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We investigate the effect of filament-obstacle interactions on the force-velocity relation of growing
biopolymers, via calculations explicitly treating obstacle diffusion and stochastic addition and sub-
traction of subunits. We first show that the instantaneous subunit on- and off-rates satisfy a rigorous
thermodynamic relationship determined by the filament-obstacle interaction potential, which has
been violated by several calculations in the literature. The instantaneous rates depend not only on
the average force on the obstacle, but also on the shape of the potential on the nanometer length
scale. Basing obstacle-induced reduction of the on-rate entirely on the force, as previous work has
often done, is thermodynamically inconsistent and can overestimate the stall force, sometimes by
more than a factor of two. We perform simulations and analytic calculations of the force-velocity
relation satisfying the thermodynamic relationship. The force-velocity relation can deviate strongly
from the Brownian-Ratchet predictions. For shallow potential wells of depth ∼ 5kBT , which might
correspond to transient filament-membrane attachments, the velocity drops more rapidly than pre-
dicted by the Brownian-Ratchet model, in some cases by as much as a factor of 50 at an opposing
force of only 1 pN. On the other hand, the zero-force velocity is much less affected than would be
expected from naive use of the Boltzmann factor. Furthermore, the growth velocity has a surpris-
ingly strong dependence on the obstacle diffusion coefficient even when the dimensionless diffusion
coefficient is large. For deep potential wells, as might result from strong filament-membrane links,
both the on- and off-rates are reduced significantly, slowing polymerization. Such potentials can
sustain pulling forces while polymerizing, but only if the attractive well is relatively flat over a region
comparable to or greater than the monomer size. For double-well potentials, which have such a flat
region, the slowing of polymerization by external pushing force is almost linear up to the stall force
in some parameter ranges.

1. INTRODUCTION

Polymerization of biopolymers such as actin filaments provides force to drive both protrusion and invagination of
the cell membrane. This process is modulated by the interaction between the filament tip and the membrane, which
varies considerably between different cellular phenomena. In lamellipodia, filaments are likely weakly bound to the
membrane by their interaction with, for example, WASP-family actin-nucleating proteins [1]. On the other hand,
in filopodia actin filaments are nucleated by formins, which can bind actin filaments strongly [2]. Furthermore, in
processes that require strong pulling forces to bend the membrane, such as endocytosis in yeast, some actin filaments
must be strongly bound to the endocytic site. In this process, the binding is believed to result from the protein
Sla2, which has both actin-binding domain and a domain that links it to the membrane. [3]. Recent super-resolution
experiments have shown that WASP (Las17 in yeast) forms a ring around a Sla2 dot [4], and pulling forces are
probably concentrated in the dot [5, 6]. Similarly, microtubule interactions with the cell membrane are mediated by
a range of proteins, which may lead to a variety of effective interaction potentials [7, 8]. In all of these cases, it is
important to understand how the interaction between a growing filament and the membrane plus associated proteins
affects the polymerization rate. The filament-membrane interaction may be optimized for different criteria, such as
polymerization velocity where migration speed is crucial, or stability where strong pulling forces are required.

Most previous calculations of force generation by polymerization have used hard wall repulsive potentials acting
between the filament tip and the obstacle. The classic Brownian Ratchet (BR) model [9] used such a potential to
treat polymerization in the presence of a diffusing obstacle, assuming that the monomer on-rate increases suddenly
from zero to its free-filament value at a certain distance from the membrane. Analysis of this model showed that in
the limit of fast obstacle diffusion, the hard-wall potential gives rise to a growth velocity that decays exponentially
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with opposing force:

vgrowth = δ‖[k
0
on exp (−Fδ‖/kBT )− k0off ], (1)

where

δ‖ = δ cos θ (2)

is the step size per added subunit projected on the direction of obstacle motion, θ is the angle of filament growth
relative to the direction of motion, δ is the step size and k0on,off are the free-filament on- and off-rates.

Calculations based on this analysis can qualitatively explain the mechanism behind the generation of pushing forces
by actin polymerization in several types of cellular protrusions, such as filopodial and lamellipodial protrusions [10–
19]. The basic features of intracellular motion of pathogens such as Listeria, which is driven by actin polymerization,
can also be explained by BR-type models.

However, the true interaction is continuously varying and the force may have both attractive and repulsive com-
ponents. It is not known how these variations affect the force-velocity relation. For example, a potential with a
deep well might trap the growing end of the filament near the obstacle, and thus slow polymerization. On the other
hand, a smoother potential might speed polymerization. A small number of calculations have treated such smoothly
varying potentials. Calculations in 2D using an explicitly moving obstacle with explicitly diffusing monomers to treat
the growth rate of a single actin filament, interacting with an obstacle via a steeply increasing force field, found that
the velocity decays more rapidly than the BR prediction [20]. This effect was attributed to a diffusion barrier in
which monomers had to traverse a tunnel-like region to reach their binding site at the end of the filament. Such
effects are expected to be smaller in 3D. Calculations using a range of force fields to treat 3D polymerization [21, 22],
including filament bending, found large acceleration of growth by a soft obstacle when the obstacle diffusion coefficient
was small. Refs. [23] and [24] considered actin filaments strongly bound to the obstacle, but assumed they did not
grow. Studies of filament growth while clamped to a motile obstacle via a deep potential energy well suggested that
the filament-obstacle attachment is the controlling factor for the elongation rate [25, 26]. A later model considered
filaments attached to an obstacle with a double-well potential [27], explicitly treating diffusive motion of the obstacle.
It was found that a filament can push the obstacle and grow with a speed of about half of the free filament speed and
thus progressively polymerize, if the potential is sufficiently deep.

Among these preceding studies, there is no systematic exploration of a broad range of possible force fields, to
establish how the force field influences the force-velocity relation. In fact, the methodology for performing calculations
with smoothly varying filament-obstacle interactions is not well established. One must choose spatial dependences for
both the interaction energy between the obstacle and the filament tip, and the polymerization rate parameters. In
previous work these dependences have often been chosen independently.

Here we first establish a thermodynamic relationship between the spatial dependence of the polymerization-rate
parameters and that of the interaction energy, simplifying the construction of appropriate force-generation models.
Several preceding studies are inconsistent with this relationship. The relationship applies to a filament growing
against a diffusing obstacle whose motion is treated explicitly, with a smoothly varying filament-obstacle interaction.
Calculations not implementing this relationship can overestimate the stall force. We then perform a systematic
set of simulations for a broad range of possible filament-obstacle interaction potentials, treating polymerization and
depolymerization as well as obstacle motion stochastically. We find that monotonically decaying repulsive potentials
lead to force-velocity relations very similar to the BR prediction, as expected from general thermodynamic principles.
But in other cases the results can differ strongly from the BR prediction. Weak attractive potentials lead to much
faster decay than is predicted by the BR model, and reduce the zero-force velocity. Deep and narrow potentials lead
to slow polymerization at all force values. Calculations of the maximum pulling force and growth velocity as functions
of well depth show that attached filaments stop growing if the potential has a single narrow well of nanometer-scale
width that is deep enough to sustain pulling forces greater than about 1pN. Wider potentials, such as the double-well
potential that we consider, can have rapid polymerization at zero force, and have a force-velocity relation that decays
almost linearly for pushing forces up to the stall force.

Although the model is highly simplified, multiscale calculations such as those of Ref. [10, 12, 19, 28–32] have
demonstrated the utility of simple, but approximate results for the force-velocity relation in calculating the properties
of cells and processes inside cells. The general understanding gained from the present studies will enhance the physical
relevance of such multiscale calculations.
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2. MODEL

2.1. Filament-Obstacle Interaction

The model (Figure 1) treats the stochastic polymerization of a biopolymer, exerting force on an explicitly moving,
flat, penetrable obstacle. The filament grows at an angle θ relative to the obstacle direction of motion. We envisage
the base of the filament as being rigidly anchored. Actin filaments, for example, could be anchored in a crosslinked
actin meshwork. The growing end of the filament is assumed to interact with a membrane-binding protein that
attaches it to the membrane. Examples of such proteins include i) Hip1R (mammals) and Sla2 (yeast), which link
actin filaments strongly to the membrane as part of the pulling-force generation process during endocytosis, and ii)
WASP, which tethers filaments weakly to the membrane during the growth of dendritic actin networks [33].

The details of the interaction potentials between the actin-filament tips and the membrane proteins are not known.
Therefore, we treat a range of filament-obstacle interactions given by smooth potential functions having the form

U(r) = Ae−κ1r −Be−κ2r (3)

or

U(r) = Ae−κ1r − Ce−[κ3(r−r1)]2 −De−[κ4(r−r2)]2 (4)

Here, A, B, C, D, κ1, κ2, κ3, κ4, r1, and r2 are constants, and r is the variable gap between the tip of the filament
and the obstacle. Filament-obstacle binding can be naturally included in the force field via the B term in Eq. 3; we
denote such a potential a “simple well”. A non-zero C in Eq. 4 also adds a Gaussian “spike” to the potential at r =
r1 which can be either attractive or repulsive. Choosing both C and D to be positive in Eq. 4 generates a double-well
potential, as shown in Figure 2(b). Here we have chosen r1 = 2.45 nm and r2 = 4.85 for illustration; we find that the
force-velocity relation is not sensitive to their precise values as long as r2 − r1 is close to filament length added per
new subunit. The depth of the wells in the potentials represents the energy of binding filaments to membrane-bound
proteins. The corresponding forces that the filament exerts on the obstacle are

F (r) = −dU
dr

= Aκ1e
−κ1r −Bκ2e−κ2r (5)

and

F (r) = Aκ1e
−κ1r − 2Cκ3

2(r − r1)e−[κ3(r−r1)]2 − 2Dκ4
2(r − r2)e−[κ4(r−r2)]2 , (6)

respectively. We will denote a filament having only repulsive potential terms a “pusher”. A filament with an interaction
potential containing a well or a spike is denoted a “puller” (although it can also exert a pushing force).

We emphasize that the forces calculated here are instantaneous forces rather than being time-averaged. In the
case of a hard wall, a time-averaged force between the filament tip and the obstacle can be calculated analytically
without performing simulations [34]. However, the calculations that we perform here require knowledge of the force
at each time step because, as we shall see below, even nanometer-scale motions of the filament tip relative to the
obstacle can cause large changes in the rate constants. Therefore, we perform fully stochastic simulations with fine
time resolution. The position of the filament tip relative to the obstacle is determined by a balance between forces
from the filament-obstacle interaction and filament bending (see Sec. 2.3). This force balance will hold over time
scales long enough that the random thermal motion averages to zero.
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Figure 1. Schematic of model applied to an actin filament growing at oblique incidence: r is the distance between the filament
tip and the obstacle, δ is the actin monomer size = 2.7nm, and ∆zobst is the obstacle position fluctuation in the +z direction

during a given time step. We treat the filament’s base as being solidly anchored.

(a) (b)

Figure 2. Filament-obstacle interaction potentials. (a) Potentials from Eq. 3. Black curve represents a hard obstacle, with
A=1339 pN ·nm, B=0, and κ1=3nm−1. Red curve corresponds to a soft obstacle with A=54.7 pN ·nm, B=0, and κ1=0.9nm−1.
Blue curve shows a simple-well potential with a depth of 25kBT , with parameter values A=358 pN ·nm, B=295 pN ·nm,
κ1=0.9nm−1, and κ2=0.3nm−1. (b) Potentials from Eq. 4, containing one or more Gaussian spikes. Blue curve has a positive
Gaussian spike described by parameters A=54.7 pN ·nm, D=0, κ3 = 0.707nm−1, r1 = 5 nm, and C = -104 pN ·nm; red curve
differs from this one by having C = 104 pN ·nm. Black curve is a double-well potential with A=54.7 pN ·nm, C=101 pN ·nm,

D=100 pN ·nm, κ3 = 0.786nm−1, κ4 = 0.707nm−1, r1 = 2.45 nm, and r2 = 4.85 nm.

2.2. Obstacle Dynamics

The obstacle position is stepped forward in time according to biased Brownian motion driven by F (r) and thermal
fluctuations. We use a “filament-centric” approach in our simulations, in which the filament base is assumed to be
stationary and the obstacle moves. Cases where the filament base is moving can be handled by a simple coordinate
transformation, in which obstacle motion is the inverse of the base motion and the diffusion coefficient of the obstacle
is replaced by that of the entity to which the filament is anchored. At each time step, the diffusive motion of the
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obstacle is calculated by the discrete form of the Langevin equation (Ref. [35], Chap. 3):

∆zobst = α
√

24∆t
√
Dobst +

Dobst

kBT
∆t[F (r) + Fext] (7)

where Dobst is the obstacle diffusion constant, Fext is the external force applied on the obstacle, ∆t is the time step,
and α is a random number uniformly distributed between − 1

2 and 1
2 , so that < α2 >= 1

12 . Consecutive time steps
are uncorrelated.

2.3. Filament-Tip Fluctuations

We show results here including filament-tip fluctuations, and present results in the Appendix excluding filament-tip
fluctuations. We treat oblique incidence because the fluctuations are most pronounced in this case, and it is typical
for lamellipodia. It is necessary to specify a baseline incidence angle because this determines the projection of the
filament-tip fluctuations on the direction parallel to obstacle motion. We use a baseline angle of θ = 45o as in Figure
1. The model describes fluctuations relative to this baseline angle, whose magnitude is determined by the persistence
length of actin. The filament-tip fluctuations are modeled by a variable ztip describing the deflection of the tip,
assumed to move according to Brownian dynamics in a quadratic potential well:

∆ztip = α′
√

24∆t
√
Dtip +

Dtip

kBT
∆t[−F (r)− kbend · ztip] (8)

Here Dtip = 10Dobst is the filament tip diffusion coefficient. The true value of Dtip is probably greater than this,
since the part of the filament free to bend is much smaller than the obstacle sizes that we consider. However, using
the actual value would render the simulations extremely demanding. For this reason we have chosen a value an order
of magnitude larger than Dobst, so that the tip fluctuations will equilibrate on time scales much faster than that of
obstacle motion. The variation of the deflection ztip is limited: the tip can not bend down past its own base or up so
far that its height from the base exceeds the filament length. The time step ∆t = 10−9sec is is chosen so that filament
tips will move much less than the subunit size in one time step. The tip bending stiffness kbend is obtained [36] as

kbend = 3kBTLp/L
3 sin2 θ = 0.5 pN

nm , where Lp ' 20µm [37, 38] is the persistence length and L is the filament length,
which we take to have a representative lamellipodium value of 100 nm. Finally α′ is a random number uniformly
distributed between − 1

2 and 1
2 , so that < α′ 2 >= 1

12 . Consecutive time steps are uncorrelated.
Previous work has calculated the time-averaged free energy of a semiflexible filament as a function of end-to-end

length [39]. The present model treats the small-filament length limit of these calculations via explicit simulations. As
mentioned above, time-averaged results cannot be used in the present study because the filament-tip motion must be
followed with very high temporal resolution.

3. RESULTS

3.1. Thermodynamic Relation between kon(r) and koff (r)

It is physically clear that at least kon must be modified as a filament tip approaches an obstacle, because there is
less room available for new subunits to add. Some previous models [40–43] treated hard-wall potentials and considered
k̄on, the addition rate averaged over a time long in comparison with the time scale of filament-tip fluctuations. They
argued that when the distance between the filament tip and the closest obstacle position to the filament tip in a
multi-filament simulation is less then the projected length increment per subunit δ‖, k̄on is reduced by a factor of
exp [−F (δ‖ − r)/kBT ] relative to the free-filament value, where F is the time-averaged force exerted on the filament
tip, and r is the distance between filament tip and the obstacle. This relationship holds when the force required to
bend a filament tip is fairly constant over the size of a subunit. Here we show that a more complex relationship holds
when the filament-obstacle interaction varies strongly over distances on the order of the subunit size. In such cases,
it is necessary to include obstacle motion explicitly in the calculations. Then one uses rates kon(r) and koff (r) that
refer to polymerization and depolymerization events occurring at a given filament-tip and obstacle position, rather
than time-averaged rates.

We consider polymerization of filaments in the absence of nonequilibrium effects such as hydrolysis of ATP to ADP
in actin. In this case, the stall force must be independent of the form of the interaction potential U(r) between the
filament tip and the obstacle. This follows from the thermodynamic arguments of Ref. [44]: At the stall force, changes
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Figure 3. Dynamics of obstacle motion and actin filament polymerization and depolymerization. Red arrow corresponds to the
polymerization rate at the point where the filament-obstacle gap is ro, and the blue arrows correspond to the depolymerization

rates at ro and ro − δ‖.

in chemical free energy resulting from polymerization precisely balance changes in mechanical energy, relating the
stall force to the polymerization free energy per subunit. Then the combined system of obstacle and filament can be
described by a free energy function, containing a mechanical term Fextz where Fext is the external force (measured
in the direction opposite to filament growth) acting on an obstacle with coordinate z, a chemical term N∆G where
N is the number of subunits in the filament and ∆G is the chemical free-energy increment per added subunit, and
U(r). Defining r to be the obstacle-tip distance, z = r +Nδ‖. Then the total free energy as a function of N and r is

Gtot = N∆G+NFextδ‖ + Fextr + U(r). (9)

Here the free energy is defined on a time scale shorter than the time scale of monomer addition and obstacle motion
but still long enough that the free energy of an actin monomer interacting with water molecules is well defined.

The stall force Fstall is defined by Gtot being independent of N at a fixed value of r, so that

Fstall = −∆G/δ‖, (10)

as is well known [9, 44]. This implies the well-known result [44] that

Fstall = (kBT/δ‖) ln (k0on/k
0
off ), (11)

where k0on and k0off are rates for a free filament not interacting with an obstacle. Note that k0on is the on-rate (having

units of s−1), which is the product of the on-rate constant with the free-actin monomer concentration.
Now consider the dynamics of the filament-obstacle system at the stall force. The system is in equilibrium and thus

obeys detailed balance (recall that ATP hydrolysis is neglected). Since the system is at the stall force, the free energy

Gtot = Fstall · r + U(r), (12)

is independent of N . The dynamic processes in the system are i) Brownian motion of the obstacle, ii) polymerization,
and iii) depolymerization. In Figure 3, Brownian motion leads to infinitesimal steps in r, while polymerization leads
to jumps r → r − δ‖ and depolymerization leads to jumps r → r + δ‖. Because the system is in equilibrium, the
probability distribution P (r;N) satisfies the Boltzmann relation. In particular, referring to Figure 3 and ignoring
normalization of P ,

P (r;N) = exp {−[U(r) + Fstall · r]/kBT} (13)

P (r − δ‖;N + 1) = exp {−[U(r − δ‖) + Fstall · (r − δ‖)]/kBT}

Detailed balance between the states (r;N) and (r− δ‖;N + 1), which holds for this equilibrium system, implies that
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kon(r)P (r;N) = koff (r − δ‖)P (r − δ‖;N + 1) (14)

Therefore, using Eq. 11,

kon(r)

koff (r − δ‖)
= exp {−[U(r − δ‖)− U(r)]/kBT} · exp (Fstall · δ‖/kBT )

= exp {−[U(r − δ‖)− U(r)]/kBT} ·
k0on
k0off

(15)

This relationship guarantees that the correct stall force is obtained. It generalizes the well-known result [44] for the
average rates that

k̄on/k̄off = exp (−Fδ‖/kBT )k0on/k
0
off . (16)

Eq. 16 follows from Eq. 15 in the limit Dobst → ∞. To see this, note that from Eq. 15 the rate constants have the
form

koff (r) = k0offf(r)

kon(r) = k0on exp {−[U(r − δ‖)− U(r)]/kBT}f(r − δ‖) (17)

where f is a function of r. When Dobst →∞, the obstacle position distribution P (r) has its thermal equilibrium form
P (r) = exp {−[U(r) + Fr]/kBT}/Z, where Z =

∫∞
−∞ exp {−[U(r) + Fr]/kBT}dr. Then

k̄on = (k0on/Z)

∫ ∞
−∞

exp {−[U(r − δ‖)− U(r)]/kBT} exp {−[U(r) + Fr]/kBT}f(r − δ‖)dr

= (k0on/Z)

∫ ∞
−∞

exp {−[U(r − δ‖)]/kBT} exp [−Fr/kBT ]f(r − δ‖)dr

= (k0on/Z) exp (−Fδ‖/kBT )

∫ ∞
−∞

exp [−U(r)/kBT ] exp [−Fr/kBT ]f(r)dr (18)

while

k̄off = (k0off/Z)

∫ ∞
−∞

exp [−U(r)/kBT ] exp [−Fr/kBT ]f(r)dr (19)

= k̄on[exp (Fδ‖/kBT )k0off/k
0
on], (20)

implying that Eq. 16 holds. When obstacle diffusion is not rapid, Eq. 16 will not necessarily hold because energy
is dissipated by the obstacle drag, which is inversely proportional to Dobst according to the Einstein relation. This
is not accounted for in the thermodynamic analysis above. The stall force, however, is unaffected by obstacle drag
because the obstacle is stationary on average.

Eq. 15 correctly implies that the force-velocity relation is independent of the choice of zero for evaluating r. For
example, adding a constant shift ∆r to r would cause the typical positions sampled by the filament tip to move out
a distance ∆r from the obstacle, i. e. remaining close to the minimum of U(r) if the potential has a deep well.
Then the values sampled by the factor exp {−[U(r − δ‖)− U(r)]/kBT} will also remain the same, corresponding to
the energy difference between a point at the minimum and one shifted in by ∆r from the minimum. This also implies
that for the repulsive potential, the force-velocity relation is independent of the prefactor A; changes in the prefactor
can be accounted for by changing the zero of the r-coordinate, which does not affect the force-velocity relation. This
is confirmed by our numerical simulations below.

The derivation above applies to a single-stranded filament. However, Eq. 15 holds for a broader range of models.
For multistranded filament growth, Figure 3 applies provided that a new subunit can add only at a unique specified
site (typically next to the preceding one); then δ‖ is again the projected step size per added subunit. Thus Eq. 15
holds for both these cases. It also holds when filament bending degrees of freedom are included, and for systems
of many filaments. If, for example, one describes the bending of a single filament by angle θ, then Figure 3 applies
to transitions occurring at a given value of θ. Because detailed balance must hold for all transitions in a system at
equilibrium, Eq. 15 will still hold. In systems of many filaments, Figure 3 would apply to a single filament, and again
transitions involving just that filament must satisfy detailed balance at the stall force.

Eq. 15 does not uniquely determine kon(r) and koff (r). In our simulations, we make a minimal assumption, that
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has frequently been used for the rates k̄on and k̄off , by preventing both rates from exceeding the free filament on and
off rates:

kon(r) = k0on exp {−[U(r − δ‖)− U(r)]/kBT} if U(r − δ‖) > U(r)

kon(r) = k0on if U(r − δ‖) < U(r) (21)

koff (r) = k0off exp {−[U(r + δ‖)− U(r)]/kBT} if U(r + δ‖) > U(r)

koff (r) = k0off if U(r + δ‖) < U(r) (22)

Thus if U(r) is monotonically repulsive, there is no correction to koff in Eq. 22. This assumption has been made in
most previous calculations in the literature. We do not have strong arguments justifying the assumption, but have
decided to make it here in order to avoid investigating an unwieldy set of possibilities.

In the limit of a hard obstacle, where U(r − δ‖) jumps suddenly from 0 to ∞ when r becomes less than δ‖,

kon(r) in Eq. 21 will vanish when r < δ‖ and equal k0on otherwise, as in the BR analysis. For a slowly varying
repulsive U(r), force balance on the obstacle implies that typical values of r will satisfy dU/dr ' −Fext. Then
U(r − δ‖)− U(r) ' Fextδ‖, so that kon is reduced by the familiar exp (−Fextδ‖/kBT ) factor. However, in the case of
an interaction potential with a deep narrow well, the results can be quite different. For vanishing external force on
the obstacle, basing the slowing on the average obstacle force will give no correction. However, Eqs. 21 and 22 will
give corrections to both kon and koff . The filament tip will generally be near the bottom of the well. Therefore both
U(r − δ‖)− U(r) and U(r + δ‖)− U(r) are positive, so that kon and koff are reduced.

3.2. Numerical results for different potentials and finite Dobst

The instantaneous rates given in Eqs. 21 and 22 do not give the time-averaged force-velocity relation directly
because the distribution of r is not known a priori. It is rather determined in complex ways by the combination of
obstacle motion, filament-tip motion, and polymerization. Here we use simulation and analytic theory to calculate the
force-velocity relations for a range of filament-obstacle interaction potentials described above. We treat “pusher” and
“single-well” potentials (Figure 2a), and potentials having positive or negative Gaussian spikes as well as a double-well
potential (Figure 2b). The key parameter values are given in Table I. The free-filament polymerization rate k0on is
taken for a concentration of 1µM actin with an on-rate constant of 11.6µM−1s−1 [45]. Because the fractional error of
the off-rate k0off measured in Ref. [45] is much larger than that of the on-rate constant, we have assigned it a rough

estimate of 1 s−1 corresponding to the general range of values in the literature. The obstacle diffusion coefficient Dobst

is taken as that of a sphere of radius R = 5µm, using the Stokes relation Dobst = kBT/6πµR, where the viscosity µ
is taken as that of cytoplasm, assumed to have a value 8.9 × 10−3Pa · s ten times larger than that of water. This
corresponds to relatively rapid diffusion according to the measure Dobst/k

0
onδ

2 ' 50 [9]. Because this ratio is the key

TABLE I: Symbol definitions and parameter values.

Symbol Definition Value
δ Actin step size 2.7 nm

Dobst Obstacle diffusion coefficient 5000 nm2/s
Dtip Filament tip diffusion coefficient 5× 104 nm2/s
∆t Simulation timestep 10−8s
k0on Free filament polymerization rate 11.6 s−1

k0off Free filament depolymerization rate 1 s−1

Fstall Filament stall force 3.74 pN
kbend Filament tip bending stiffness 0.5 pN/nm
U(r) Potential of interaction between filament tip and obstacle varies
F (r) Force exerted on obstacle by filament varies
Fext External force on obstacle varies
vgrowth Filament growth velocity varies

r Gap between filament tip and obstacle varies
zobst Obstacle z coordinate (height) varies
∆ztip Filament tip fluctuation in a timestep varies
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Figure 4. Time course of filament length and obstacle motion for zero external force. Upper black curve is obstacle motion time
course for a repulsive filament-obstacle interaction potential (corresponding parameter values from Eq. 3 are: A=54.7 pN ·nm,
B=0, and κ1=0.9nm−1) and the lower black curve is the filament height vs. time. Upper blue curve is the time course of
the obstacle motion for a potential with an attractive well of depth 5 kBT (parameter values from Eq. 3 are: A=71.6 pN ·nm,
B=35.8 pN ·nm, κ1=0.9nm−1, and κ2=0.3nm−1) with lower blue curve showing the filament height. Inset shows discrete

polymerization and depolymerization steps, as well as the obstacle fluctuations against the filament tip.

factor controlling the polymerization behavior, our results could also be taken to describe, for example, a system with
faster polymerization and faster diffusion. The calculated force-velocity relations are not sensitive to Dobst provided
diffusion is much more rapid than polymerization, so they apply to a variety of obstacle sizes. The effects of using
lower values of Dobst are described in Appendix B.

Figure 4 shows sample time courses of filament length and obstacle position at zero load for two different force
fields. The black curves correspond to a “soft” repulsive potential (see Figure 2a). The filament grows at roughly the
free-filament rate and the obstacle has excursions of 100 nm or more away from the filament tip. The blue curves
correspond to a force field with an attractive well (Figure 2a) of depth 5 kBT . Here the growth is slower by about
50%. The obstacle excursions are smaller on average. Although there are several “mini-excursions” of tens of nm, the
obstacle returns to the filament. We consider this case to correspond to transient attachment of the filament to the
obstacle. However, later in the time course (at around 11 sec), the obstacle has an excursion similar to that seen for
repulsive potential. Eventually, the filament will catch up to the obstacle and the excursions will diminish.

Figure 5 shows the calculated force-velocity relations for the range of potentials considered. For all the potentials,
the growth velocity lies at or below the BR prediction. This is expected from the assumption (Eqs. 21 and 22)
that koff ≤ k0off : Eq. 16 implies that the time-averaged rates k̄on − k̄off = k0on exp (−Fδ/kBT )f(F ) − k0offf(F ),

where f(F ) ≤ 1. Then k̄on − k̄off = f(F )[k0on exp (−Fδ/kBT ) − k0off ], below the BR prediction. For all purely
repulsive potentials, the force-velocity relation is essentially indistinguishable from the BR prediction. This again
follows from Eq. 16, 21, and 22. For repulsive potentials Eqs. 21 and 22 imply that koff (r) = k̄off = koff (0), so that
k̄on = k0on exp (−Fδ/kBT ) and the BR relation holds.

Simple-well potentials, as well as potentials having negative spikes and double wells (Figure 2b), lead to slow-
ing of growth relative to the BR model in the positive (pushing) force regime. For a well depth of 5 kBT ,
the zero-force velocity is about half of the free-filament velocity, larger than might have been expected from the
exp {−[U(r − δ)− U(r)]/kBT} factor in Eq. 21, which is approximately exp (−5) in the case of the Gaussian spike
when the obstacle is near the bottom of the potential well. The reason for the faster growth is that in the absence of
external force, the obstacle is outside the well a substantial fraction of the time.

To see this, we assume fast obstacle diffusion and exploit the fact that the growth of the filament tip at ve-
locity v toward the obstacle has the same effect on the distance distribution P (r) as a weak external effective
force Feff = kBTvgrowth/Dobst [9]. This holds because the equation of motion for P (r) in the presence of fil-
ament growth (taken to have a constant velocity, and using the Einstein relation) is ∂P/∂t = Dobst∂

2P/∂r2 +
[F (r)Dobst/kBT + vgrowth]∂P/∂r, while the equation of motion in the presence of a constant force Feff is ∂P/∂t =
Dobst∂

2P/∂r2 + {[F (r) + Feff ]Dobst/kBT}∂P/∂r.
We assume the obstacle to be in either the region of the potential well, where we ignore polymerization, or in
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(a) (b)

(c) (d)

Figure 5. Simulated force-velocity relation for several different forms of filament-obstacle interaction potential. Error bars are
smaller than the symbols, except indicated; and they are calculated by finding the standard deviation of the mean for growth
velocity, from 20 different simulations of 20 seconds. The dashed line is the prediction of the BR model at large diffusion
constant values for obstacle. Data points for pullers are shown out to forces where they detach from the obstacle. Frames (a)

and (b) are for potentials in Figure 2a, while (c) and (d) are for potentials in Figure 2b.

the region outside the well, where it polymerizes at the free-filament growth velocity v0. This picture is most
applicable to narrow wells, such as the “Negative Spike” treated in Figure 5c. The polymerization rate is then
vgrowth/v0 = Zfree/(Zwell + Zfree), where Zwell is the contribution to the obstacle’s partition function from the well
region and Zfree is the contribution from outside the well. We take

Zfree =

∫ ∞
0

exp(−Feff · r/kBT )dr =
kBT

Feff
=

Dobst

vgrowth
(23)

where we have taken the integral to extend from 0 to ∞ for mathematical simplicity, which is valid as long as Feff
is weak. This gives

vgrowth
v0

=
1

1 + Zwell/Zfree
=

1

1 + Zwellvgrowth/Dobst
(24)
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The solution to this equation is

vgrowth
v0

=
2

1 +
√

1 + 4η
, (25)

where η = v0Zwell/Dobst. Treating the “Negative 5kBT Spike” as a square well of depth 5kBT and width 2 nm, we
obtain Zwell = 2 nm · e5 and vgrowth/v0 = 0.52, roughly consistent with the numerical results in Figure 5c. The
growth velocity given by Eq. 25 is appreciable only if η . 1, so that Dobst & v0Zwell. Therefore, even though
Dobst/k

0
onδ

2 >> 1, the growth velocity depends strongly on the diffusion coefficient.
For the potentials with 5kBT wells, the velocity also decays more rapidly with opposing force than the BR relation

predicts. For example, the “5 kBT” curve in Figure 5a drops by nearly 75% already at 1 pN force, while the BR
model and repulsive force fields drop by only about 50%. For the “Negative 5 kBT” spike in Figure 5c, the drop is
practically down to zero. This rapid drop occurs because the external force reduces the statistical weight of the free
region, which becomes Zfree = kBT/(Feff + Fext). Substituting this into Eq. 24 gives

vgrowth
v0

=
2

1 + f̃ +
√

(1 + f̃)2 + 4η
, (26)

where f̃ = ZwellFext/kBT . Even small values of Fext can affect the velocity strongly, because of the Zwell factor in

f̃ . Solving Eq. 26, again using a square well of depth 5kBT and width 2 nm, we find vgrowth/v0 = 0.014 at Fext = 1
pN, consistent with the very rapid drop seen in Figure 5c. When diffusion is very rapid, η → 0, and

vgrowth/v0 ' 1/(1 + f̃). (27)

Taking (1/vgrowth)(−dvgrowth/dFext) ≥ 2δ/kBT at zero force (twice the BR value) as a definition of rapid decay with
force, we find that rapid decay will occur when Zwell & 6 nm.

For the double-well potential (Figure 5d), the velocity decays less rapidly relative to its F = 0 value than the BR
prediction (although the magnitude of vgrowth is always smaller than the BR result); in fact the drop is almost linear
between 0 and 4 pN.

Another feature of the systems with potential wells is that they can polymerize processively under pulling (negative)
force, over a limited time [27]. As expected physically, there is a tradeoff between maximum sustainable force and
polymerization rate, illustrated in Fig. 6. High pulling force enhances polymerization, but at the same time accelerates
detachment of the obstacle from the filament. We consider 20 sec as a typical time frame for a cytoskeletal process such
as generation of an endocytic invagination. The results in Fig. 6 will change if different time scales are considered.
However, because the detachment rate depends exponentially on the pulling force, the pulling force will conversely
have a slow, logarithmic dependence on the time scale. For a 5kBT potential depth, almost no pulling force can be
sustained over 20 seconds (Figure 5a). But for a 15kBT depth (Figure 5b), a force of about 1 pN can be sustained.
The growth velocity in this case is about 80% greater than the zero-force value, but much lower than for the 5 kBT
case. For the 25kBT potential still larger pulling forces can be sustained, at an even smaller growth rate. Figs. 5(c)
and Fig. 5d show that the same trade-off occurs for potentials with spikes. In Figure 6, frame a) shows how the
maximum pulling force that allows a 20-second attachment period, depends on the depth of the potential well. Frame
b) shows how the growth velocity depends on the well depth. These two plots show that large sustainable pulling
forces on the obstacle (greater than about 1 pN) come at the expense of greatly reduced growth velocity. Pullers
with a well depth of about 5kBT grows only half as fast as a free filament, but can sustain essentially no pulling
force. If the depth is larger than about 15kBT , which is needed to sustain pN forces, growth almost completely stops
for the potential widths used here. For broader potential wells, the tradeoff between velocity and maximum pulling
force will be less stringent, because the exponential reduction of kon in Eq. 17 will be less pronounced, allowing more
rapid growth at a given potential depth. The double-well potential (Figure 2b) gives an example of this. As shown in
Figure 5d, this potential eliminates the trade-off between sustainable force and polymerization rate that is seen with
other potentials. This is because the well is wide enough that polymerization can occur inside even a very deep well.
If the obstacle is pulled toward the large-r end of the well, U(r − δ) and U(r) do not differ greatly, so there is no
significant slowing in Eq. 21.
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(a) (b)

Figure 6. Effect of binding strength of single-well potential on a) the maximum pulling force allowing attachment up to 20
seconds, and b) the growth velocity at zero external load.

4. DISCUSSION

Our main findings are the following:

4.1. Thermodynamically consistent on- and off-rates

The ratio of the on- and off-rates depends on the details of the interaction potential with the obstacle on a nanometer
scale (see Eq. 15). This implies that even at zero force, a deep well in the interaction potential can dramatically
slow both polymerization and depolymerization. Polymerization is slowed because of the high-energy configuration
assumed by the filament tip after addition of a new subunit, while depolymerization is slowed because removal of
an existing subunit also leaves the filament in a high-energy configuration. Eq. 15 is automatically satisfied by
calculations implementing the BR approximation that kon(r) = 0 when the filament tip is within a distance δ of a
hard obstacle with no attractive well, but kon(r) = k0on beyond that distance.

Not all single-filament calculations in the literature treating obstacle motion explicitly have satisfied the constraint
of Eq. 15. We note that Eq. 15 does not apply to calculations such as as those of Refs. [20], which ignored
depolymerization. Ref. [22] assumed a variation of the on-rate resulting from the interaction potential with the
obstacle, but it did not appear to satisfy Eq. 15. On the other hand, Ref. [27] used a relationship very similar to Eq.
15, in which the exponential factor corresponded to the energy difference between binding in two different positions
in a double-well potential.

Some works treating force generation by actin networks stochastically have also treated smoothly varying tip-
obstacle interactions [4, 46–51]. In all of these works, actin polymerization was slowed by the obstacle. But none of
the treatments satisfies Eq. 15 exactly. Ref. [46] used an approximate version in which the U(r) term in the exponential
of Eq. 15 is ignored. In Refs. [47] and [48], the mechanical energy, including the membrane deformation/position
and states of actin filament bending, was minimized after each polymerization event. To evaluate the on-rate, the
energy was reminimized with a hypothetical next subunit in place. The resulting energy difference ∆U was used in
a Boltzmann factor slowing the polymerization. This approach is similar in spirit to Eq. 15, but differs in that the
energy is minimized in calculating ∆U . In the context of the systems treated here, this would correspond to placing
the obstacle, before and after the addition of the new subunit, at the minimum of the potential U(r) + F · r. Then
∆U = Fδ‖, giving a slowing of the growth velocity of a single filament by a factor of exp (−Fδ‖/kBT ). As found
above, this is correct provided there is no attractive well in the potential.

Refs. [4, 49–51] used criteria based on force rather than energy difference. In such approaches, even plausible
assumptions regarding the slowing of actin polymerization can lead to substantial errors in the stall force. For
example, one can assume [4] that a filament tip experiences a linear force F (r) = −kcrθ(−r) when in contact with
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the obstacle, and that this force slows polymerization according to

kon(r) = k0on exp [−F (r)δ‖/kBT ], (28)

while koff (r) = k0off is not affected. This corresponds to applying the thermodynamic result Eq. 16, for the averaged

rate k̄on, to the instantaneous rate kon(r). The force-velocity relation can be obtained exactly for this model in the
limit Dobst →∞. Using the same analysis as used to derive Eq. 18, but incorporating Eq. 28, we obtain

k̄on = (k0on/Z)

∫ ∞
−∞

exp [−F (r)δ‖/kBT ] exp {−[U(r) + Fext · r]/kBT}dr

= (k0on/Z)

[√
πkBT

2kc
exp {[Fext − kcδ‖]2/2kckBT}{1 + erf[(Fext − kcδ‖)/

√
(2kckBT )]}+ kBT/Fext

]
(29)

where U(r) = kcθ(−r)r2/2 and

Z =

√
πkBT

2kc
exp (F 2

ext/2kckBT ){1 + erf(Fext/
√

(2kckBT )}+ kBT/Fext. (30)

The stall force for this model can be obtained by numerically locating the zero of k̄on − k̄off .
In the limit of large stall force (Fext−kcδ‖ >>

√
2kckBT ), Eq. 29 simplifies. The error functions in Eqs. 29 and 30

approach unity, and the 1/Fext terms can be ignored. Thus k̄on ' k0on exp (−Fextδ‖/kBT ) exp (kcδ
2
‖/2kBT ). Solving

for k̄on = k̄off we obtain the incorrect result

Fstall = (kBT/δ‖) ln (k0on/k
0
off ) + kcδ‖/2, (31)

which exceeds the thermodynamically derived stall force by the amount kcδ‖/2. Numerically, both from Eq. 29
and from our stochastic simulations with a large but finite Dobst, we find comparable overestimates of the stall force
in other parameter ranges. The overestimates are equally large in parameter ranges where filament-tip fluctuations
dominate. For the spring constant assumed in Ref. [4] we obtain a stall force of over 50 pN for a filament at 45◦

incidence, several times too high given the assumed actin concentration. We emphasize that these results hold only
when thermal motion of the obstacle or filament tip is explicitly treated rather than being averaged out.

Why does Eq. 29, which appears to correctly implement the force dependence of actin polymerization by equating
the instantaneous rates to the known results (Eq. 16) for the average rates, fail to obtain the correct stall force?
The reason is that although the force F (t) acting on the tip of a filament polymerizing under an average force Fext
satisfies F̄ = Fext, the fluctuating motion of the obstacle or the filament tip causes the tip to experience a range of
forces described by a distribution p(F ), so that

k̄on = k0on

∫ ∞
−∞

p(F ) exp (−Fδ‖/kBT )dF (32)

Since the exponential is convex upwards (the second derivative of exp (−Fδ‖/kBT ) is positive), k̄on will exceed kon(F̄ ),

leading to an overestimate of the stall force. If one assumes that p(F ) ∝ exp [(F − F̄ )2/2∆F 2] where ∆F 2 is the
variance of F , Eq. 32 shows that k̄on = k0on exp [−F̄ δ‖/kBT ] exp [δ2‖∆F

2/2(kBT )2]. Setting this equal to k0off , one

finds the following overestimate of the stall force:

Fstall = (kBT/δ‖) ln (k0on/k
0
off ) + ∆F 2δ‖/2kBT. (33)

For force fluctuations induced by thermal motion in a harmonic potential, ∆F 2 = ∆r2k2c = kckBT , and Eq. 33 is
identical to Eq. 31. On the other hand, if thermal motions of the filament tip or obstacle come from non-thermal
sources, as in Refs. [49–51], force fluctuations could instead result from the geometrical constraints imposed on
the individual filaments by the network structure. Then one might expect the bending-induced fluctuation of a
given filament tip position to be . δ‖; larger deformations would likely be evened out by the differences in growth
velocity. As described in Appendix A, one can estimate the spring constant of a filament in the direction of motion as
kbend ' 0.5 pN

nm . Then at 45◦ incidence ∆F ∼ kbendδ‖ . 0.92 pN, and the overestimate in Eq. 33 is . 0.3 pN, much
smaller than for thermal force fluctuations.
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4.2. Very rapid decay of force-velocity relation for some potentials

For relatively shallow attractive potentials the velocity can be a substantial fraction of the free-filament velocity at
zero force, but decay rapidly with opposing force. This finding may help explain the results of experiments [52] studying
small number of actin filaments growing against a hard wall, if the filament tips are weakly bound to the wall. The
filaments propelled acrosomes attached to beads held in an optical trap (backwards). The filaments/acrosome/bead
are moving rather than the obstacle, so as discussed above it is their motion that is considered. The growth velocity
was found to drop off much more rapidly than expected from the BR model at forces of a few tenths of a pN per
filament, especially at a 2µM actin concentration. We cannot treat their many-filament system within our model, so
we consider a single filament growing against an obstacle with a force of a few tenths of a pN . Because the bead is
trapped in potential well of spring constant kc ' 0.008pN/nm, the “free” contribution Zfree is different from that
calculated in Sec. 3.2. The energy of the bead in the potential well, displaced a distance r from the minimum, is
kcr

2/2. Thus Zfree =
∫∞
0

exp (−Fext · r) exp (−kcr2/2)dr. Provided that Fext ≥
√
kckBT = 0.2pN , the reduction in

Zfree from Fext will exceed that from kc, and it is reasonable to take Zfree = kBT/Fext as in Sec. 3.2. Then Eq. 27
applies, and a force of few tenths of a pN per filament could reduce the velocity by a large factor if Zwell ≥ 15nm.
The validity of Eq. 27 requires that η = v0Zwell/Dobst << 1. In Ref. [52], v0 was less than 20nm/s, so a diffusion
coefficient ≥ 600nm2/s would be adequate.

Experiments on whole cells [19, 53] have shown that the growth velocity of lamellipodia drops very rapidly with
opposing force. The velocity decay found here may contribute to this effect, but only if the filaments are sufficiently
long to allow thermal fluctuations greater than Zfree = kBT/Fext away from the obstacle. In this system, mechanical
factors may be the dominant effect [19].

4.3. Upper bound on growth rate

Provided that koff (r) ≤ k0off and Dobst is large, no type of filament-obstacle interaction potential leads to poly-
merization faster than a hard wall; for monotonically decaying force fields the force-velocity relation is very near that
for a hard wall, which is described well by the BR prediction. These results follow from Eq. 16 and are confirmed
by the simulations. For intermediate values of Dobst ∼ k0onδ2‖, we find that softer potentials accelerate growth slightly

(see Figure B.1).
But when Dobst is very small, a soft potential can accelerate polymerization substantially. This was found in the

simulations of [22], where a soft obstacle accelerated polymerization by about 100% using Dobst = 0.0016k0onδ
2 for a

filament growing at perpendicular incidence so that δ‖ = δ. To understand this physically, consider the case of zero
external force. In the limit of a slowly varying potential, it is legitimate to ignore the randomness in polymerization
and treat filament growth as occurring at a constant velocity. As described in Section 3.2, obstacle drag can then be
included via an effective force Feff = kBTvobst/Dobst [9]. After a sufficiently long time, the probability distribution
P (r) will settle into a steady-state form P (r) = exp {−[U(r) + Feff · r]/kBT}/Z, where Z is the corresponding
partition function. Then following the derivation of Eq. 18, and taking f(r) = 1 in Eq. 17 so that k̄off = k0off ,

k̄on = (k0on/Z) exp (−Feffδ/kBT )

∫ ∞
−∞

exp [−U(r)/kBT ] exp [−Feff · r/kBT ]dr

= exp (−Feffδ/kBT )k0on (34)

Since vobst = (k̄on − k0off )δ, it follows that vobst = (Dobstx/δ − k0offδ), where x satisfies the transcendental equation

x/k̂on = exp (−x) exp (k̂off ) and we define k̂on,off = (k0on,offδ
2/Dobst). Therefore

vobst = (Dobst/δ){W [k̂on exp (k̂off )]− k̂off} (35)

' (Dobst/δ) ln (k̂on/k̂off ) (k̂on >> 1, k̂off >> ln (k̂on)) (36)

' (Dobst/δ)[ln (k̂on)− ln (ln k̂on)] (k̂on >> 1, k̂off → 0) (37)

where the Lambert function W is the inverse of the function x exp (x). We have used the asymptotic expansion
W (x) ' ln (x)− ln [ln (x)], valid when x is large (very slow diffusion).

In cases of very slow obstacle diffusion, the simplified form Eq. 36 will hold if the ratio between the on- and off-rates
is moderate. The physical content of this result is clarified by considering the work done in moving the obstacle. The
work done per added subunit is (vobstkBT/Dobst)δ where the first term is the force according to the Einstein relation.
From Eq. 36 this equals kBT ln (k0on/k

0
off ), which is the free energy released per added subunit [44]. Thus the process



Biopolymer Force-Velocity Relation 15

is 100% efficient in that all of the free energy of polymerization is used to push the obstacle against the drag force.
If (k0on/k

0
off ) is large, the velocity in Eq. 36 could exceed the hard-wall limit 2Dobst/δ [9] substantially. For example,

for a free-actin concentration of 10µM , our parameters would predict that (k0on/k
0
off ) ' 100, and the logarithm is

greater than 4. Then the hard-wall limit would be exceeded by more than a factor of 2.

The simulations of Ref. [22] treated the case k̂on = 6.67 × 102 and k̂off = 0. In this case, Eq. 35 gives vobst =
4.9Dobst/δ, while Eq. 37 gives vobst = 4.6Dobst/δ, both about a factor of two above the hard-wall limit and comparable
with the value of 4.4Dobst/δ found in Ref. [22]. This suggests that the analytic theory captures the key effects in
these simulations.

4.4. Requirements for coexistence of strong pulling forces and polymerization

Sustaining strong pulling forces at a significant rate of polymerization requires a deep, broad well in the filament-
obstacle interaction. Actin filaments polymerizing under pulling force may have several functions. They could act
as parts of force sensors, or as mechanical absorbers for rapidly generated forces from myosin motors [2]. It is also
believed that actin filaments in the central region of endocytic sites in budding yeast exert pulling forces on the
membrane [4, 6], and it is important to know if filaments can polymerize sufficiently quickly to generate a gel in
the pulling region that can sustain the large stresses generated by the process. The behavior of actin filaments
under pulling forces has been addressed by thermodynamic arguments [54] as well as kinetic models [2, 55] and
simulations [27, 56]. Most of the calculations have predicted acceleration of polymerization by pulling force, but Ref.
[56] found a competition between different conformational factors that could either slow or speed polymerization.
Experimental studies [2, 55, 57, 58] have shown that polymerization under pulling forces of several pN is possible
if actin filaments are linked to the obstacle via formins. They suggest, on the whole, that pulling force accelerates
polymerization if rotational constraints are absent. These models have included effects not explicitly included here,
such as conformational changes of formins at the actin filament tip. Our finding that for narrow wells polymerization
is incompatible with the ability to sustain large forces implies that in the systems where this phenomenon occurs, the
interaction between the actin filament and the obstacle must have a broad minimum. Our models are too simple to
quantitatively describe the three-dimensional geometry of a formin-tipped actin filament, but the broad minimum in
our “double-well” potential may approximately mimic the conformational flexibility that appears to be at the heart
of the phenomenon.

4.5. Impact of key approximations

The calculations described here make several major approximations, including the treatment of just a single filament,
the modeling of the filament-obstacle interaction via simple potential energy functions, the neglect of hydrolysis
effects, and the use of single filament length to calculate fluctuations. Hydrolysis of actin filaments is a two-step
process involving cleavage of the phosphate bond and subsequent release of the phosphate group. Most of the effects
of hydrolysis on polymerization/depolymerization dynamics occur only after the phosphate-release step. In in vitro
experiments, phosphate release is slow, generally requiring several minutes or more to occur. Therefore neglect of
hydrolysis effects may be valid for a broad range of in vitro experiments. Phosphate release in vivo is faster, generally
believed to occur over a time scale of tens of seconds. Application of our results to in vivo studies will be limited to
phenomena where the time for a new subunit to add is substantially less than the time scale of phosphate release.
We expect the use of a single filament length to be valid provided the filaments are long enough that the filament-tip
fluctuations exceed the subunit size, and short enough that the filament do not buckle. In this regime the filament-tip
fluctuations are rapid enough to allow monomer intercalation even if obstacle diffusion is slow. This gives a large
window of filament lengths between roughly 40 nm (derived from kbend in Sec. 2.3) and the buckling length, which for
a force of 1 pN is about 500 nm. In practice we find little difference between our simulation results with and without
tip fluctuations, again suggesting that the precise value of the filament length is not important.

The treatment of the filament bending energy via Eq. 8, and the corresponding filament-obstacle forces, are also
approximate. They have been treated more completely in Ref. [34]. To explore the validity of our approximation, we
analyze the average force on the obstacle obtained by the model for a single filament in the limit of a fixed obstacle
and a hard-wall filament-obstacle interaction, in the absence of polymerization. As in Ref. [34], we define ζ as the
distance from the base of the filament to the obstacle. The energy function that gives the bending force in Eq. 8
is Ebend = kbend · z2tip/2. The possible values of ztip are constrained by i) the hard obstacle, which requires that
ztip < ζ−L cos θ; ii) the fact that the filament cannot extend more than a distance L in the z-direction, which implies
that ztip < L(1−cos θ); and iii) our assumption that the filament tip cannot be below the filament base, which implies
that ztip > −L cos θ. We define zmax as the smaller of ζ −L cos θ and L(1− cos θ). In the absence of polymerization,
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the system properties can be calculated using equilibrium thermodynamics. We thus obtain the force from the free
energy G via the partition function:

Z = =

∫ zmax

−L cos θ

exp (−kbendz2tip/2kBT )dztip

= (const)× [erf(zmax/δz0) + erf(L cos θ/δz0)] (38)

where erf is the error function and δz0 =
√

2kBT/kbend. The corresponding time-averaged force exerted by the
filament on the obstacle is (for ζ < L)

fbend = −∂G
∂ζ

= kBT
∂ lnZ

∂ζ

=
kBT

δz0

exp [−(ζ − L cos θ)2/δz20 ]

[erf(zmax/δz0) + erf(L cos θ/δz0)]
, (39)

where we have used G = −kBT lnZ. This force has a form quite similar to the force plots of Ref. [34], slowly rising
from 0 as ζ drops from L, then increasing fairly linearly after ζ drops below the contact point L cos θ. The approach
used here is certainly not quantitatively accurate, but reproduces the key physical features of the more complete
calculations.

To make direct contact with either in vitro or in vivo experiments will require more complex calculations for many-
filament systems. The present results can help make progress toward this goal by informing multiscale calculations
such as those of Ref. [10, 12–19, 28–32, 59, 60], which treat force generation by multifilament systems using a variety of
approximations to include the single-filament force-velocity relation. The present results will provide useful guidance,
especially in cases where different types of filament-obstacle interactions are present in the same system.

Acknowledgments

This work was supported by the National Institute of General Medical Sciences (https://www.nigms.nih.gov) under
Grant R01 GM107667 and the National Science Foundation (https:// www.nsf.gov) under Grant Agreement CMMI:15-
458571.

1. Bieling, P., S. D. Hansen, O. Akin, C. C. Hayden, D. A. Fletcher, R. D. Mullins, et al., 2017. WH2 and proline-rich domains
of WASP-family proteins collaborate to accelerate actin filament elongation. The EMBO journal e201797039.

2. Yu, M., X. Yuan, C. Lu, S. Le, R. Kawamura, A. K. Efremov, Z. Zhao, M. M. Kozlov, M. Sheetz, A. Bershadsky, et al.,
2017. mDia1 senses both force and torque during F-actin filament polymerization. Nature communications 8:1650.

3. Kaksonen, M., Y. Sun, and D. G. Drubin, 2003. A pathway for association of receptors, adaptors, and actin during endocytic
internalization. Cell 115:475–487.

4. Mund, M., J. A. van der Beek, J. Deschamps, S. Dmitrieff, J. L. Monster, A. Picco, F. Nédélec, M. Kaksonen, and J. Ries,
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APPENDIX

The effect of the filament-obstacle interaction on the force-velocity relation of a growing biopolymer

F. Motahari and A. E. Carlsson

Here we show results not including filament-tip fluctuations, and results incorporating slower diffusion.

Appendix A: Orthogonal Incidence without Filament-tip Fluctuations

When the filament grows orthogonal to the obstacle surface, the component of the filament-tip fluctuations along
the direction of motion is greatly reduced. Therefore we ignore these fluctuations (see Fig A.1). Figure A.2 shows
the resulting force-velocity relation for different pusher and puller potentials described in Figure 2. Notice that the
stall force is smaller in this case because δ cos (θ) in Eq. 11 is replaced by δ. The BR relation remains an upper bound
for the growth velocity, and the force-velocity relations for both the hard wall and soft wall are very similar to the
BR relation. The 5kBT well and spike potentials continue to have a zero-force velocity that is a substantial fraction
of the free-filament velocity, with velocities decaying more rapidly than the BR prediction. In potentials with deep
wells, the polymerization is slowed by roughly the same amount as in our baseline results (Figure 5). The tradeoff
between polymerization rate and maximum sustainable pulling force is also preserved.

Figure A.1. Schematic of model of filament at orthogonal orientation. Filament tip fluctuations are ignored in this case.

Appendix B: Effect of Slow Obstacle Diffusion

We have repeated the force-velocity relations for the oblique filament case (45◦ orientation, including filament-
tip fluctuations) with a smaller diffusion coefficient to see which findings in the main text depend strongly on the
assumption of rapid diffusion. Figure B.1 shows results for a diffusion coefficient of D =21 nm/s2. For this value of
D, the dimensionless parameter characterizing diffusion δ2kon/2Dobst has the value unity, so the effects of diffusion
should be substantial. The polymerization rate for the more rapidly growing potentials - including the “Hard Wall”,
the “Soft Wall”, and the “Puller” with 5 kBT well depth, is slowed by about a factor of 2. As in the main text, the
completely repulsive continuous potentials have force-velocity relations similar to the hard wall. However, the sharp
drop in velocity for the 5kBT potentials is eliminated, as expected from the analysis of Sec. 3.2 showing that this
effect depends on rapid diffusion. The effect on the other force-velocity relations for deeper wells is smaller. The
general shape of the force-velocity is unchanged, and there is no effect on the ordering of the curves.
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(a) (b)

(c) (d)

Figure A.2. Simulated force-velocity relation for several different forms of filament-obstacle interaction potential, for an
orthogonal filament without tip fluctuations. Error bars are smaller than the symbols, except indicated; and they are calculated
by finding the standard deviation of the mean for growth velocity, from 20 different simulations of 20 seconds. The dashed line
is the prediction of the BR model at large diffusion constant values for obstacle. Data points for pullers are shown out to forces
where they detach from the obstacle. Frames (a) and (b) are for potentials in Figure 2a, while (c) and (d) are for potentials in

Figure 2b.

As Figure B.1 indicates, the effect of using a softer wall on the growth velocity is minimal even when diffusion is
slow. For a still softer wall with decay coefficient κ1 = 0.2 nm−1 (data not shown), the acceleration is about 10%.
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Figure B.1. Effect of reduced diffusion coefficient on force-velocity relation of growing actin filaments. Diffusion coefficient
of D =21 nm/s2. Force field parameters are as in Figure 5.


