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Designing strong and robust bio-inspired structures requires an understanding of how function8

arises from the architecture and geometry of materials found in nature. We draw from trabecular9

bone, a lightweight bone tissue that exhibits a complex, anisotropic microarchitecture, to generate10

networked structures using multi-objective topology optimization. Starting from an identical vol-11

ume, we generate multiple different models by varying the objective weights for compliance, surface12

area, and stability. We examine the relative effects of these objectives on how resultant models13

respond to simulated mechanical loading and element failure. We adapt a network-based method14

developed initially in the context of modeling trabecular bone to describe the topology-optimized15

structures with a graph theoretical framework, and we use community detection to characterize loca-16

tions of fracture. This complementary combination of computational methods can provide valuable17

insights into the strength of bio-inspired structures and mechanisms of fracture.18

I. INTRODUCTION19

Understanding the relationships between architecture20

and function in biological materials is key to engineer-21

ing bio-inspired structures for strength and resilience.22

Materials found in nature must be spatially arranged to23

withstand repeated loading while facilitating various bi-24

ological functions. In this paper, we use multi-objective25

topology optimization, finite element modeling, and net-26

work science methods to generate and analyze a range of27

structures with varying emphases placed on maximizing28

stiffness, perimeter, and stability. We explore how dif-29

ferently weighting these objectives influences robustness30

and resistance of these structures to failure.31

The bio-inspired structures we develop in this paper32

are motivated by the challenge of reverse-engineering tra-33

becular bone, a type of bone tissue that consists of an34

interconnected network of small struts called trabeculae.35

Its porous structure allows it to be lightweight, though36

it is weaker than the other type of bone tissue, cortical37

bone, which is hard, dense, and shell-like. Trabecular38

bone has roughly ten times the surface area of cortical39

bone. The pores in trabecular bone hold bone marrow,40

nerves, and blood vessels, and the increased surface area41

facilitates bone resorption and remodeling. This trade-42

off between the pore distribution and strength drives our43

choice of objectives in constructing structures guided by44

the emergent properties of vertebral trabecular bone.45

Continuum topology optimization is a method that,46

given a set of objectives and constraints, optimizes the47

distribution of material within a domain [1]. We are mo-48

tivated to use topology optimization to generate bone-49

inspired structures by the premise of Wolff’s law [2].50

Wolff’s law states that, over time, trabecular bone re-51
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models its architecture to adapt to the loads it is reg-52

ularly subjected to. That is, it will ‘self-optimize’ it-53

self into a structure that is more stiff along the primary54

loading directions. Analogously, multi-objective topol-55

ogy optimization starts from an initial density distribu-56

tion, applies specified loads that in our case represent57

uniaxial loading in vertebrae, and minimizes a weighted58

sum of objective functions to achieve a desired architec-59

ture. Here, the objective functions represent compliance60

(inverse stiffness), perimeter (the 2-D analog of surface61

area), and stability. Conceptually speaking, we assume62

that real bone is the outcome of a biological optimiza-63

tion procedure, but the quantities being optimized are64

unknown. While the topology-optimized structures are65

not intended to mimic bone, in isolating material prop-66

erties associated with bone and varying the weights of67

corresponding objective functions, we examine how the68

relative weighting impacts overall toughness and robust-69

ness to failure.70

The topology-optimized structures are disordered pla-71

nar networks. We extract from them graph models con-72

sisting of edges representing struts (trabeculae), joined73

together at nodes that correspond to the branch points74

where the struts meet. This allows us to extract topo-75

logical metrics that quantify the architecture of the net-76

work. This network-based method adapts the modeling77

approach developed by Mondal et al. [3] which modeled78

real human trabecular bone from micro-CT images.79

We analyze the mechanical response of the topology-80

optimized networks by converting the networks to finite81

element models in which each edge is represented by a82

beam. We simulate compressive loading and failure in83

the beam-element models, and we investigate mechan-84

ics at scales ranging from individual beams to the en-85

tire network. In combining these computational meth-86

ods, many of which have seen limited application to tra-87

becular bone and bone-inspired materials, we relate the88

mechanics of bone-like structures to their architecture89
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and identify how topology informs fracture. Our results90

inform the development and design of bio-inspired net-91

worked structures that are robust and strong.92

II. MULTI-OBJECTIVE TOPOLOGY93

OPTIMIZATION94

The topology optimization process begins by assum-95

ing an initial two-dimensional density distribution on a96

discretized uniform grid of elements, then iteratively 1)97

performs a finite element analysis step that simulates me-98

chanical deformation, 2) carries out a gradient-based op-99

timization step that updates the density distribution, and100

3) evaluates the objective until convergence [4]. Three101

objectives were used: compliance (inverse stiffness) min-102

imization, perimeter maximization, and stability (critical103

buckling load) maximization. The objective functions are104

combined as a weighted sum to form a single objective105

function that is evaluated in the iterative optimization106

procedure. Adjusting the weights of each objective func-107

tion can result in highly variable topologies.108

Each element has a density that can take on any value109

between 0 (void) and 1 (solid), but intermediate values110

are penalized using the solid isotropic material with pe-111

nalization model (SIMP) [1] to ensure that the result112

contains binary density values. We include an area con-113

straint in the optimization problem so that the total area114

of each generated structure is effectively constant. While115

the topology optimization method developed here is lim-116

ited to 2-dimensional structures, it can be generalized117

to three dimensions, albeit with a higher computational118

cost.119

The most basic topology optimization problem is that
of minimizing compliance (weights of perimeter and sta-
bility functions are set to zero) with an area constraint.
The topology optimization problem for minimization of
compliance C, with a constraint on the area fraction, is
conventionally defined as

min
ρ

C = uTKu, (1)

s.t.
1

AΩ

N∑
e=1

ρeAe ≤ A,

where K is the material stiffness matrix, u is the vector120

of displacements, AΩ is the total area of the domain, ρe is121

the density of element e, Ae is the area of each element,122

and A is a specified total area fraction. Here, u is related123

to the vector of applied loads, f , through the relation124

Ku = f . (2)

Compliance is minimized, or equivalently, stiffness maxi-125

mized, to minimize the displacement undergone by the126

structure in response to loading. Minimizing compli-127

ance alone produces a structure primarily consisting of128

thick rods aligned with the principal direction of loading129

(Fig. 1A). Hence, an anisotropic architecture can give130

rise to increased stiffness when the elements (trabeculae)131

are preferentially aligned with the loading direction.132

However, trabecular bone does not consist of thick par-133

allel rods. The surface of trabecular bone is necessary134

for its remodeling cycle, which requires contact with sur-135

rounding bone marrow for new osteoclasts to form [5].136

Bone is resorbed by osteoclasts, with new bone deposited137

on the surface by osteoblasts. Trabecular bone also has a138

much higher surface area compared to cortical bone and139

consequently a large number of pores that hold marrow,140

nerves, and blood vessels.141

Reverse-engineering trabecular bone to produce a142

structure of similar flexibility and lightness will require143

taking perimeter into account as in the objective func-144

tion. Here we define P , the perimeter (2-D) or surface145

area (3-D) of the structure, in a dimension-agnostic form146

as147

max
ρ

P =

∫
∆ρ dΩ, (3)

where ρ is the material density or volume at any point148

in the structure. Numerically, this translates to a sum149

of density changes across all element boundaries. Setting150

the perimeter function weight to a non-zero value and op-151

timizing for both compliance and perimeter, while keep-152

ing the same volume, results in a structure with a greater153

number of thinner struts, rather than fewer, thicker ones.154

Most of these thin struts are aligned in the principal load-155

ing direction, while a few are transverse.156

Previous studies applying topology optimization to157

explore trabecular bone structure have considered only158

compliance as an objective function and included a159

perimeter constraint [6, 7]. However, depending on the160

weights used, including only compliance (and perimeter)161

objective functions can result in an unstable model, such162

as one that consists of long, thin vertical rods. The sta-163

bility of this model is represented by its critical buckling164

load, Pcrit = maxi=1,...,Ndof
Pi. The objective in this case165

is to maximize the critical buckling load, and hence the166

stability, defined by the generalized eigenvalue equation167 [
G(u)− 1

Pi
K

]
Φi = 0, i = 1, . . . , Ndof , (4)

where G(u) is the geometric stiffness matrix and Φi is
the eigenvector associated with the ith buckling load. To
avoid degeneracy of the eigenvalues 1/Pi, which can re-
sult in poor or incorrect convergence of the optimizer,
we apply a bound formulation [1] such that the stability
optimization problem is written as

min
ρ

β, (5)

s.t. αi
(

1

Pi

)
≤ β, i = 1, . . . , Ndof ,[

G(u)− 1

Pi
K

]
Φi = 0, i = 1, . . . , Ndof ,

where α is a number slightly less than 1, e.g. 0.95, which168

ensures that each eigenvalue is slightly larger than the169
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next. Note that this bound formulation will only actively170

impact eigenvalues near one end of the eigenvalue spec-171

trum and eigenvalues in the interior or near the other end172

of the spectrum will inherently satisfy the constraint. As173

a result, we can safely truncate the series from Ndof (the174

total number of degrees of freedom in the system) terms175

to a much smaller number such as n = 10. Optimizing176

for stability as well as compliance and perimeter further177

increases the number of struts as well as those oriented178

at a nonzero angle to the primary loading (vertical) di-179

rection.180

The multiple objectives are combined as a weighted
sum, where the weights can be varied to change the rel-
ative importance of each objective [8]:

min
ρ

w1C0 − w2P0 + w3β0, (6)

s.t. αi
(

1

Pi

)
≤ β, i = 1, . . . , Ndof ,[

G(u)− 1

Pi
K

]
Φi = 0, i = 1, . . . , Ndof ,

1

AΩ

N∑
e=1

ρeAe,

3∑
i=1

wi = 1,

where wi are the respective weights on each of the objec-181

tive functions C0, P0, and β0, which refer to normalized182

compliance, perimeter, and stability, respectively (Eqs.183

1, 3, and 6). Here we normalize by independently opti-184

mizing for each of the objectives separately and then eval-185

uating each objective function on each optimized struc-186

ture. The functions are then normalized relative to the187

maximum and minimum values across each of the struc-188

tures.189

Note that the purpose of normalization is to make the190

magnitude of each function more consistent. As a re-191

sult, the actual values of the function weights for one192

system are somewhat arbitrary in that they depend on193

the normalization procedure used. As such, the weights194

are only truly meaningful when compared relative to each195

other and/or across different optimization problems. It is196

possible, once the optimization is completed, to compute197

the actual contribution of each objective to the aggregate198

cost function; examples are included in the Supplemental199

Material.200

To load the material in the design domain we apply201

an equal compressive force to the top and bottom of the202

domain to simulate the loading condition of trabecular203

bone. Weak springs are also attached to the nodes at204

the bottom of the domain to eliminate rigid body modes205

without significantly affecting structural response. As206

the loading conditions and design domain are perfectly207

symmetric, we also enforce symmetry of the design to208

prevent small numerical errors from introducing arbitrary209

asymmetry into the design. While true trabecular bone210

is not symmetric, this asymmetry can be attributed to211
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C50S50

C92P08

C99999P00001

C88P01S11

C85P05S10

C65S35
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Perimeter
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FIG. 1. Example 2-D topology-optimized structures gener-
ated by varying objective weights. The horizontal bar plot in
the lower right shows the relative weights assigned to the com-
pliance, perimeter, and stability objectives for each image.
Weights sum to one. Panels A-G: C99999P00001, C99P01,
C92P08, C50S50, C65S35, C85P05S10, and C88P01S11, re-
spectively. A total of 12 structures were generated for each of
the seven parameter sets shown here; all structures for each
parameter set are shown in the Supplemental Material.

more complex loading patterns and minor material de-212

fects within the bone, the effects of which are not con-213

sidered here.214

We generate topology-optimized structures for a total215

of seven different sets of objective weights. One example216

structure for each parameter set is shown in Fig. 1; all217

remaining structures are included in the Supplemental218

Material. Each set contains twelve different structures.219

Each structure is generated from the same initial den-220

sity distribution, with a small perturbation added to en-221

sure that each optimization with the same weights will222

converge to a different structure. We label each set of223

structures with the letters C, P, and/or S, representing224

compliance, perimeter, and stability objectives, respec-225

tively, followed by the corresponding weight (times 100)226

of the objective function used to generate the structures.227

Fig. 1A is an example structure from the set labeled228

C99999P00001, which is representative of optimizing all229

but entirely for compliance. The weight of the compli-230

ance function is 0.99999, rather than 1 even. If the com-231

pliance weight were 1, for some initial conditions, it is232

possible that the result would be a contiguous piece of233

material with no porosity. Hence, we assign a very small234

weight of 0.00001 to the perimeter objective; combined235

with the different initial conditions, this promotes varia-236

tion in topology. Stability is not considered in this case.237
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Figs. 1B-C, labeled C99P01 and C92P08, respectively,238

are generated by including weights for both compliance239

and perimeter, resulting in an increased number of thin-240

ner struts and consequently a greater number of pores.241

Figs. 1D-E, labeled C50S50 and C65S35, respectively,242

are generated by including weights for compliance and243

stability, but omitting the perimeter objective. The re-244

sulting structures consist of much thicker struts that are245

largely oriented at an angle to the vertical. The struc-246

tures are also noticeably concave at each side.247

Figs. 1F-G, labeled C85P05S10 and C88P01S11, re-248

spectively, are generated from combining all three objec-249

tives. These structures contain more struts and small250

pores than the other sets, with a few longer vertical251

columns joined by a number of shorter angled elements.252

III. NETWORK MODELING AND253

MECHANICAL SIMULATION254

A. Skeletonization255

From topology-optimized images, we generate graph256

models, following [3], that allow us to utilize exist-257

ing graph theoretical methods to efficiently analyze the258

topology of networked structures. Converting a topology-259

optimized structure to a graph begins with skeletoniza-260

tion: the “skeleton” of each image is determined by pro-261

gressively thinning the image until its medial axis, a one-262

pixel-wide line running through the center of the net-263

work, is found. This medial axis, or skeleton, is then264

converted to a graph by setting nodes at branch points265

where 3 or more struts meet, with edges corresponding266

to struts themselves. The edges are weighted accord-267

ing to the respective average thicknesses of corresponding268

struts. Skeletonization and graph conversion are accom-269

plished using the Skeleton3D and Skel2Graph toolboxes270

for MATLAB [9]. Strut thicknesses are computed using271

the BoneJ plug-in [10] for ImageJ (National Institutes of272

Health, Bethesda, MD).273

B. Beam element models274

To simulate mechanical loading and deformation, we275

translate these graphs into streamlined finite element276

models. Rather than meshing the trabecular model, we277

generate beam-element models from the graphs, where278

each link is represented by a Timoshenko beam with a279

uniform thickness corresponding to its weight (Fig. 2).280

Nodes in the beam-element model correspond directly to281

nodes in the network. The beam material is defined by282

an elastic modulus of 10 GPa and a Poisson ratio of 0.16,283

following similar values as reported in the literature for284

bone [11, 12].285

Mechanical loading is simulated with Abaqus FEA286

(Dassault Systèmes, Vélizy-Villacoublay, France). The287

beam-element model is compressed from the top and bot-288

tom, representing loading along the superior-inferior di-289

rection, the primary loading axis in vertebrae. The von290

Mises stress at each link is computed at each time step,291

along with the force and displacement of each node.292

We solve the models in the linear-elastic regime, where293

the stress is linear as a function of strain. We also model294

failure by setting von Mises stress as a failure criterion;295

when the stress in a beam reaches the critical stress value,296

the beam is said to have failed and is removed from the297

simulation. The system continues to be loaded even as298

beams fail and are removed. We arbitrarily set the failure299

criterion to be a von Mises stress of 0.5 MPa; as the300

response is linear, this value can be scaled up or down301

with no qualitative change in the overall behavior.302

We note that the skeletonization and network conver-303

sion process is limited by its inability to fully capture304

non-uniform trabecular thicknesses or increased bulk at305

branch points (nodes). This tradeoff, however, greatly306

simplifies modeling and provides a streamlined approach307

to relating topology with mechanics. To improve the res-308

olution of trabecular thickness in beams with nonuniform309

widths, we divide longer beams into five segments, such310

that each segment can have a different thickness.311

C. Bulk force-displacement response312

Force-displacement curves for the seven beam-element313

models generated from the topology-optimized structures314

(Fig. 1) are compared in Fig. 3. We model the structures315

in the linear-elastic regime with a von Mises stress fail-316

ure criterion. The force-displacement curves are hence317

linear until the initialization of beam failure, whereupon318

they exhibit large decreases until reaching zero, at which319

point the structure is said to have failed completely. As320

the first few beams fail, the system might be able to321

redistribute the load (and the force increases) until suffi-322

cient beams have failed, resulting in an overall softening323

trend where the force drops until it reaches zero. The324

force-displacement response after reaching zero exhibits325

fluctuations that are artifacts of wave propagation in the326

simulation and are not considered in the analysis of the327

results. The curves in Fig. 3 are truncated where the re-328

action force reaches zero, and the full force-displacement329

curves for each model are included in the Supplemental330

Material.331

On average, stiffness (the slope of the force-332

displacement curve in the initial linear regime) is greatest333

for C99999P00001, the parameter set for which compli-334

ance minimization was most highly weighted. However,335

C50S50 and C65S35 demonstrate slightly higher average336

stiffness than C99P01 and C92P08, which have greater337

compliance minimization weights. The models with low-338

est stiffness are C85P05S10 and C88P01S11.339

We use two additional metrics to quantify mechanical340

response: the peak reaction force typically attained at341

the onset of element failure, and the maximum displace-342
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FIG. 2. Example beam element models. Color of beams represents spatial distribution of von Mises stress in example structures
for each parameter set. Each model is shown at the timestep immediately preceding the first element failure in each respective
simulation. A: C99999P00001; B: C99P01; C: C92P08; D: C50S50; E: C65S35; F: C85P05S10; G: C88P01S11.
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FIG. 3. Force-displacement response. The force-displacement curve for each structure is indicated by a thin dashed line; the
average curve for each parameter set is shown as a thick solid line. Shaded areas represent the regions spanned by the highest
and lowest reaction force for each parameter set.

ment at total system failure (when the reaction force343

reaches 0). The peak force represents the strength of344

the model, while the maximum displacement serves as345

a proxy for the ductility of the structure as it under-346

goes fracture. A large maximum displacement could347

indicate that stresses redistribute such that the entire348

structure does not fail immediately when the first failure349

occurs. The distributions of peak force and maximum350

displacement are compared in an Ashby plot in Fig. 4A.351

The highest peak forces are given by C99999P00001, fol-352

lowed by C99P01, while the peak force for the other pa-353

rameter sets are comparable. The maximum displace-354

ment varies greatly for some parameter sets, in particu-355

lar C92P08, C65S35, C85P05S10, and C88P01S11, while356

the variation in displacement is considerably smaller for357

C99999P00001 and C50S50.358
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placement before complete failure with the peak reaction force attained. Panel B compares stiffness, the slope of the force-
displacement curve in the linear regime prior to failure, with robustness, measured as the relative change between the peak
forces of the original and perturbed models. Shaded ellipses represent 2σ confidence intervals.

We note that while C99999P00001 demonstrates the359

highest peak forces, it also has the largest variation in360

peak force. Hence, slight variations in structure across361

models, despite being generated under the same opti-362

mization criteria, can result in significantly different me-363

chanical response. To probe robustness, we perturb each364

structure slightly and subject them to the same loading365

conditions as the original models. For each model, each366

node is shifted in both x- and y- coordinates by a small367

random distance of order 1% of the length of the struc-368

ture.369

For the purposes of this paper, we define robust-370

ness as the relative change in peak force between371

the original and perturbed models: (Fpeak, original −372

Fpeak, perturbed)/Fpeak, original. Robustness is plotted373

against the stiffness of the original model in Fig. 4. In374

some cases, the perturbed model can exhibit a greater375

peak force than the original model, indicated by a pos-376

itive robustness score. We observe that C99999P00001,377

which demonstrated the greatest variation in peak force378

among original models, exhibits relatively low robust-379

ness, with large spread in stiffness values. C65S35 ex-380

hibits the greatest variation in robustness, with several381

instances in which the perturbed model was stronger382

than the original model. C50S50 shows slightly lower383

robustness than C65S35; C50S50 and C65S35 exhibit384

roughly similar stiffness values and are the second385

stiffest models after C99999P00001. C99P01, C92P08,386

C85P05S10, and C88P01S11 demonstrate similar stiff-387

ness and robustness.388

We note that the C50S50 structures lie on an approx-389

imately 45-degree line in the Ashby plot shown in Fig.390

4. This suggests that these structures achieve a delicate391

balance between strength and ductility in which both me-392

chanical markers increase hand in hand. This property393

is similar to what has been reported for some biologi-394

cal materials with superior mechanical properties such395

as mollusk shell, spider silk, and bone [13, 14].396

Our results suggest that while assigning almost all397

weight to compliance minimization can produce struc-398

tures that are on average stiffer and tougher, these struc-399

tures can be prone to small perturbations in geometry or400

objective weights. Moreover, optimizing for compliance401

and perimeter without accounting for stability can result402

in structures that are less robust and less stiff than those403

generated by assigning considerable weight to stability404

maximization. We observe that some structures in the405

C50S50 and C35S65 families exhibit positive robustness406

where geometric imperfections may lead to an increase in407

their strength and stiffness. This suggests that assigning408

significant weight to stability may enhance mechanical re-409

sponse under uncertain conditions. However, structures410

with small weights on both perimeter and stability objec-411

tives remain weaker and less robust than those for which412

perimeter is not considered.413

We also include a set of “topological” Ashby plots (Fig.414

5) that compare the robustness with network properties415

of each model: average degree, average link thickness416

(corresponding to the average link weight without nor-417

malization), modularity, and the clustering coefficient.418

Modularity is a measure that describes how easily a graph419

can be partitioned into modules, or communities, where420

nodes within a community are densely connected to each421

other but sparsely connected to other nodes in the net-422

work. Modularity is defined in Eq. 7 in the context of423

our application of community detection to characterizing424
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bustness; panel B plots the mean link thickness (in arbitrary
units); panel C plots the modularity (see Eq. 7 with null
model given in Eq. 9 and resolution parameter γ = 1.6);
and panel D plots the clustering coefficient. Shaded ellipses
represent 2σ confidence intervals.

failure. The null model used is given in Eq. 9. The clus-425

tering coefficient is defined as three times the number of426

triangles in a network (a set of three nodes connected by427

three edges) divided by the number of connected triples428

(three nodes connected by at least two edges) [15].429

We observe that C99999P00001 has the lowest average430

degree, as would be expected due to the models con-431

sisting primarily of vertical columns, while C85P05S10432

and C88P01S11, which have considerably more com-433

plicated architecture, have higher average degree. We434

observe only a weak correlation between degree and435

robustness (Pearson correlation coefficient r = 0.23,436

p = 0.04). We also observe a weak correlation be-437

tween average link thickness and robustness (r = 0.40,438

p < 0.001). While the models vary greatly in modularity,439

with C99999P00001 the least modular and C85P05S10440

and C88P01S11 the most, they do not exhibit large vari-441

ation in clustering coefficient. We do not observe sig-442

nificant (p < 0.05) correlations between robustness and443

clustering coefficient and between robustness and mod-444

ularity. Despite this, we discuss in Section III E how445

modularity and community structure can inform failure446

locations in a network.447

Set ζ0.001 σ0.9

C99999P00001 0.612 0.378
C99P01 0.421 0.397
C92P08 0.236 0.475
C50S50 0.199 0.391
C65S35 0.260 0.270

C85P05S10 0.187 0.241
C88P01S11 0.162 0.293

TABLE I. Average ζ0.001 and σ0.9 values for each set. ζ0.001
gives the fraction of beams with normalized stress less than
or equal to 0.001, and σ0.9 gives the normalized stress value
wherein 90% of beams bear stress less than equal to this value.
Stress is normalized to the largest stress value in a single beam
in each individual structure.

D. Stress distribution448

The fragility of these structures may be linked to the449

spatial distribution of stress: whether the stress is dis-450

tributed relatively evenly or concentrated in a few beams.451

The distribution of (von Mises) stress across beams can452

vary greatly between parameter sets, as visualized in Fig.453

2. Fig. 6 illustrates the distribution of stress, normalized454

to the highest stress value in one beam in each model, av-455

eraged over all models in a set (histogram). In the models456

without stability objectives (top row), a large area frac-457

tion exhibits no stress, demonstrated by a considerable458

peak at 0. The distribution for C99999P00001, however,459

shows that in some models, a small fraction of links bears460

almost all of the stress. In contrast, the models with sta-461

bility objectives (bottom row) demonstrate a peak at 0462

with relatively heavy tails.463

Fig. 6 also shows the cumulative fraction of beams464

that bear normalized stress values between 0 and 1 (col-465

ored shaded regions). For C99999P00001, and to a lesser466

extent, C99P01, a notable fraction of beams have nor-467

malized stress close to 0. Their cumulative distributions468

rise sharply compared to those with stability objectives469

before flattening out. To quantify the stress distribution,470

we compute two metrics ζ0.001 and σ0.9. ζ0.001 is the frac-471

tion of total area with normalized stress less than or equal472

to 0.001, and σ0.9 is the normalized stress value such473

that 90% of the total area bears stress less than or equal474

to this value; similar metrics were previously defined in475

the context of trabecular bone in [3]. Average values for476

ζ0.001 and σ0.9 are tabulated in Table I. ζ0.001 is high-477

est for C99999P00001; approximately 61% of the total478

area – corresponding to 67% of beams – bear almost no479

stress, followed by C99P01 at 42% (52% of beams). For480

the remaining models, which all include stability weights481

except for C92P08, ζ0.001 is lower, representing between482

16% and 26% of area that is unstressed, indicating that483

stress is distributed more evenly for these models.484

For σ0.9, the highest values are found for the three485

models with the highest compliance weights. These mod-486

els have relatively high ζ0.001 values as well, thus contain-487

ing a larger percentage of low-stress area with the stress488

more evenly distributed on the remaining elements. σ0.9489
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FIG. 6. Stress distributions. A: C99999P00001; B: C99P01; C: C92P08; D: example cumulative stress distribution; E:
C50S50; F: C65S35; G: C85P05S10; H: C88P01S11. Histograms represent the average distribution of normalized stress for
each parameter set, weighted by the thickness of each link. The shaded regions illustrate the variation in the cumulative
distribution of normalized stress, expressed in terms of the fraction of area occupied by the links (normalized by the area of the
entire model). Dotted lines within the shaded regions correspond to the distributions of each individual model. Red crosses
represent average ζ0.001 and σ0.9 for each parameter set, as illustrated by the example in the panel D.

is moreover relatively high for C50S50, which also has a490

low ζ0.001 value, indicating that the stress distribution is491

less skewed. Overall, σ0.9 ranges between 0.24 and 0.47492

for all models, implying that a small percentage of beams493

bear large stresses.494

The models with stability objectives are most simi-495

lar in visual resemblance to trabecular bone. The two496

models with all three objective weights, C85P05S10 and497

C88P01S11, have the highest degrees of all models. We498

also apply the metric of Z-orientation previously de-499

fined in [3], a value between 0 and 1 that describes500

the preferred orientation of struts (where 0 is trans-501

verse to the vertical direction and 1 is parallel), as well502

as the weighted Z-orientation, where the Z-orientation503

of each link is weighted proportionally to its thickness.504

We observe that while the average Z-orientation of the505

topology-optimized structures ranges between 0.64 and506

0.83, much higher than the average values observed for507

bone (close to 0.5), C85P05S10 and C88P01S11 have the508

lowest weighted Z-orientation, indicating that less mass is509

distributed in vertical columns compared to, for example,510

the models with high compliance weights and no stabil-511

ity objective. However, direct comparison between the512

topology-optimized structures and bone are limited by513

the 2-D nature of the topology-optimized structures and514

the 3-D nature of the bone volumes, as well as the differ-515

ent sample sizes (the bone volumes contain over an order516

of magnitude more elements than the topology-optimized517

structures).518

For the models with stability objectives, the shape of519

their stress distributions is also the most similar to that520

of bone [3]. For the topology-optimized models, how-521

ever, ζ0.001 remains much lower than for bone, which522

is on average approximately 0.43 [3], while this value523

is surpassed for C99999P00001 and C99P01. For bone,524

approximately 6.7% of the total volume fraction bears525

less than 90% of the normalized stress [16], indicating526

that the stress distributions are considerably less skewed527

for the topology-optimized models than for bone – note,528

however, that the topology-optimized structures gener-529

ated here are two-dimensional, while the bone volumes530

analyzed previously are three-dimensional.531

E. Community detection532

We use community detection to investigate whether533

the topology of the network encodes information about534

likely points of failure. We observe that locations of fail-535

ure – i.e., the most stressed beams in the finite element536

models – do not generally correspond with the thinnest537

elements, and there is no preferred orientation associated538

with the failed beams. We hypothesize that elements cor-539

responding to links that connect two different communi-540

ties – “boundary links” – are more likely to fail than541

elements within a community.542

Community detection is a method of determining clus-543

ters (communities) that contain dense within-cluster con-544

nections, with sparse connections to the rest of the net-545

work [15]. The development of community detection al-546
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gorithms and their application as a beginning phase of547

network structure or function diagnostics is a focus of548

network science [17]. Community detection has been549

used to characterize social interactions, brain function,550

and much more, but most pertinently to characterize551

force chains in granular materials [18, 19]. Granular552

packings have been described by assigning nodes to in-553

dividual particles and edges to contact forces between554

particles [20]. Community detection can extract informa-555

tion about force chains, networks that typically resemble556

interconnected filaments primarily aligned with the prin-557

cipal axes of loading.558

Here, we perform community detection to identify559

whether failure locations reside in any particular loca-560

tions within the network topology. Community detec-561

tion typically involves maximizing a modularity function562

Q that identifies community structure relative to a null563

model P [15, 20]:564

Q =
∑
ij

[Wij − γPij ]δ(gi, gj), (7)

where Wij is the weight of the edge between nodes i and565

j, γ is a resolution parameter that controls community566

size, Pij specifies the expected weight of the edge between567

nodes i and j under the null model, gi is the community568

assignment of node i, and δ(gi, gj) is the Kronecker delta.569

The null model is commonly chosen to be a random570

rewiring of nodes with the degree distribution kept con-571

stant (Newman-Girvan null model):572

Pij =
sisj
2m

, (8)

where si is the weighted degree of node i andm is the sum573

of all edge weights in the network (i.e., m = 1
2

∑
ijWij).574

This null model assumes that connections between any575

pair of nodes is possible. However, because the networks576

are spatially embedded, and long-range connections that577

span large spatial distances are impossible, we choose a578

geographical null model, initially developed for use in the579

study of brain networks and subsequently adapted for580

granular networks [18]:581

Pij = ρBij , (9)

where ρ is the mean edge weight of the network and B582

is the binary adjacency matrix of the network (i.e., the583

adjacency matrix where all nonzero edge weights have584

been set to 1).585

The geographical null model produces communities586

that are anisotropically aligned with the vertical direc-587

tion and thus reminiscent of force chains. The resolution588

parameter γ modulates the size and number of communi-589

ties. We set γ to 1.6. Examples of community structure590

are shown in Fig. 7.591

We observe that failures tend to occur at the bound-592

aries between communities, i.e., in links that connect two593

different communities. We note that our choice of γ is594

intended to result in community structure that is most595

informative at characterizing failure locations. If γ is596

too small, the community structure may contain too few597

communities, to the limit of one, and if γ is too large,598

each node can be considered its own community. At both599

extremes, it will not be possible to observe how the mod-600

ularity of the network plays a role in influencing failure.601

We quantify statistical significance with the Bayes fac-602

tor, which represents the inverse of the ratio of proba-603

bility of the data given the null hypothesis – that the604

probability q of a failure occurring at a boundary link is605

equal to the fraction of boundary links in the network606

lbd/L – to the probability of the data given the alterna-607

tive hypothesis – that the probability q of failure occur-608

ring at a boundary link is unknown and where we assume609

a uniform prior on [0, 1]. The Bayes factor is given by610

BF =
P (Fbd = f |Ftot, q unknown)

P (Fbd = f |Ftot, q = lbd/L)
, (10)

where Fbd is the number of failures at boundaries, Ftot
is the total number of failures, lbd is the total number
of boundary links, and L is the total number of links.
Furthermore,

P (Fbd = f |Ftot, q = lbd/L) (11)

=

(
Ftot
f

)
(lbd/L)f (1− lbd/L)Ftot−f , (12)

and

P (Fbd = f |Ftot, q unknown) (13)

=

(
Ftot
f

)∫ 1

0

qf (1− q)Ftot−f (14)

=

(
Ftot
f

)
B(f + 1, Ftot − f + 1), (15)

where B is the beta function. Then the Bayes factor is
given by

BF =
B(f + 1, Ftot − f + 1)

(lbd/L)f (1− lbd/L)Ftot−f
. (16)

If BF > 102, or similarly lnBF > 5, then the evidence611

strongly supports the alternative hypothesis over the null612

hypothesis.613

We find that the fraction of failures that occur at614

these boundary links ranges between 0.58 and 0.73 for615

structures in sets C50S50, C65S35, C85P05S10, and616

C88P01S11. The fractions are smaller for the sets with-617

out stability objectives, and decreases as the compliance618

weight increases. In contrast, the fraction of links in the619

networks that are boundary links ranges between 0.25620

and 0.32.621

The average values of Fbd, lbd/L, and lnBF are tab-622

ulated in Table II, while their distributions are illus-623

trated in Figure 8. The Bayes factors are lowest for624

C99999P00001 and C92P08. Moreover, the spread of625

Fbd values for C99999P00001 and C92P08 are the largest,626
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Set Fbd lbd/L lnBF
C99999P00001 0.359 0.255 12.6

C99P01 0.469 0.264 25.9
C92P08 0.517 0.265 19.6
C50S50 0.724 0.321 43.0
C65S35 0.733 0.324 43.6

C85P05S10 0.576 0.279 49.6
C88P01S11 0.722 0.283 96.0

TABLE II. Fraction of failures that occur at boundaries be-
tween communities (Fbd), and overall fraction of edges that
join two different communities (lbd/L). Logarithm of Bayes
factor > 5 indicates statistical significance.

with some structures having very few failures at bound-627

aries in the case of C99999P00001. We observe that mod-628

els with high compliance weights and no stability objec-629

tive contain a greater number of vertical beams and are630

less disordered in structure, which can result in commu-631

nity detection being less useful at characterizing failure632

locations. Overall, the Bayes factors indicate that fail-633

ures are significantly more likely to occur at a boundary634

link (up to about 70% of links) compared to the frac-635

tion of links that form boundaries (about 30% of links).636

This suggests that failure locations are not randomly dis-637

tributed across a network, but are likely to be associated638

with the underlying topology.639640

IV. DISCUSSION641

We use multi-objective topology optimization to gener-642

ate networked structures inspired by trabecular bone. An643

analysis of the stress distribution and fracture patterns in644

these structures reveals the contribution of compliance,645

perimeter, and stability objectives to strength and re-646

silience. We observe that in structures with the greatest647

weight maximizing stiffness, with little to no considera-648

tion given to optimizing for stability, mechanical response649

is sensitive to small geometric perturbations. In compar-650

ison, structures generated with greater weight given to651

the stability objective are more robust.652

Each topology-optimized structure analyzed in this pa-653

per is constrained to have the same area fraction, but654

mechanical response can vary widely among structures655

that otherwise have the same objective weights. This656

corroborates previous findings that bone mass density is657

an incomplete predictor of fracture resistance in trabec-658

ular bone [21–25]. Moreover, this variation is most no-659

table for structures optimized primarily for compliance.660

Prior studies of topology-optimized structures inspired661

by trabecular bone involve solely compliance minimiza-662

tion with perimeter constraints [6, 7]. Here, we find that663

when perimeter and stability weights are taken into ac-664

count, the reaction force and displacement maxima shift665

significantly. This may suggest that compliance mini-666

mization alone overestimates the behavior of a realistic667

biological material. Since these materials are typically668

multifunctional, introducing multiple objectives beyond669

compliance in topology optimization will provide more670

flexiblity in balancing various tradeoffs without greatly671

compromising the mechanical response. When consid-672

ered on its own as a design principle, Wolff’s law, which673

states that bone adapts itself to resist the loads under674

which it is placed, and hence typically results in increased675

bone mass along principal loading axes, may result in676

structures that are less robust. In real biological tissues,677

Wolff’s law is likely not the sole factor governing remod-678

eling processes, and it may hence be important to use679

robustness as an objective for bio-inspired design.680

The topology optimization algorithm used here is not681

a remodeling algorithm that takes into account either682

strain-signaled or constant resorption/deposition behav-683

ior (e.g. [26, 27]), but future work can consider the re-684

modeling processes that depend on local considerations685

and influence how bone changes as it ages. While we686

do use global objective functions to more efficiently gen-687

erate the structures, the optimizer still makes the de-688

cision to add or remove material from a given location689

on a semi-local basis. Specifically, the global compli-690

ance function can be rewritten as a sum of strain energies691

for each element in the mesh. To minimize this, it has692

been our experience that the optimizer will seek a struc-693

ture that reduces strain consistently across all elements.694

This does not necessarily preclude the development of a695

small number of local stress concentrations, but it does696

mean that the developed structure will have a minimal697

average strain across all elements when subjected to the698

prescribed load. Moreover, other objective functions or699

constraints that seek to minimize or bound a local mea-700

sure of stress, such as von Mises stress or the maximum701

principal stress, may be considered in future work.702

It will be valuable to draw further biological inspira-703

tion from the changes in bone structure that occur due704

to aging. As bone ages, trabecular architecture increases705

in anisotropy; trabeculae that are transverse to the prin-706

cipal loading direction are preferentially resorbed, and707

those that are parallel become thicker [21, 28]. Cur-708

rently, our topology-optimization results are static and709

the objectives used are not chosen with regard to a ma-710

terial that undergoes age-related geometric changes. Ad-711

ditional insight into aging processes can be achieved by712

extending the modeling procedure to begin with our orig-713

inal topology-optimized structures as initial conditions,714

followed by an optimization process that reflects the con-715

ditions of aging bone.716

Our mechanical simulations in this paper are linearly717

elastic, followed by brittle failure initiated by a stress-718

based criterion. An entire beam fails at once when the719

stress in the beam reaches a specified threshold, but in720

bone, the nonuniform thicknesses of trabeculae would re-721

sult in beams that fail progressively. Our division of each722

beam into five segments serves to mitigate this discrep-723

ancy. Moreover, taking into account inelasticity and sub-724

scale energy dissipation mechanisms can improve realistic725

modeling of bone-like structures.726
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FIG. 7. Example of community structure for each parameter set. A: C99999P00001, B: C99P01, C: C92P08, D: C50S50,
E: C65S35, F: C85P05S10, G: C88P01S11. Nodes are colored to distinguish between communities. Black nodes represent
communities of one node.
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FIG. 8. Variation in fraction of failures that occur at boundaries between communities (Fbd), and overall fraction of edges that
join two different communities (lbd/L).

Our observation of substantial variation in the distri-727

bution of stress across different models suggests an inves-728

tigation into the extent to which topology optimization729

can engineer redundancy in structures. A structure with730

redundant or sacrificial beams may have higher tough-731

ness as the failure of some beams might not immediately732

result in catastrophic system failure, and stress can be733

redistributed through remaining beams.734

In this paper, we introduce a community detection ap-735

proach for characterizing fracture locations which is in-736

spired by prior studies of force chains in networks derived737

from granular packings. We observe that, for an appro-738

priate choice of resolution parameter, the fraction of fail-739

ures occurring at links which connect different commu-740

nities are significantly greater than the fraction of links741

that are boundaries. This suggests an association be-742

tween boundaries and failure locations, and our results743

are consistent with the observations of Berthier et al.,744

who have used edge betweenness centrality to predict745

locations of failure in experimental 2-D disordered net-746

works [29]. Edge betweenness centrality is a measure747

that describes the frequency at which an edge lies on the748

shortest path between pairs of nodes in a network. In-749

deed, edge betweenness centrality as a failure marker is750

akin to our use of boundary links in characterizing fail-751

ure locations as calculating edge betweenness can be used752
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for determining community structure as per the Girvan-753

Newman method [30]. Edges connecting different com-754

munities have high edge betweenness centrality.755

Future work will aim to potentially incorporate other756

factors alongside community structure to accurately pre-757

dict locations of failure in a wide range of networked758

structures. In doing so, our methods are likely to be759

applicable across domains and can be incorporated into760

a more comprehensive diagnostic tool for fracture suscep-761

tibility.762

Overall, the modeling framework developed in this pa-763

per has wide-ranging applications for the design of mate-764

rials and networked structures inspired by nature. While765

we focus on macroscale architecture in this work, engi-766

neering additional architecture at micro- and nanoscales767

can lead to improved function as bone, along with768

other naturally-occurring materials, exhibits structure769

and mechanisms of strength at a range of scales [31, 32].770

At the microscale, bone tissue is composed of miner-771

alized collagen fibrils embedded in an organic matrix,772

and the fibrils themselves comprise mineralized platelets773

staggered in a regular pattern within a collagen ma-774

trix [33]. Other naturally-occurring materials such as775

nacre contain a similar architecture of elongated platelets776

organized periodically in a matrix [34]. Characteriz-777

ing the contribution of multiscale organization to emer-778

gent strength can further inform the development of bio-779

inspired materials.780
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