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Abstract

We present the formulation, simulations, and results for multicomponent mutual diffusion co-

efficients in the warm, dense matter regime. While binary mixtures have received considerable

attention for mass transport, far fewer studies have addressed on ternary and more complex sys-

tems. We therefore explicitly examine ternary systems utilizing the Maxwell-Stefan formulation

that relates diffusion to gradients in the chemical potential. Onsager coefficients then connect

the macroscopic diffusion to microscopic particle motions, evinced in trajectories characterized by

positions and velocities, through various autocorrelation functions (ACFs). These trajectories are

generated by molecular dynamics (MD) simulations either through the Born-Oppenheimer approx-

imation, which treats the ions classically and the electrons quantum-mechanically by an orbital-free

density-functional theory, or through a classical MD approach with Yukawa pair-potentials, whose

effective ionizations and electron screening length derive from quantal considerations. We employ

the reference-mean form of the ACFs and determine the center-of-mass coefficients through a sim-

ple reference-frame-dependent similarity transformation. The Onsager terms in turn determine the

mutual diffusion coefficients. We examine a representative sample of ternary mixtures as a function

of density and temperature from those with only light elements [D-Li-C, D-Li-Al] to those with

highly-asymmetric mass components [D-Li-Cu, D-Li-Ag, H-C-Ag]. We also follow trends in the dif-

fusion as a function of number concentration and evaluated the efficacy of various approximations

such as the Darken. LAUR-19-26213
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I. INTRODUCTION

Warm, dense matter (WDM) designates an expansive material condition in which most

or all of the constituents reside in a fluid state of some degree of ionization. This designa-

tion encompasses a broad variety of systems and environments as exemplified by planetary

and stellar interiors and atmospheres, inertial confinement fusion (ICF), and intense laser

interactions with materials. In most of these cases, the environment consists of a farrago of

various components, which can include molecules, atoms, and ions of various species as well

as electrons and transient combinations. To accurately model these macroscopic systems

requires an intricate knowledge of the microscopic properties of the constituent materials,

which include the equation-of-state (EOS), mass transport (diffusion/viscosity), thermal and

electrical conduction, opacities, and stopping powers for mixtures.

An interesting example derives from the physical mechanisms associated with the im-

plosion dynamics of ICF capsules driven by ultra-intense laser fields[1]. For example, the

inclusion of small amounts of the ablator material can deleteriously affect the efficiency of the

burning of the deuterium-tritium fuel. Therefore, finding the most appropriate materials[2]

from plastics as polystyrene, metals as beryllium, and carbon compounds as diamond and

boron carbide requires a detailed knowledge of the EOS, the thermal conductivity, and the

opacity of both the shell and resulting plasma. In addition, the deposition of heat from

the slowing of the fusion-produced α-particles, as accounted for by the stopping power, de-

termines the efficacy of the deposition process[3, 4]. Finally, electrical and mass transport

properties play a critical role in modeling the generation of fast electron beams from intense

laser interactions with solids that produce hot, dense plasmas[5]. In addition, the mutual

diffusion coefficient D and shear viscosity η govern the mass transport within hydrodynamic

simulations and together with the mass density ρ determine the Schmidt number or matrix

Sc = η
ρD

that characterizes mixing[6].

Another example encompasses the interiors of ice-giant planets such as Uranus and Nep-

tune may consist of a combination of methane (CH4), ammonia (NH3), and water(H2O)

under high compression at temperatures of a few thousand Kelvin[7]. For these conditions,

the constituents reside in a variety of complex states, especially since dissociation becomes

possible. A particularly interesting state concerns superionic structures with one or more of

the heavy species in a regular lattice while the lighter species (H) diffuses[8]. A knowledge of
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the EOS, thermal and electrical conduction, and mass transport become essential to under-

stand such processes. Various studies of single[9–12], binary[13], and ternary[14] molecular

species have provided insight into the structure and dynamics of planetary interiors not only

in our solar system but also for the ever growing menagerie of exoplanets[15].

Most of these properties have undergone a thorough examination using a variety of mod-

els and ab initio methods. However, in the case of mutual diffusion, almost all studies in the

WDM regime have focused on binary systems [16–25], which follow an exclusive formulation

that does not encompass certain general features of ternary and higher-order systems. Thus,

in this paper, we focus on ternary systems as better representative of the general behavior,

mechanics, and computational challenges of complex mixtures. The next section (II) devel-

ops the basic formalism for determining mutual diffusion coefficients from the products of

molecular dynamics (MD) simulations, mainly the trajectories (time-dependent coordinates

and velocities). We shall then discuss the basics formulations for these MD calculations

in terms of two representations, both of which employ classical dynamics to advance the

nuclei, but utilize different treatments of the electrons. The first employs a classical Yukawa

pair-potential with fixed parameters modified to approximate some of the quantum nature

of the medium (Thomas-Fermi screening) while the second, an orbital-free density func-

tional theory (DFT), encompasses a full, self-consistent quantum mechanical treatment of

the interacting electrons. The section concludes with a brief discussion of various analysis

prescriptions. The third section (III) contains an analysis of the results from large-scale MD

simulations for several representative ternary systems, consisting of low-mass components

(D-Li-C) as well as highly asymmetric combinations (D-Li-Ag, H-C-Ag). This analysis fo-

cuses on the general trends in the behavior of the mutual diffusion coefficients for these

ternary systems over a span of the WDM regime as well as technical issues. We make some

concluding remarks in the final section IV. Throughout the paper, we employ a mix of atomic

and cgs units [1au time: τau = 2.42x10−17 s, 1au length: bohr ≡ aB = 5.2917x10−9 cm, and

1au of energy: Hartree = 27.21 eV].

II. MAXWELL-STEFAN AND FICKIAN DIFFUSION

We focus on two complementary approaches to multicomponent diffusion[26–31]: the

Fickian and the Maxwell-Stefan and present only a highly schematic description of the
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two formulations, mainly aiming at highlighting the most important aspects in relation to

molecular dynamics simulations since the literature already abounds in detailed expositions

[32–44]. We treat a mulitcomponent mixture of ns species with a total number of atoms

N =
∑

iNi, a total mass M =
∑

iNimi, a total number density na = N/V , and a mass

density ρ = M/V , where V is the volume and the ith species has Ni atoms of mass mi.

The molar fraction is given by xi = Ni/N such that
∑

i xi = 1 and the mass fraction

ωi = Nimi/M with
∑

i ωi = 1.

The formulation due to Fick gives a more intuitive description closer to actual experi-

mental arrangements of the diffusive process. The diffusion coefficient relates a change in a

concentration to the resulting material flux as

Ji = −ct
∑
j

Df
ij∇xj (1)

with J the molar flux, ct, the total molar concentration, and Df
ij, the Fickian diffusion

coefficient.

On the other hand, the Maxwell-Stefan formulation[45, 46] (MS) employs a driving force

for diffusion given by the gradient of the chemical potential balanced by a friction force as

− 1

RT
∇µi =

∑
j 6=i

xj(ui − uj)
Dij

, (2)

where R is the gas constant, T is the temperature, and µi and ui are the chemical potential

and velocity of component i respectively. The MS diffusion coefficients, given by D, represent

an inverse friction coefficient. Recasting Eq.( 2) in terms of a reference velocity u and a

matrix B leads to

− 1

RT
∇µi =

∑
j

xjBij(uj − u), (3)

where

(B)ii =
xi
Di,ns

+
∑
j 6=i

xj
Dij

(4)

(B)ij = −xi(
1

Dij
− 1

Di,ns
). (5)

Inverting Eqs.( 5) then yields the MS diffusion coefficients[37].

Since the two approaches are complementary, the respective mutual diffusion coefficients

are related by a simple matrix operation,

Df = B−1Q, (6)
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where Q is a matrix determined solely from thermodynamical considerations, such as by

Kirkwood-Buff integrals[43, 44] or binary-ion models[47]. The Fickian formulation gives (ns

-1)x(ns-1) independent diffusion coefficients while the Maxwell-Stefan produces only ns(ns-

1)/2 given that Dij = Dji. We shall restrict this paper to the Maxwell-Stefan approach,

given its sole reliance on the microscopic dynamical properties, for example the positions

and velocities of the atoms extracted directly from an MD simulation. An exposition on the

determination of the Q quantity appears in the previously cited sources.

A. Maxwell-Stefan Diffusion and Molecular Dynamics

1. General formulation

We return now to the MS formulation and relate its diffusion coefficients to the results

of MD simulations. From these simulations, we produce a trajectory that contains the 3D

coordinates [rα
i(t)] and velocities [vα

i(t)] for each particle α of species i at a given time t.

The MD coordinates and velocities are advanced by a time step δt for nt steps for a total

time of tmax = ntδt. A similar construction to Eq.( 3) defines the phenomenological Onsager

coefficients Λij by

xiui = − 1

RT

∑
j

Λij∇µj, (7)

which in turn can be directly related in the linear-response limit to the MD trajectory

through either a mean square displacement (MSD) or velocity autocorrelation function

(VACF) as

Λij =
1

6

1

N∆t
〈(Ri(t+ ∆t)−Ri(t)) · (Rj(t+ ∆t)−Rj(t))〉, (8)

or

ΛR
ij(t) =

1

3

1

N

∫ t

0

dt′〈Vi(0) ·Vj(t
′)〉, (9)

such that

ΛR
ij(t)

t→∞−→ ΛR
ij, (10)

where the superscript R designates a particular reference frame. Since the MSD form de-

pends on the difference between the coordinates of the same particle at different times, this

specific formulation is independent of the choice of reference frame; however, the VACF form
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is not. The angular brackets represent an ensemble average and

Ri(t) =

Ni∑
α=1

rα
i(t)

Vi(t) =

Ni∑
α=1

vα
i(t). (11)

The positions and velocities in Eq.(11) refer to a particular reference frame with molecular

dynamics generally, as in this paper, favoring the center-of-mass (COM) such that Vcom(t) =∑ns
i=1ωiVi(t) with a similar expression for the positions. For comparison purposes, we shall

sometimes employ the normalized VACF, given by dividing the integrand of Eq.(9) by Nij =

〈Vi(0) ·Vj(0)〉.

A more compact approach utilizes the relative-mean velocity autocorrelation functions

(RM-VACF), which are independent of the specific reference frame[48]:

ΛRM
ij (t) =

1

3

1

N

∫ t

0

dt′〈[Vi(t
′)−Vj(t

′)] · [Vi(0)−Vj(0)]〉. (12)

Any reference-frame specific Onsager coefficient derives then from a simple matrix transfor-

mation

ΛR = −1

2
SRΛRM S̃R, (13)

where ΛR and ΛRM represent matrices composed of the elements of Eqs.(8 or 9) and Eq.(12)

respectively; the tilde designates the transpose; the R indicates the reference frame depen-

dence; and the S-matrix has the simple form

[SR]αβ = δαβ − gβ, (14)

where gβ carries the RF dependency [49]. For the COM or barycentric frame, we have

gβ = ωβ, the mass fraction. The relative velocity form ΛRM is symmetric by construction

with the diagonal containing zeros [Λii=0] and is formally equivalent to Eq.(9).

Since the remaining formulation relating the ACFs to the diffusion coefficients applies

for any reference frame, we drop the superscript R in the following analysis. The Onsager

coefficients also obey certain symmetry rules

Λij = Λji∑
i

miΛij = 0. (15)
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The second equation simply reflects that the center-of-mass velocity for the total system

is zero and can be used to relate the off-diagonal Onsager coefficients to their diagonal

counterparts:

Λij =
1

2
[akΛkk − aiΛii − ajΛjj] (16)

such that k 6= i, j and ak = (mk
2/(mimj); ai = mi/mj; aj = mj/mi). A similar relation

holds for the VACs.

We can then define through some algebraic manipulations, a matrix ∆ such that[36]

∆ = B−1 (17)

(∆)ij = (1− xi)[
Λij

xj
− Λins

xns
]− xi

ns∑
k=1,k 6=i

[
Λkj

xj
− Λkns

xns
]. (18)

From the B matrix, we determine the MS diffusion coefficients. For example, for a binary

system (ns = 2), we have

D12 = ∆11 =
x2
x1

Λ11 +
x1
x2

Λ22 − Λ12 − Λ21 (19)

and for a ternary system (ns=3),

D12 =
1

B11 − (x1+x3
x1

)B12

D13 =
1

B11 + (x2
x1

)B12

(20)

D23 =
1

B22 + (x1
x2

)B21

.

We observe that the B matrix derives from the inverse of the ∆ matrix, which in turn has

a complicated dependence on many of the Onsager coefficients Λij. Only the binary case

though provides an exception; using the relationships in Eqs.( 15), we can rewrite Eq.( 19)

as

D12 = −[(
x2
x1

)2 + (
x1
x2

)2 + 2]Λ12. (21)

Before leaving this section, we present a brief summary of the prescription for deter-

mining the diffusion coefficients from the results of the MD simulations. First, we perform

a series of MD simulations for a particular sample of species at set concentrations that

produce trajectories consisting of a collection of the positions and velocities of particles

[riα(t); viα(t), i = 1, ns, α = 1, Ni] at each time step over the span of the temporal propaga-

tion. Second, from the trajectories, we determine species-specific coordinations [Ri(t); Vi(t)]
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by summing over the particles within a given component [Eq.( 11)], which in turn determine

the autocorrelation functions and the reference-frame-independent (relative mean) Onsager

coefficients ΛRM
ij through Eq.(8) and (12). Third, from the RM Onsager coefficients, we

can then construct the appropriate Onsager coefficients for a particular reference frame

(e.g. COM) through a simple similarity transformation [Eq.( 13)]. Finally, a combination

of these Onsager coefficients determines the ∆ and B matrices [Eq.( 18)] from which the

mutual diffusion coefficients Dij emerge [Eq.( 5)].

2. Darken Relations

Neglecting the cross-correlation terms in the Onsager coefficients generates the Darken

relationships[32, 37] for the mutual diffusion coefficients in terms of the molar fractions and

self-diffusion coefficients Di:

Di =
1

3

1

Ni

∫
dt〈

Ni∑
α=1

viα(0) · viα(t)〉. (22)

The self-diffusion only depends on contributions vij(0) · vij(t) of the same particle of the

same species. The full mutual diffusion coefficient additionally includes the cross-correlation

terms between different particles of the same and of different species.

For the binary case, we have

D12 = x2D1 + x1D2, (23)

and for the ternary and higher systems,

Dij =
DiDj

Dmix

(24)

1

Dmix

=
ns∑
i

xi
Di

. (25)

We note though that the self-diffusion coefficients in the Darken formulae are those for the

fully-mixed system. Prescriptions exist to relate these to the self-diffusion coefficients for

pure systems[36].

The ability to utilize the Darken approximations provides distinct computational advan-

tages in determining mutual diffusion coefficients, which like viscosity, are properties of the

entire system while self-diffusion coefficients arise from single-atom correlation functions that
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can be averaged further to reduce the statistical error. In MD simulations, the statistical

error or uncertainty[42] ε for a system property that obeys Gaussian statistics goes as

ε ≈

√
2τ

Ttraj
, (26)

where τ represents a correlation time and Ttraj the temporal length of the trajectory. The

longest 1/e-folding time of the VACFs associated with the Onsager coefficients [Eq.( 9)] gives

a reasonable choice for τ . The statistical error in the self-diffusion is reduced by an additional

1√
Ni

. Therefore, for 100 atoms, the self-diffusion will have an order of magnitude better

statistical accuracy than the mutual diffusion for the same length of trajectory assuming

that the correlation times are comparable. A few studies of ternary mixtures at ambient

conditions for chemical systems have obtained good agreement (∼ 25%) between the Darken

and full-simulation results[36, 37].

B. Molecular Dynamics

We perform both classical and quantum molecular dynamics[50] simulations in the NVT

ensemble for two conventions. In the first case, we fix the mass density and concentrations,

which in turn sets the number density na. In the second convention, we fix the concentrations

and the initial pressure, which determines the mass density. The MD simulation starts

from this initial condition and evolves according to a NVT ensemble. The details of this

prescription appear in references[22, 23]. In both cases, a constant temperature is maintained

either by a simple velocity-scaling scheme[50] or by an isokinetic thermostat[51]. We have

tested the efficacy of these ensembles by comparing to a collection of trajectories propagated

according to a microcanonical (NVE) ensemble and found only small differences in the

properties.

The MD simulations produce a trajectory that contains the positions and velocities of

all particles as a function of time step. For short trajectories, we can produce a single

long file that is parsed to give uncorrelated segments for the determination of the VAC

and MSD functions. However, for longer times, a more efficient approach dictates running

simultaneously (in parallel) a number of uncorrelated short segments. Combining these then

gives an average value to the AC functions and consequently the mutual diffusion coefficients.

The computational benefit of such a scheme comes from the production of a long trajectory
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on the time scale of a shorter one.

1. Classical: Yukawa MD

We performed classical molecular dynamics simulations using a Yukawa pair-potential[55]:

Vαβ(rαβ) =
ZαZβe

2

rαβ
e−rαβ/λe , (27)

where Zαe is the effective charge of atom α of the species i; λe and rαβ are the electron

screening length and the distance between atoms α and β, respectively. The Yukawa pa-

rameters derive from an electron pressure matching scheme[16, 52] for a fixed mass density,

number concentration, and temperature. The mass density sets the total volume V , and

the concentration determines the individual atom numbers (Ni = xiN). The atom volumes

vi are symmetrically varied until the electronic pressures match (Pi = P, ∀i), subject to

the constraint that V =
∑

i vi. This condition in turn sets the partial atomic number den-

sity nia = Ni/vi. We employ a regularization prescription[52] to determine the pressures

and the effective charge Zi for each species. The scheme resembles average-atom models

that treat a representative component in a plasma determined by a density and tempera-

ture. A linearized Thomas-Fermi theory[20, 53] dictates the screening length λe based on

the total electron density ne =
∑

i Zin
i
a. Such pressure-matching schemes, also referred to

as additive-volume and Amagat, have received some recent experimental support[54]. We

solved the classical equation of motion by a velocity Verlet algorithm[50] and also employed

the LAMMPS package[56] for the parallel implementation. Our Yukawa MD simulation

results for diffusion and other properties agree well with several other studies: Ohta and

Hamaguchi [55] for a single species and Stanton and Murillo [20] for binary systems.

2. Quantum: Orbital-Free MD

For the quantal case, we invoke the Born-Oppenheimer approximation and separate the

electronic and nuclear motions. The N nuclei move according to classical equations of motion

(EOM) in response to a force on the ion from the interactions with other ions and a quantal

contribution from the Ne electrons at a fixed ion configuration [Ri, i=1,N ]. The force due

to the electrons derives from the minimization of a free-energy functional in terms of the
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electron density ne(r), arising from finite-temperature orbital-free density functional theory

(OF-DFT)[52] of the form:

Fe[ne] = F0[ne] + Uen[ne] + Uee[ne] + Fxc[ne], (28)

in which F0 is the Thomas-Fermi-Perrot finite-temperature noninteracting free energy[57],

Uen is the electron-ion interaction from a regularization prescription[52], Uee is the electron-

electron Hartree contribution, and the exchange-correlation term Fxc comes from a local

density Perdew-Zunger form [58]. The technique has proven highly effective in spanning

the WDM regime, producing equilibrium mass transport quantities such as viscosity and

diffusion as well as equations-of state for both single and multi-component dense plasmas[16,

17, 59–61] that agree well with the computationally more intense Kohn-Sham (KS) DFT at

low temperatures[52, 60–63] and with simpler models such as the one-component plasma at

high temperatures[52]. Specifically, for LiH and LiD, the OF and KS MD results agree to

within 10-15% over a range of densities from solid (0.79 g/cm3) to four times compressed and

temperature from 2 to 10 eV for mass transport coefficients[60] and equation-of-state[62].

C. Analysis

Since unlike self-diffusion, the mutual diffusion coefficients represent bulk properties,

they can exhibit considerable sensitivity to the prescriptions for evaluating the Onsager

coefficients through the integral of the VACF in Eq.( 9) or the derivative of the MSD

in Eq.( 8). We have found in previous studies[16, 64] that fitting the functions or their

integrals to simple analytical forms can reduce this sensitivity. As an example of the former,

we consider for the Yukawa model a D-Li-C 1:1:1 by number mixture of 399 atoms at 100

eV and 10 g/cm3 and display in Fig. 1 the normalized VACFs associated with the relative-

mean (RM) Onsager coefficients as a function of time for a trajectory of 6x106 time steps of

length 0.5 au. The two Onsager coefficients that connect the light species to the heavy [DC;

LiC] have almost exactly the same behavior while the light-light [DLi] coefficient exhibits

a considerably different trend. By employing the combination of a gaussian for short times

and an exponential [exp(−t/τo)] for the long decay, we can determine a fit to within better

than 10% for all three VACFs. The largest decay or 1/e-folding time τo will, in turn reflect

the statistical error ε. In our example, the decay times are ≈ 280 au for DLi and ≈ 420 au for
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DC and LiC. Integrating the analytical form and multiplying by the norm Nij produces the

total Onsager coefficient ΛRM
ij . Equation ( 13) then determines the specific reference-frame

Onsager coefficients from which the final mutual diffusion coefficients arise. We could also

calculate the diffusion coefficients directly from the RF VACFs. As an example, we display

the unnormalized coefficients ΛR
ij(t) also in Fig. 1. However, generally the RM coefficients

provide a more flexible and stable ground for analysis.

Another strategy fits the time-dependent integral Λij(t) to a basic form [16]

Λij(t) = Ao[1− exp[−t/τo]], (29)

where t → ∞, Λij(t) → Λij = Ao, from which we extract Onsager values. We display an

example of this technique in Fig. 2 for the RM Onsager coefficients for DLi, DC, and LiC in

a classical simulation with a Yukawa potential for the same D-Li-C mixture discussed in the

previous paragraph. The fit gives a value for ΛRM
DLi of 4.24x10−2 in line with the integrated

value of 4.21x10−2. The decay time is 270 au in excellent agreement with the VACF fits.

We emphasize that these analysis prescriptions only apply once the system has reached a

stable equilibrium. Also, in other temperature and density domains, more complex fitting

prescriptions may apply[64].

III. SIMULATIONS

In this section, we discuss the behavior of the mutual diffusion coefficients as a function

of density and temperature for a selection of ternary systems using both the Yukawa and

OFMD formulations. We first focus on several representative cases of systems with three

relatively light components (D-Li-C) and with two light and one very heavy member (D-

Li-Ag). We then examine the behavior of the mutual diffusion coefficients for a composite

sample of two light species (D, Li) as a function of the third heavier component (C, Al, Cu,

and Ag). Finally, we shall examine a series of D-Li-C and H-C-Ag simulations as a function

of concentration, temperature, and density.
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A. Representative Ternary Systems

1. D-Li-C:

We perform Yukawa MD simulations on the representative system of D-Li-C (1:1:1) with

399 atoms at a density of 10 g/cm3 for temperatures from 10 to 300 eV. The effective charges

and electron screening length all gradually rise with increasing temperature as indicated in

Table I. Time steps varied between 0.25 au (300 eV) and 1 au (10 eV). Trajectories of

length 104 time steps typically converged the self-diffusion coefficients to better than a few

percent in agreement with the estimated statistical error ε. However, the mutual diffusion

coefficients require much longer temporal integrations and considerable care in managing

the error. Typical correlation times taken from the VAC Onsager coefficients have values

around 50-200 au, giving a statistical error of about 5% for a trajectory of 105 steps. We find,

though, that this error can be misleading in determining the actual accuracy and convergence

of the mutual coefficients. Therefore, to reduce the error to below a few percent requires very

long trajectories of 106 - 107 time steps. The origins of this behavioral difference between

viscosity and mutual diffusion are not entirely clear since both represent bulk properties

of the medium. Viscosity involves a sum over all the species and components of the stress

ACF while mutual diffusion encompasses a more complicated scheme of manipulations. The

Onsager coefficients incorporate sums over particles in pairs of species interacting within the

whole system. These coefficients in turn determine the mutual diffusion through a set of

operations that involve differences [Eqs.(18) and (20)], which may require a higher degree of

accuracy to resolve. Some limited insight, as quantified later, emerges from the observation

that the root-mean-square error for the Onsager coefficients is a factor of two or more smaller

then those for the mutual diffusion coefficients themselves. We also note that the largest

errors occur for the coefficient connecting the lightest two species. Interestingly, the need

for such long trajectories also arises in determining mutual diffusion coefficients in chemical

engineering applications[41] of multicomponent liquids at ambient conditions.

We have also performed a few tests for the 1:1:1 case with a total number of atoms of 900;

the results indicate that calculations with 399 atoms appear reasonably well converged with

a maximum difference of 10% in the mutual diffusion coefficients. Table II summarizes the

results for the Yukawa MD simulations of the self-diffusion and mutual diffusion coefficients
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as well as the Darken approximation. These results are graphically displayed in Figs. 3 and

4. The Darken formula gives a reasonable approximation to the mutual diffusion coefficients

with the largest error less than 10%. This finding agrees with other studies on binary systems

of CH[65], LiH[18, 66], and PuH[21] using the OFMD method.

In addition, we executed simulations with the OFMD prescription for the representative

ternary mixture of equal numbers of C, Li, and D atoms at 10 g/cm3 for temperatures

ranging from 10 eV to 100 eV for samples with 90 and 150 atoms; the results of which

appear in Table III and evince excellent convergence in sample size. The time steps varied

from 4 au (10eV) to 1 au (100eV) with trajectories of 1x105 time steps. Such trajectories

proved sufficient to converge the self-diffusion coefficients and therefore the mutual diffusion

within the Darken approximation [Eq.( 25)], but not the mutual diffusion from the full MD

simulation, especially the DDLi component. For two representative temperatures with the 90

atom sample, we constructed a lengthy temporal trajectory by averaging eight independent

simulation cases, each with approximately 1.2x105 time steps with an effective total length

of ≈ 1x106 steps. The 40eV temperature required a time step of 1.2 au [0.029 fs] and

the 100eV, of 0.7 au [0.0169 fs], yielding standard deviation in each of the RM Onsager

coefficients [ΛDLi, ΛDC , ΛLiC ] of 6%, 5%, and 10% respectively. However, the standard

deviations of the mutual diffusion coefficients [DDLi, DDC ] become almost a factor of four

larger than those for the Onsager coefficients, namely 25% and 15% respectively. On the

other hand, the standard deviation in DLiC remains at about 10%. The trends at 100eV

follow a similar pattern with the standard deviation error for the DLi, DC, and LiC RM

Onsager coefficients yielding 6%, 9%, and 7% respectively, while the errors in the mutual

diffusion coefficients become 19%, 19%, and 8%. These findings seem to lend some credence

to the adverse role played by Eqs.(13),(18), and (20) in amplifying the final error. Finally,

the results, shown in the second row for these two temperatures in Table III, show excellent

agreement with the Darken results.

Comparing Tables II and III for the Yukawa and OFMD respectively reveals that the

mutual diffusion coefficients can disagree by as much as 90% at the lowest temperatures

and by 20-30% by 100 eV. Given the agreement between the KS and OF at the lower

temperatures, the difference in the Yukawa and OFMD establishes the merit of the former.

This behavior could reflect the ability of the OF electronic density to respond over the whole

system. Still, at this level, the Yukawa provides an effective guide to the general behavior
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of the mutual diffusion.

2. D-Li-Ag and H-C-Ag

We present calculations for a mixture of deuterium (D), lithium (Li), and silver (Ag) at

a density of 20 g/cm3 for a range of temperatures at a 1:1:2 concentration using a Yukawa

parameters in Table I. The simulation employed 800 atoms with time steps of between 0.07

and 0.2 au for total trajectories spanning lengths of 3.60x108 to 7.2x108 steps and times

to 20 ns. The statistical error for the mutual diffusion coefficients remained less than 5%.

In Fig. 5, we compare mutual diffusion coefficients for the full MD simulations(solid lines)

and Darken model (dashed lines) for the Yukawa for DLi (blue), DAg (green) and LiAg

(red). The DLi mutuals display differences of 50% while in the DAg and LiAg mutuals

agree to better than 5%. We also make comparison in Fig. 5 with the OFMD Darken

results (symbols). The agreement between the Yukawa and OFMD Darken results is rather

interesting, being better for the DLi case than the full Yukawa with its own Darken. We

should note that such a trend does not hold for the D-Li-C case at lower temperatures as

witnessed by the results in Tables II and III. We also display a similar plot in Fig. 6 for the

system of H-C-Ag. The trends follow those for the D-Li-Ag system. The slight crossing of

the Yukawa full mutual and Darken case above 300 eV is within the error estimate at these

temperatures.

Finally, we investigate in Fig. 7 the trend in the both the COM-frame Onsager ΛDLi and

mutual diffusion DLiD coefficients between two light species (DLi) as a function of the mass

of the heavy third component given by carbon (Z=6), aluminum (13), copper (29), and silver

(47) at 100eV for 1:1:2 concentration at a density of 20 g/cm3 for 800 atoms in the Yukawa

formulation. For the Onsager coefficient, we note an interesting progression with heavier

species. The coefficient for C as the heavy component has a distinctly monotonic increase

with time. However, with Al, we begin to observe a slight change in sign, crossing zero at

about 25 fs. For the heavier species (Cu and Ag), this transition occurs with ever decreasing

time. Such changes can reflect caging effects or more complex diffusion behavior[64]. These

small features also prove difficult to converge temporally and to fit. For the mutual diffusion

coefficients [inset Fig. 7], we note the steady rise of DDLi with increasing mass of the heavy

species as well as the increase in the width of the error bars [one standard deviation]. For this
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exercise, we have fixed the mole concentrations, the mass density, and the temperature with

the only variable the mass of the heavy species and concomitantly, the number density of the

whole mixture. As the heavy species becomes more massive, the particle density declines. A

lower density mixture usually facilitates greater diffusion so that we would generally expect

DLiD to increase. The behavior in the error bars further illustrates the convergence difficulty

with increasing disparity in the system masses.

B. Concentration Dependence

We now change our emphasis and investigate the role played by concentrations of the

various species. For this behavior, we found in the binary systems[22, 23] that a different

comparison scheme illuminated the effects more clearly, in particular that of isobaric equi-

librium. We again consider ternary systems of two light species with a heavy companion,

namely D-Li-Ag and H-C-Ag. In this case, we fix the temperature T and determine the

total pressure P based on a 20 g/cm3 sample of D-Li-Ag (H-C-Ag) in a 1:1:2 number ratio.

For the full sample, the relative concentrations of the light species remain fixed at equal

amounts [xD = xLi and xH = xC ] and the concentration of the heavy species, in effect the

mass density, varies under the constraint of constant T and P for a sample of 200 atoms.

For binary systems[22, 23], the concentration of the heavy component had profound

effects on the viscosity with small increases causing a dramatic decrease. On the other

hand, the mutual diffusion coefficients showed only a gradual rise with the heavy species

concentration. The binary Darken relations [Eq.( 23)] give a general characterization of this

behavior. We consider a light (l) and heavy(h) species (ml << mh) with xh → 1. In this

case, the mutual diffusion coefficient depends almost entirely on the self-diffusion Dlh → xh

Dl. In the opposite case, as xh → 0, Dlh → xl Dh. Since usually Dl > Dh, the mutual

diffusion coefficient will rise with an increase in xh.

The ternary case presents a more complicated relationships due to the interplay of the

three different pairs of species. As with the binary case, we can gain some insight by

employing the Darken forms, realizing that intra- and inter-correlation effects can alter the

specifics. We consider the ternary Darken relations [Eq.( 25)] for a system with two light

species (l1, l2) and one heavy (h) such that xl1 = xl2 ≡ xl and Dl1 > Dl2 > Dh. As the

heavy concentration increases (xh → 1), the term Dm → Dh/xh, in which case the two
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coefficients connecting the light and heavy species behave much as in the binary case with

Dl1h → xhDl1 and Dl2h → xhDl2. On the other hand, the coefficient for the two light species

has a different behavior Dl1l2 → (xhDl1Dl2)/Dh. For the reverse trend of xh → 0, we have

Dl1l2 → xlDl1; Dl1h → xl
(Dl1Dh)
Dl2

, and Dl2h → xlDh.

Figure 8 examines these trends for the ternary systems by presenting the OFMD self

(DD, DLi, DAg) and the resulting Darken mutual (DDLi, DDAg, DLiAg) diffusion coefficients

for the D-Li-Ag mixture as a function of the Ag concentration at two temperatures 100 eV

(upper panel) and 200 eV (lower panel). As with the binary systems, the mutual diffusion

coefficients monotonically rise as the heavy concentration and temperature increase. The

increase with temperature follows directly from the enhanced collision frequency and mo-

bility. We caution though that these trends derive from the Darken relations, and since we

employ the OFMD Darken coefficients, at least the behavior at the extremes [xAg = 0 and

1] is innate to the formulation. The results generally follow the trends elucidated above. For

example, assigning l2 to Li and h to Ag, DLiAg approaches DLi for xAg → 1 and DAg as xAg

tends to zero. The mutual diffusion coefficient DDAg with l1(D) does approach DD as the

silver concentration rises. However, the behavior for small silver concentrations has a more

complicated limit in terms of a fraction of the self-diffusion coefficients. Finally, Figure 9

displays the self and mutual diffusion coefficients for the H-C-Ag mixture as a function of the

Ag concentration xAg at 100eV. The results generally reenforce the findings for the Li-D-Ag

system. We again observe that the mutual diffusion coefficient DCAg between the interme-

diate light species (C) and the heavy species (Ag) tends to DC at high silver concentrations

and to DAg as xAg → 1, but for the opposite limit, the behavior is more complicated. The

self and mutual diffusion coefficients exhibit similar behavior as a function of xAg for 200eV

and 400eV.

IV. CONCLUDING REMARKS

Our presentation included formulations, simulations, analysis, and results of calculations

of mutual diffusion coefficients for mixtures in the warm, dense matter regime. We focused

on ternary systems and invoked the Born-Oppenheimer molecular dynamics scheme that

evolved the ions classically and the electrons quantum mechanically through orbital-free

density-functional theory as well as a classical MD approach with Yukawa pair-potentials,
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whose effective ionizations and electron screening length derive from quantal considerations.

The trajectories, containing the positions and velocities of the ions as a function of time,

determined various Onsager coefficients through autocorrelation functions, which in turn

yielded the diffusion coefficients. Utilizing the relative-mean (RM) formulation reduced the

number of independent Onsager coefficients, through its lack of dependence on a specific

coordinate system. The full reference-frame-dependent Onsager terms arise from a similar-

ity transformation. The RM formulation generally produced Onsager coefficients with less

structure that more readily fit to simple analytical forms. We discovered that the diffusion

coefficients required longer temporal trajectories [≈ 106-108 time steps] to reach convergence

than predicted from simple thermodynamical considerations. We examined as a function of

temperature and mass density a representative sample of ternary mixtures from those with

only light elements [D-Li-C] to those with highly-asymmetric mass components [H-C-Ag]

and also followed trends in the diffusion as a function of number concentration. We found

that the Darken approximation, which neglects cross-correlations terms in the autocorre-

lation functions gives diffusion coefficients within 10-20% of the complete formulation for

systems of light components and within a factor of two for highly-asymmetric cases [e.g.

H-C-Ag]. The Maxwell-Stefan formulation provides a general prescription for determining

diffusion coefficients in multi-species mixtures, applicable to classical and quantum mechan-

ical molecular dynamics approaches. In this study, we have examined results for both a

classical Yukawa potential and an orbital-free density functional approach. While in certain

regimes, the classical approach may yield differences of a factor of two, the general trends

in the diffusion coefficients are recovered.

Acknowledgments

Work supported under the auspices of Science Campaigns 4 and 1 and the Advanced

Technical Computing Campaign (ATCC) by the US Department of Energy through the Los

Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National

Security, LLC, for the National Nuclear Security Administration of U.S. Department of

18



Energy (Contract No. 89233218NCA000001).

[1] S. Hu, L.A. Collins, T.R. Boehly, Y.H. Ding, P.B. Radha, V.N. Concharov, V.V. Karasiev,

G.W. Collins, S.P. Regan, and E.M. Campbell, Phys. Plasmas 25, 056306 (2018) and reference

therein.

[2] J.A. Gaffney, S,X, Hu, P. Arnault, A. Becker, L.X. Benedict, et. al., High Eng. Den. Phys.

28, 7 (2018).

[3] Y. Ding, A. White, A. Hu, O. Certik, and L. Collins, Phys. Rev. Lett. 121, 145001 (2018).

[4] A. White, O. Certik, Y. Ding, S. Hu, and L. Collins, Phys. Rev. B 98, 144302 (2018).

[5] T. Kluge, M. Rodel, J.Metzkes-Ng, A. Pelka, A. L. Garcia et. al. Phys. Rev. X 8, 031068

(2018).

[6] V. Alopaeus and H.V. Norden, Cpmp. Chem. Eng. 23, 1177 (1999).

[7] M. Bethkenhagen, E.R. Meyer, S. Hamil, N. Nettlemann, M. French, L. Scheibe, C. Ticknor,

L.A. Collins, J.D. Kress, J.J. Fortney, and R. Redmer, Astrophys. J. 848, 67 (2017).

[8] M. Millot, S. Hamel, R.Rygg, P. Celliers, G. Collins, F. Cooper, D. Fratanduomo, R. Jeanloz,

D. Swift, and J. Eggert, Nat. Phys. 14, 297 (2018).

[9] G.I.G. Griffiths, A,D. Fortes, and C.J. Pickard, Phys. Rev. B 86, 144102 (2012).

[10] M. Bethkenhagen, M. French, and R. Redmer, J. Chem. Phys. 138, 234504 (2013).

[11] T.R. Mattson and M.P. Desjarlais, Phys. Rev. Lett. 97, 017801 (2006).

[12] B. Militzer and H.F. Wilson, Phys. Rev. Lett. 105, 195701 (2010).

[13] M. Bethkenhagen, D. Cebulla, R. Redmer, and S. Hamel, J. Phys. Chem. A 119, 10582 (2015).

[14] E.R. Meyer, C. Ticknor, M. Bethkenhagen, S. Hamel, R. Redmer, J.D. Kress, L.A. Collins, J.

Chem. Phys. 143, 164513 (2015).

[15] Exoplanet Science Strategy (National Academy Press: Washington, DC: 2018).

[16] D. A. Horner, J. D. Kress, and L. A. Collins, Phys. Rev. B 77, 02641102 (2008).

[17] J . D. Kress, J. S. Cohen, D. A. Horner, F. Lambert, and L. A. Collins, Phys. Rev. E 82,

036404 (2010).

[18] L. Burakovsky, C. Ticknor, J.D. Kress, and L.A. Collins, Phys. Rev. E 87, 023104 (2013).

[19] T. Haxhimali, R.E. Rudd, W.H. Cabot, and F.R. Graziani, Phys. Rev. E 90, 023104 (2014).

[20] L.G. Stanton and M.S, Murillo, Phys, Rev. E 91, 033104 (2015).

19



[21] J.D. Kress, C. Ticknor, and L.A. Collins, internal report, LAUR-15-27198 (2015).

[22] C. Ticknor, J. D. Kress, L.A. Collins, J. Clerouin, Arnault, and A. Decoster, Phys. Rev. E

93, 063208 (2016).

[23] A.J. White, L.A. Collins, J.D. Kress, C. Ticknor, J. Clerouin, Ph. Arnault, and N. Desbiens,

Phys. Rev. E 95, 063202 (2017).

[24] Z.G. Li, W. Zhang, Z.-J. Fu, J.-y. Dai, Q.-F. Chen, X.-R. Chen, Phys. Plasmas 24, 052903

(2017).

[25] A. Becker, M. Bethkenhagen, C. Kellermann, J. Wicht, and R. Redmer, Astronom. J. 156,

149 (2018).

[26] C. Truesdell, J. Chem. Phys. 37, 2336 (1962).

[27] Y. Zhou and G.H. Miller, J. Phys. Chem. 100, 5516 (1996).

[28] D.R. Wheeler and J. Newman, J. Phys. Chem. B 108, 18353 (2004).

[29] X. Liu, T.J.H. Vlugt, and A. Bardow, Fluid Phase Equi. 301, 110 (2011).

[30] J. W. Mutoru and A. Firoozabadi, J. Chem. Thermo. 43, 1192 (2011).

[31] X. Liu, S.K. Schnell, J-M. Simon, P. Kruger, D. Bedeaux, S. Kjelstrup, A. Bardow, and T.J.H.

Vlugt, Int. J. Thernophys. 34, 1169 (2013).

[32] M. Schoen and C. Hoheisel, Mol Phys. 52, 33 (1984).

[33] R. Krishna and J. A. Wesselngh, Chem. Eng. Sci. 52, 861 (1997).

[34] C.F. Curtiss and R. B. Bird, Ind. Eng. Chem. Rev. 38, 2515 (1999).

[35] D. Matuszak and M.D. Donohue, Chem. Eng. Sci. 60, 4359 (2005).

[36] R. Krishna and J.M. van Baten, Ind. Eng.Chem. Res. 44, 6939 (2005).

[37] X. Liu, T.J.H. Vlugt, and A. Bardow, Ind. Eng. Chem. Res. 50, 10350 (2011).

[38] X. Liu, S.K. Schell, J.-M. Simon, D. Bedeaux, S. Kjelstrup, A. Bardow, and T.J.H. Vlugt, J.

Phys. Chem. B 115, 12921 (2011).

[39] X. Liu, A.Bardow, and T.H.J. Vlugt, Ind. Eng. Chem. Res. 50, 4776 (2011).

[40] X. Liu, A. Martin-Calvo, E. McGarrity, S.K. Schell, S. Calero, J.-M. Simon, D. Bedeaux, S.

Kjelstrup, A. Bardow, and T.J.H. Vlugt, Ind. Eng. Chem. Res. 51, 10247 (2012).

[41] T. Janzen and J. Vrabec, Ind. Eng. Chem. Res. 57, 16508 (2018).

[42] R. Zwanzig and N.K. Ailawadi, Phys. Rev. 182, 280 (1969).

[43] P. Kruger, S.K. Schnell, D. Bedeaux, S. Kjelstrup, T.J.H. Vlugt, Phys. Chem. Lett. 4, 235

(2013).

20



[44] N. Dawass, P. Kruger, S,K, Schnell, S. Kjelstrup, J.M. Simon, and T.J. H. Vlugt, Mol. Sim.

44, 599 (2018).

[45] J.C. Maxwell, Phil. Trans. R. Soc., 157, 44 (1866); ibid. ”The Scientific Papers of James Clerk

Maxwell vol 2” (New York: Dover: 1965), 26.

[46] J. Stefan, Sitz. ber., Akad. Wiss. Math.-Nat. wiss. KI., 63, 63 (1871); ibid 65, 323 (1872).

[47] S. Bastea, Phys. Rev. E 71, 056405 (2005).

[48] J. Trullas and J.A. Padro, J. Chem. Phys. 99, 3983 (1993).

[49] F.O. Raineri and H.L. Friedman, J. Chem. Phys. 91, 5633 (1989).

[50] M.P. Allen, and D.J. Tildesley, Computer Simulations of Liquids, (Oxford Science Publica-

tions, Oxford, 1987).

[51] M. Pearson, E. Smargiassi, and P.A. Madden, J. Phys.: Condens. Matter 5 3221 (1993).

[52] F. Lambert, J. Clerouin, and G. Zerah, Phys. Rev. E 73, 016403 (2006).

[53] D. Giles, F. Lambert, J. Clerouin, and G. Salin, High Energy Density Phys. 3, 95 (2007).

[54] P.A. Bradley, E.N. Loomis, E,C, Merritt, J.A. Guzik, P.H. Denne, and T.T. Clark, Phys.

Plasmas 25, 012710 (2018).

[55] H. Ohta and S. Hamaguchi, Phys. Plasmas 7, 4506 (2000).

[56] S. Plimpton, J. Comp. Phys., 117, 1-19 (1995).

[57] F. Perrot, Phys. Rev. A 20, 586 (1979).

[58] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

[59] J. D. Kress, J. S. Cohen, D. P. Kilcrease, D. A. Horner, and L. A. Collins, Phys. Rev. E 83,

026404 (2011).

[60] D. A. Horner, F. Lambert, J. D. Kress, and L. A. Collins, Phys. Rev. B 80, 024305 (2009).

[61] J.F. Daniel, L. Kazandjian, and G. Zerah, Phys. Plasmas 19, 122712 (2012).

[62] D. Sheppard, J. D. Kress, S. Crockett, L.A. Collins, and M.P. Desjarlais, Phys. Rev. E 90

063314 (2014).

[63] S.X. Hu, B. Militzer, L.A. Collins, K.P. Driver, and J.D. Kress, Phys. Rev. B 94, 094109

(2016).

[64] E. R. Meyer, J. D. Kress, L. A. Collins, and C. Ticknor, Phys. Rev. E 90, 043101 (2014).

[65] F. Lambert and V. Recoules, Phys. Rev. E 86, 026405 (2012).

[66] D.A. Horner, F. Lambert, J.D. Kress, and L.A. Collins, Phys. Rev. B 80, 024305 (2009).

21



T [eV] ZC ZLi ZD λe

10 3.0 1.9 0.80 0.7

100 4.0 2.4 0.90 0.92

300 5.1 2.7 0.96 1.7

T [eV] ZAg ZLi ZD λe

100 11.7 2.4 0.91 1.22

400 22.7 2.8 0.97 1.75

TABLE I: Effective charge (Zα) and electron screening length (λe) for the Yukawa potential as

a function of temperature at 10g/cm3 for representative cases for carbon (C), lithium (Li) and

deuterium (D) and silver (Ag), Li, and D for equal concentrations by number.
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T [eV] DC DLi DD DCLi DCD DLiD

10 6.6[-3] 9.4[-3] 2.6[-2] 6.3[-3] 1.8[-2] 2.5[-2]

6.1[-3] 1.7[-2] 2.5[-2]

20 1.4[-2] 2.2[-2] 7.7[-2] 1.4[-2] 4.9[-2] 7.7[-2]

1.4[-2] 4.6[-2] 7.4[-2]

40 2.6[-2] 4.2[-2] 1.6[-1] 2.6[-2] 9.8[-2] 1.6[-1]

2.5[-2] 9.2[-2] 1.5[-1]

60 3.5[-2] 6.1[-2] 2.5[-1] 3.4[-2] 1.3[-1] 2.6[-1]

3.5[-2] 1.4[-1] 2.5[-1]

80 4.2[-2] 7.5[-2] 3.5[-1] 4.4[-2] 2.0[-1] 3.6[-1]

4.2[-2] 2.0[-1] 3.5[-1]

100 5.1[-2] 9.5[-2] 4.6[-1] 4.9[-2] 2.7[-1] 4.7[-1]

5.2[-2] 2.5[-1] 4.6[-1]

300 1.2[-1] 2.9[-1] 2.2[+0] 1.3[-1] 1.1[+0] 2.4[+0]

1.4[-1] 1.1[+0] 2.6[+0]

TABLE II: Classical MD simulations for self and mutual diffusion coefficients in a ternary system

containing equal number concentrations of carbon (C), lithium (Li) and deuterium (D) interacting

through Yukawa potentials. For each temperature, the top line gives the self-diffusion Di and

mutual diffusion Dij coefficients in units of cm2/s calculated from the MD trajectory with 399

atoms. The lower line gives the Darken values from Eq.( 25). The Onsager coefficients were

calculated from the VAC form. Power of 10 given in brackets.
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T [eV] DC DLi DD DCLi DCD DLiD

10 4.1[-3] 6.2[-3] 1.7[-2] 3.9[-3] 1.1[-2] 1.7[-2]

20 8.8[-3] 1.3[-2] 4.3[-2] 8.2[-3] 2.6[-2] 4.0[-2]

40 1.7[-2] 2.8[-2] 1.1[-1] 1.7[-2] 6.1[-2] 1.1[-1]

1.7[-2] 2.9[-2] 1.1[-1] 1.8[-2] 6.2[-2] 1.2[-1]

60 2.4[-2] 4.3[-2] 1.7[-1] 2.4[-2] 1.0[-1] 1.7[-1]

80 3.1[-2] 5.2[-2] 2.5[-1] 3.2[-2] 1.4[-1] 2.6[-1]

100 3.8[-2] 7.4[-2] 3.5[-1] 4.0[-2] 1.9[-1] 3.7[-1]

3.9[-2] 7.3[-2] 3.6[-1] 4.0[-2] 2.0[-1] 3.5[-1]

TABLE III: OFMD simulations for self and mutual diffusion coefficients as function of temperature

for a ternary system containing carbon (C), lithium (Li) and deuterium (D) in a 1:1:1 number ratio

at 10 g/cm3for 150 atoms. For each temperature, the first line gives the self-diffusion Di and the

mutual diffusion coefficients Dij for the Darken approximation. The second line for 40eV and

100eV gives the self and mutual diffusion coefficients for the full ternary MD simulations with 90

atoms. Power of 10 given in brackets.
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FIG. 1: (Color online) upper panel: Normalized velocity autocorrelation functions (VAC) as a

function of time associated with the relative-mean (RM) Onsager coefficients ΛRMij the for Yukawa

potential for a ternary 1:1:1 mixture of C, Li, and D at 10 g/cm3 and 100eV. Curves: DLi (dashed

line -blue); DC (solid line - red); LiC (within DC line width). lower panel: Unnormalized COM

velocity autocorrelation (COM-VAC) as a function of time for same case as in upper panel. Curves:

CC (solid line - blue); LiLi (long dash line - red); DD (dash-dot line - green); DLi (dash-double

dot line - purple); DC and CLi within DLi width.
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FIG. 2: (Color online) Onsager coefficient Λij(t) as a function of time for Yukawa potential for a

ternary 1:1:1 mixture of C, Li, and D at 10 g/cm3 and 10 eV. Curves: LiC (solid line - green); DC

(dashed line - red); DLi (dash-dot line - blue) . The fits lie within the line widths.
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FIG. 3: (Color online) Self-diffusion coefficients as a function of temperature for Yukawa model

for a ternary 1:1:1 mixture DLiC mixture at 10 g/cm3 for 399 atoms with C (triangle - green), Li

(circle-blue), and D (square-red) .
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FIG. 4: (Color online) Ternary mutual diffusion coefficients Dij as a function of temperature for

a Yukawa model at 10 g/cm3 for a 1:1:1 mixture with 399 atoms of C, Li, and D: Comparison of

full Maxwell-Stefan (symbols) and Darken (lines) formulations. DCLi (solid line -blue), DCD (dash

line - green), DDLi (dash-dot line - red)
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FIG. 5: (Color online) Mutual diffusion coefficients as a function of temperature for D-Li-Ag

for 1:1:2 sample of 800 atoms at 20 g/cm3 result for coefficients DLi (upper group; blue), DAg

(middle group; green) and LiAg (lower group; red). Within each group: Yukawa model for full

MD simulations (solid line) and Darken approximation (dash line); OFMD Darken results shown

as symbols.
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FIG. 6: (Color online) Mutual diffusion coefficients as a function of temperature for H-C-Ag for

1:1:2 sample of 800 atoms at 20 g/cm3 result for coefficients HC (upper group;blue), HAg (middle

group;green) and CAg (lower group;red); OFMD Darken results shown as symbols.
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FIG. 7: (Color online) Yukawa COM-frame Onsager ΛDLi(t) [Eq.( 9)] and mutual diffusion DDLi

(inset) coefficients for a DLiX mixture as a function of the heavier species X = carbon (Z=6),

aluminum (13), copper (29), and silver (47) for 20 g/cc and a number concentration of 1:1:2 for

800 atoms at 100 eV. Error bars at 1 standard deviation.
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FIG. 8: (Color online) OFMD self-diffusion and Darken mutual diffusion coefficients [cm2/s] for

the ternary mixture D-Li-Ag at 100 eV (upper panel) and 200 eV (lower panel) for a fixed total

pressure at each temperature as a function of concentration of the heavy species Ag. Labels: DD

(dashed-line - blue), DLi (dashed-line-triangle - green), DAg (dashed-line-circle - red); DDLi (solid

line - red), DDAg (solid line-square - green), and DLiAg (solid-line-diamond - blue).
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FIG. 9: (Color online) OFMD self-diffusion and Darken mutual diffusion coefficients [cm2/s] for the

ternary mixture H-C-Ag at 100 eV for a fixed total pressure at temperature of 100eV as a function

of concentration of the heavy species Ag. Labels: DH (dashed-line - blue), DC (dashed-line-triangle

- green), DAg (dashed-line-circle - red); DHC (solid line - red), DHAg (solid line-square - green),

and DCAg (solid-line-diamond - blue).
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