear approx-
imation of P (x) for various fitting parameters. From the
scaling of Eq. (10), it is clear that the coefficient of the
Taylor expansion must obey: p0 ∝ L−ϕ and p1 ∝ Lψ−ϕ.

In Ref. [37], published almost simultaneously with the
present work, Ferrero and Jagla also reported the exis-
tence of a plateau in P (x) and they proposed the follow-
ing form: P (x) = q0 + q1x

θ. This expression happens
to be equally compatible with the scaling Eq. (10) pro-
vided that the parameters obey: q0 ∝ L−ϕ, q1 ∝ L0 and
θ = ϕ/ψ ≈ 2/3.

Interestingly, we observe that in an intermediate
regime, even the linear expression appears as a power
law. Fig. 11 shows that even the linearized P (x) appears
as a power law xθ with θ = 2/3. This regime, however, is
far above 〈xmin〉, therefore it does not affect the extreme
value statistics.

Independently of the respective performances of these
two expressions (linear or power law behavior) to describe
the low x behavior of the residual strength distribution
beyond the plateau, the question thus arises to what ex-
tent they contribute to the extreme statistics.

In the rescaled Fig. 9 (bottom), we actually observe
that the relative position 〈xmin〉/x∗ indicated by the col-
ored dots tends to recedes toward the plateau with in-
creasing size. We have indeed 〈xmin〉/x∗ ∝ Lψ−α with
ψ−α ≈ −0.45 < 0. Asymptotically the extreme statistics
of the residual strengths is thus expected to be entirely
controlled by the size dependence of the plateau. This
leads to the simple prediction for the size dependence:
〈xmin〉 ∝ L−αp with αp = 2 − ϕ ≈ 1.4 reasonably close
to the numerical value α ≈ 1.35 associated to Eq. (6) and
shown in the inset of Fig. 6.

If the extreme statistics of the residual strengths was
controlled by the linear or power-law post-plateau behav-
ior of P (x) we would get αlin = 1+(ψ−ϕ)/2 ≈ 1.15 and
αpow = 2/(1 + θ) ≈ 1.2 respectively. The two values are
close but slightly lower than the numerically observed
exponent α ≈ 1.35. The above arguments thus clearly
indicate that the average load increment 〈∆γ〉 is asymp-
totically controlled by the sole plateau behavior of the
distribution of residual strentghs P (x).

The slow receding of 〈xmin〉 toward the plateau may
obviously lead to corrections to scaling and explain nu-
merical values of the exponent α varying in the range
[1.15−1.4] depending of the range of system size used to
estimate the power law behavior. The fact that the posi-
tion of 〈xmin〉 still lies above the plateau for the L = 512
system indicates that we have not reached yet the large
system size limit. This observation is consistent with the
scaling corrections to stress drops shown on Fig. 5.

We see therefore that in truly quasistatic conditions
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FIG. 10. Linearized approximation of P (x) for a system of
size L = 64. Red curve indicates simulation data, the other
curves indicate linear approximations P (x) ≈ p0 + p1x for
various p1 values.

the distribution of residual strengths shows a plateau be-
havior up to a size dependent characteristic value x∗ and
that there is no so-called pseudogap at x = 0. The size
scaling of the average loading increment thus appears to
be asymptotically controlled by the size dependence of
the plateau value rather than by the subsequent appar-
ent or genuine power law

Note however, that in finite strain step simulations a
natural cutoff comes from the strain step. It is thus possi-
ble that earlier studies with finite strain step or finite rate
were only able to observe the strain step imposed cutoff.
Furthermore, the initiation of avalanches is different in
rigorously quasistatic and finite strain step simulations:
in the former, always a single site yields at the triggering
moment of an avalanche, while in the latter case there
may be multiple sites.

FIG. 11. Linearized approximation of P (x) here obtained
with a system size L = 64 appears as a power law with θ = 2/3
at intermediate regimes.

V. DIFFUSION

In the previous sections we have been mostly focusing
on temporal fluctuations of the stress average, or, equiva-
lently, fluctuations of the elastic strain and plastic strain
averages, but showed that the spatial structure of these
avalanches has a fractal dimension df ≈ 1.1, suggest-
ing that avalanches have an almost linear shape. The
consequence of such anisotropic avalanches is a highly
nonhomogeneous strain/displacement field that is impos-
sible to capture by usual depinning or mean field mod-
els. More importantly, instead of saturating to a steady
state value, spatial inhomogeneities (i.e. fluctuations) in
the strain/displacement fields keep increasing with time.
A diffusive increase of the displacement fluctuations (i.e.
mean square displacement) was observed in several parti-
cle simulations [10, 11, 38–40], as well as in lattice models
[41]. Moreover, a monotonic increase of the variance of
the incremental plastic strain field with the window size,
∆ε, was previously reported [42, 43] in lattice models
similar to the one we study here. We note that, although
we find a regime in window size, ∆ε, where the effective
diffusion coefficient is essentially constant, the displace-
ment fields which give rise to this diffusion coefficient
are strongly spatially correlated. Furthermore, the dis-
placement distribution is strongly non-Gaussian in this
regime.

This behavior is in stark contrast with diffusion in sim-
ple liquids where there is relatively little displacement
correlation between initially neighboring tracer particles
on the diffusive time scale and the displacement distri-
bution becomes completely Gaussian. Here, rather, the
linear evolution of the second moment of the displace-
ment distribution arises from single avalanches occurring
within a given window of size ∆ε. As the window size
grows to encompass multiple avalanches, inter-avalanche
correlations come into play, and the second moment of
the displacement distribution becomes super-diffusive.

In ref. [19] we showed that diffusion occurs in meso-
models and the finite size scaling of the diffusion coeffi-
cient is consistent with particle simulations. We found
that there is a short-term and a long-term diffusive as
long as the kernel is constructed properly. Here we ex-
tend the analysis and show that the short-time diffu-
sive behavior is a result of the shotnoise of uncorrelated
avalanches and we connect the finite size scaling of the
diffusion coefficient D to the finite size scaling of the per-
avalanche mean square displacement and of the load in-
crement.

A. Diffusive increase of plastic strain field
fluctuations

Fig. 12 shows the plastic strain diffusivity Dεp =

〈δε2p〉/∆ε for various system sizes and for the two pro-

tocols Y0 and Y1. Here 〈δε2p〉 is the plastic strain field’s
variance where the plastic strain was accumulated over
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a window of size ∆ε. For both protocols, we observe a
clear diffusive behavior Dεp = const for short windows, i.
e. ∆ε < ε0/2. Moreover, the associated diffusivity Dεp is
size independent for short times and we find Dεp ≈ 2/3.
This value can be understood assuming that the probabil-
ity distribution of plastic strains is a uniform distribution
corresponding to sites which have yielded precisely once
and zero to the sites which have not yielded. This simple
estimate gives a value 2/3.

After a strain of ∆ε ≈ ε0/2 however, we observe a
departure from diffusive behavior and a slow convergence
to a second diffusive regime.

FIG. 12. Plastic strain diffusivities for (a) Y0 and (b) Y1,
various system sizes. We observe a short time, size indepen-
dent diffusivity and a slow convergence to a second diffusive
regime.

The fall-off from the initial Dεp = const plateau in
both cases happens at around ∆ε ≈ ε0/2 which is pre-
cisely the strain necessary for each site to yield once.
Since the plastic strain field is local, this is an indication
that temporal correlations only start to build up after
each site in the system yielded once on average and then
the long-term behavior is a result of temporal correlations
in the plastic activity.

B. Diffusive increase of mean square displacements

In particle simulations in particular for small strain in-
crements, there is an ambiguity in separating local strain
fields into elastic and plastic parts and one has more di-
rect access to the non-affine displacements of particles.
For a more straightforward comparison to particle simu-
lation results therefore we investigate the fluctuations of
the displacement fields.

Fig. 13 shows the diffusion coefficients D = 〈δu2〉/∆ε
for the two protocols Y0 and Y1, where 〈δu2〉 is the mean
square displacement of the displacement field accumu-
lated over a window of size ∆ε. At short times, we again
observe diffusion, followed by a crossover to a superdif-
fusive regime and then a second diffusive behavior.

1. Early diffusion

At short times, in contrast with the plastic strain diffu-
sivity, D is system-size dependent and we find D ∼ L1.05

so D/L1.05 gives a good collapse for various system sizes
(Fig. 13). After a characteristic strain ε∗ ∼ L1.05 how-
ever, we observe a departure from this initial diffusive
plateau.

Our size-scaling of D is very close to D ∼ L found in
several independent particle simulations [10, 11, 38–40]
and it has been associated to the formation of system-
spanning slip-lines. According to the “perfect slip-line”
hypothesis, avalanches have a spatial structure of perfect,
system spanning slip-lines. There are L/a flipping sites
on the line, each of them having an average plastic strain
ε0/2. The plastic strain accumulated by such a slip-line
is then given by εs = aε0/2L, whereas the displacement
field variance associated to a line is [19] 〈us

2〉 = a2ε20/12.
In the steady state, the stress cannot increase nor de-
crease on average, therefore elastic strains must be equal
to the plastic strains. The diffusion coefficient is then
given by D = 〈us

2〉/εs = aε0L/6 ∼ L.
Fig. 14 shows the plastic strain, stress and displace-

ment fields accumulated over subsequent windows of size
∆ε = ε0/2L which is precisely the strain necessary for
one slip-line to form. We observe that within these win-
dows most of the time there is one slip-line forming, these
lines however are not perfect.

FIG. 13. Diffusion coefficients for various system sizes, (a) Y0
and (b) Y1. At short times, we find D ∼ L1.05 for both pro-
tocols. The leftmost dots indicate predictions of the diffusion
coefficient D = 〈MSD〉/〈∆γ〉
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FIG. 14. Slip-line formation. Maps from top to bottom: plastic strain, stress, displacement modulus |u|, for successive strain
windows of size ε0/L. Such a strain window, on average, allows for the formation of a single slip.

FIG. 15. Slip-line formation. Cumulative maps, accumulated in successive increments of strain window of size ε0/L. Maps
from top to bottom: plastic strain, stress, displacement modulus |u|. Maps correspond to snapshots from Fig. 14

We can extend the above argument by, instead of con-
sidering perfectly linear objects, assigning avalanches a
non-trivial fractal dimension df . In this case, the plastic
strain released by one avalanche is εs = (Ldf /L2)aε0/2 =
(aε0/2)Ldf−2. Assuming that 〈us

2〉 is still size indepen-
dent, one finds D ∼ L2−df . Comparing against our ob-
servation D ∼ L1.05 we can infer a fractal dimension
df = 0.95. While this value is consistent with particle
simulations [28] and other lattice models [12], it is in-

consistent with our direct measurement of the avalanche
cutoff finite size scaling where we found df ≈ 1.1 indi-
cating that the mean square displacement resulting from
one of the fractal objects has a slight system-size de-
pendence. Indeed, as we show on Fig. 7 inset, the av-
erage MSD of avalanches has a weak size dependence:
〈MSD〉 ∼ L−0.28. The reason of this size dependence
can be two-fold: first, events in avalanches may not be
perfectly aligned along a line, second, multi-flips may oc-
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cur which gives an extra, plastic strain/flip number di-
mension to the avalanche shapes. Note that the exis-
tence of diffusion does not require any particular spatial
structure of the individual avalanches. What happens is
simply that in most windows no avalanche occurs and
in a small number of windows a single avalanche occurs.
The mean square displacement at a particular window
size thus is a weigthed average of a large number of zero
values resulting from the windows with no events and a
small number of nonzero values resulting from individual
avalanches. The initial diffusive behavior is thus a result
of the shotnoise of individual avalanches.

The diffusion coefficient is then given by

D =
〈MSD〉
〈∆γ〉

(11)

This relation is verified and shown on Fig 13: the initial
dots indicate the prediction of D from the MSD and ∆γ
measurements. Equivalently, 〈MSD〉 = D〈∆γ〉. Using
D ∼ L1.05 and 〈∆γ〉 ∼ L−1.35 we find that 〈MSD〉 ∼
L−0.3, a scaling relation connecting the size dependence
of the elementary events to the size dependence of the
diffusion coefficient. The relation is supported by our
data, as shown on Fig. 7 inset.

2. Crossover to superdiffusive scaling and long term
diffusion

The simple minded picture of individual slip-lines only
holds up to a strain ε∗ ∼ L−1.05 which is precisely the
strain necessary for a single slip line to form. Passed this
strain we observe a supperdiffusive increase of the mean
square displacement as shown in Fig. 16, indicating that
a correlation starts to build up between subsequent slip-
lines. The build-up of this correlation can be observed
in the strain, stress and displacement fields as well: in
Fig. 15 we show the same snapshots as in Fig. 14, this
time however accumulating deformation from the first
window. As slip-lines add up, it is clear that they are
not independent. Note however, that we never observe
persistent localization: although the decorrelation time
(i. e. the time required for the plastic activity to leave
a band and move to another one) increases with time,
plastic activity will eventually decorrelate.

At long enough times, the system reaches a second
diffusive regime. The diffusion coefficient now has a dif-
ferent scaling, we find D ∼ L1.6 for this late diffusive
regime, which is consistent with Martens et al. [41] where
D ∼ L1.5 was reported in a similar lattice model.

As we have argued previously, the linear increase of
fluctuations with time does not imply a one-particle dif-
fusion process. Fig. 17 shows the evolution of the distri-
butions of the ux and ux45 = (ux + uy)/

√
2 components

of the displacements. For short times, i.e. ∆ε < ε∗ we
observe a distribution with an exponential tail which is
the signature of the displacement field induced by indi-
vidual slip-lines [11, 40, 44]. Considering the distribu-

FIG. 16. Diffusion coefficients for (a) Y0 and (b) Y1. We find
a long time diffusive regime with D ∼ L1.6 independently of
the protocol.

FIG. 17. Distributions of the cartesian components of the
displacements, P (ux) and P (ux45) for Y1, increasing strain
windows.

tions only, it may be tempting to model the evolution of
displacements as a random walk with exponentially dis-
tributed steps. While such an approach indeed predicts
diffusion and complies with the observed displacement
distributions (exponential tail at short time and normal
distribution at long times), it does not account for the
size effects caused by the localization described above.
Chaudhuri, Berthier and Kob have argued that expo-
nential tails arise generically in the displacement distri-
butions of glassy systems using a continuous time ran-
dom walk (CTRW) framework [45]. There, the expo-
nential tails are populated with particles which have un-
dergone a larger number of discrete CTRW jumps than
average. Here, although we observe exponential displace-
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FIG. 18. Kurtosis for Y0 (a, b) and Y1 (c, d), axial (a, c) and
diagonal b, d). The two protocols are indistinguishable.

ment distributions, the origin is completely different. For
the earliest times, a site has essentially undergone ei-
ther one (with probability proportional to 〈∆γ〉/∆ε) or
zero avalanches and the occurrence of multiple jumps
is exceedingly rare (≤ ∆ε2). The exponential displace-
ment distribution is a consequence of the spatial struc-
ture of the displacement fields which arise from single
avalanches. This is a completely different scenario than
the CTRW proposed in [45].

At long times, the distributions of the cartesian com-
ponents of the displacement field converge to a normal
distribution and the distribution of its magnitude to a
Maxwell distribution. The variance of the normal distri-
bution then increases linearly with time. Fig. 18 quanti-
fies the convergence to a normal distribution by following
the evolution of the kurtosis of the displacement distri-
butions. The kurtosis K of the ux and ux45 cartesian
components of the displacement field shows an initial
K ∼ 1/∆ε decrease. This behavior can be understood
in terms of shotnoise avalanches [19]: all moments of the
distribution should scale as 〈δun〉 ∼ ∆ε, thus, for the
kurtosis we have 〈δu4〉/〈δu2〉2 ∼ ∆ε/∆ε2 = 1/∆ε. At
long times, we recover K ≈ 3 indicating a normal distri-
bution of displacement components. One would expect
a collapse of the kurtosis curves when rescaling with the
characteristic strain ε∗ ∼ L−1.05, however, we find the
best collapse when rescaling with L0.8, as shown on Fig.
18. This anomalous scaling remains an open question.

VI. CONCLUSIONS

In summary, we have studied three different aspects
of a meso-scale automaton model for a-AQS systems: i)
event and inter-event statistics, ii) residual threshold dis-
tribution, iii) diffusion and have shown that all three are
inter-related. The average 〈S〉 of the distribution, P (S),

of stress drops completely determines the distribution of
load increments P (∆γ) under the assumption that the
latter is a simple exponential. The distribution, P (M),
of single-event MSDs along with the average load incre-
ment, 〈∆γ〉, completely determine the effective diffusion
coefficient D = 〈M〉/〈∆γ〉. The P (M) distribution is
determined completely from the P (S) distribution and a
single scaling relation between S and M , M ∝ Sq with
q ≈ 0.65. To the best of our knowledge, this scaling rela-
tion between stress drops and mean square displacements
of avalanche events has not been tested yet in atomistic
simulations and/or in experiments. This would consti-
tutes a natural perspective of the present work.

The distribution of residual strengths, P (x) was found
to be analytic at x → 0. The value at x = 0 was found
to scale like a power of the system size in a way which is
consistent with what would be predicted from 〈∆γ〉 along
with extreme value statistics arguments. While our par-
ticular finding on the form of P (x) (the presence of a
plateau) is different from that found by Lin et. al. [13],
we nonetheless find it likely that the basic extreme value
argument first put forward by Karmarkar et. al. [36]
is essentially correct. We showed that our analysis for
P (x) shows an apparent power-law regime with an ex-
ponent consistent with that measured by Lin. However,
this apparent power-law regime occurs at x values which
are well above xmin and should have no impact on 〈∆γ〉.
The latter thus turns out to be asymptotically controlled
by the size dependence of the plateau. Instead of directly
replacing a gap by a pseudo-gap in the residual strength
distribution [13], the alternating sign of the elastic kernel
in the present model, and more generally in depinning-
like models may thus only induce the gradual vanishing of
the gap with system size. Beyond the simple replacement
in the scaling relations of the exponent θ characterizing
the apparent power-law behavior op P (x) by an expo-
nent ϕ characterizing the size dependence of P (0), this
finding may impact the choice and the form of the sta-
tistical distributions chosen to build Mean Field models
of amorphous plasticity.

In the model presented here, the elasticity of the ma-
terial is assumed to be perfectly homogeneous and lin-
ear. Because of this homogeneity and linearity, the (non-
affine) displacement due to elastic deformation is pre-
cisely zero by construction. The only displacement, of
any kind, in the present model is due to plasticity. Of
course, in a particulate model like an MD or DEM simu-
lation, the situation is more complicated. The elasticity
is neither homogeneous nor linear, and one would need
to carefully separate elastic contributions to the short-
time diffusion from plastic ones [38]. But we emphasize
that in our model there are absolutely no elastic displace-
ments, and so it doesn’t make sense to speak of elastic
contributions to the diffusion coefficient even in principle.

Now, the effective diffusion coefficient is, of course,
defined by the long time (large strain interval) behav-
ior. If one supposes that the individual elementary
avalanches are uncorrelated with each other, then the
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diffusion coefficient must simply be the average event-
wise mean-squared displacement times the frequency of
events. What we have shown here that this simple argu-
ment gives excellent agreement with the explicitly mea-
sured long-time diffusion coefficient.

For the diffusion coefficient, as we have shown previ-
ously [19], there is an early time diffusive regime and a
late time diffusive regime with a higher diffusion coeffi-
cient. The diffusion coefficient for the early time regime
is the one which is precisely 〈M〉/〈∆γ〉 and therefore inti-
mately related to the avalanches and residual thresholds.
The diffusion coefficient increases beyond the early-time
plateau value at a characteristic strain which scales with
system size in precisely the same way as the height of the
plateau itself. We have discussed the connection between
the height of the early time plateau and the avalanches,

but it is not completely clear to us why the characteristic
strain for departure from the plateau scales in precisely
the same way with system size as the height of the plateau
itself. We are content here to leave it as an empirical ob-
servation, but it deserves further study in the future. In
a subsequent paper, we will also more fully study the late
time diffusive regime.
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