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We present a method of sound amplification and self-oscillation in high pressure partially ionized
gas. Continuous microwaves incident on partially ionized gas may sustain and amplify an acoustic
field if increased ionization during the sound field’s adiabatic compression enhances RF power ab-
sorption. Amplifying sound in this way enables the generation of high amplitude sound in a cavity
containing partially ionized gas without mechanical driving or precise knowledge of its resonance
frequency. This method of amplification may open opportunities within thermoacoustics such as
using 3D geometries and volumetric gain mechanisms.

I. INTRODUCTION

An acoustic cavity held out of thermal equilibrium
by a heat source may spontaneously amplify its reso-
nant modes to extraordinary amplitudes. Famous lec-
ture demonstrations of the amplification of sound in the
presence of a thermal gradient include the Rijke tube[1],
Sondhauss tube[2], and Knipps tube[3]. Such amplifica-
tion can both cause catastrophe by rattling apart jet
engines[4] or benefit through the generation of electrical
energy[5]. To explain these phenomena, Rayleigh wrote
general criteria for amplification and what would be-
come the guiding principle of thermoacoustics: “If heat
be given to the air at the moment of greatest conden-
sation, or be taken from it at the moment of greatest
rarefaction, the vibration is encouraged” [6].

When a gas ionizes and becomes conducting, elec-
tromagnetic radiation may be used to effect heating
throughout its volume. In the present study, we con-
sider how a standing sound wave may modify a gas’s
conductivity and absorption of radiation so as to cause
amplification. Similar amplification of sound in a plasma
has been observed and explained in the context of rar-
efied, ionized gas such as glow discharges and fluorescent
lamps|[7, 8]. In such low density systems, the acoustic pe-
riod is shorter than the electron-ion recombination time,
and the temperature oscillations of the acoustic wave do
not appreciably change the ionization fraction. In higher
density systems, the ionization fraction oscillates in phase
with pressure, which is expected to enhance amplifica-
tion.

The current proposal is motivated by an observation
made while studying acoustic plasma confinement [9, 10].
As reported in [10], the 180 dB re 20 uPa sound wave that
confines a lightly ionized collisional plasma causes lumi-
nosity oscillations in phase with its acoustic pressure. It
is well-known that there is a temperature oscillation as-
sociated with sound, and the amplitude quoted above
corresponds to a temperature swing of more than 10 K.
The opportunity here is that because the system sits at
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a temperature on the cusp of ionization, small changes in
temperature lead to changes in electron density and mi-
crowave absorption that are in phase with acoustic com-
pression. For these reasons, this high density, ionizing
environment should be investigated for interesting non-
linear acoustic effects beyond those presented here and
in those papers mentioned above.

In this letter, we present a type of acoustic self-
oscillation that may occur in an acoustic cavity filled with
partially ionized gas located within a microwave cavity
as shown in Figure 1. For the present analysis, the config-
uration is assumed similar to that found in [9-11], where
the acoustic cavity was a sealed quartz sphere with a ra-
dius around 2 c¢m, and the surrounding microwave cavity
was a thin-walled metallic cavity with a resonance near
2.45 GHz. Future implementations may include a means
to couple the sound out of the acoustic cavity, for exam-
ple by attaching a horn shaped outlet.

The amplification conditions are determined via an
analysis based on Saha’s ionization equation[12], the
Drude conductivity[13], Ohm’s law, and the acoustic
wave equation forced by a time-varying heat source[14].
We demonstrate that Rayleigh’s criteria of acoustic am-
plification can be satisfied in achievable conditions when
a gas’s ionization fraction increases due to adiabatic
acoustic compression.

II. WAVE EQUATION WITH HEAT SOURCE

Sound is typically generated by driving pressure or
velocity oscillations with a moving object, but variable
heating or cooling can also induce sound. In an ideal
gas, this effect is manifest in the relation between in-
ternal energy, temperature, and pressure. The posibil-
ity of generating sound by variable heating was demon-
strated more than a hundred years ago by heating thin
filaments in the so-called Thermophone[15], but practi-
cal implementation of simultaneous high frequency and
amplitude has been hindered by the difficulty of oscillat-
ing the filament’s thermal mass at sonic frequencies[16].
High power RF sources such as magnetrons, however, can
both directly heat a volume of partially ionized gas and
undergo rapid modulation, which enables high amplitude
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FIG. 1. A spherical acoustic resonator sits within a mi-
crowave cavity. Low levels of ionization in the hot gas within
the resonator allow driving sound with amplitude modulated
microwaves. Under the right conditions, sound will sponta-
neously develop in the presence of a continuous wave (i.e. no
modulation) microwave field.

and high frequency sound generation.

For a general volumetric heating, a direct manipula-
tion of the Euler, conservation of mass, and the heating
equations produces a modified wave equation which high-
lights the ability of a time-varying, volumetric heating,
H, to generate sound,
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where p; is the acoustic pressure, ¢ is the speed of
sound, and v is the ratio of specific heats[8, 14]. This
form of the wave equation explains the sound genera-
tion of modulated flames[17] and the buzzing of overhead
powerlines[18].

IIT. JOULE HEATING IN A PARTIALLY
IONIZED GAS

At temperatures above a few thousand Kelvin, as gas
begins to ionize, EM radiation can be used to directly
add energy to the gas. At neutral density near that of
air at STP, Ny ~ 2.5 x 10'? /cc, the free electrons that
absorb the EM radiation will collide with neutral parti-
cles within a collision time, 7, that is shorter than the
microwave period, 27/w = [2.45 GHz]~! ~ .4 ns. Un-
der such conditions, the EM power absorption can be
accurately described as Joule heating of the gas with the
familiar power absorption formula,

H=o,E, (2)

where o, is the electrical conductivity of the plasma and
E, is the electric field within the plasma[19, 20]. For the

present case, we assume that the microwave penetration
depth into the plasma is greater than its radius, d,5 > R,
and F, is constant throughout the plasma.

When the collision time, 7, is also less than the plasma
frequency of the gas, the conductivity is well modeled by
the Drude formula[13, 21],
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where N, is the free electron density, m. is the electron
mass, and e is the fundamental charge.

By calculating the collision time as the quotient of
the mean free path and the mean thermal speed[13], the
Drude conductivity can be directly rewritten in terms
of the ionization fraction, temperature, a collision cross
sectional area, a, and fundamental constants
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By combining Eqs. (2) and (4), the volumetric heating

of a partially ionized gas with a relatively high neutral
density can be computed for a given E,.

IV. SAHA’S IONIZATION EQUATION

The equilibrium ionization fraction of a gas, © =
N./N, is determined by the temperature, number den-
sity, N, and ionization energy of the gas, x, via the Saha
ionization equation,
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where g is a statistical weight we’ve taken to be 1, and
A = h/\/2mmkpT is the thermal de Broglie wavelength
[12]. At low ionization rates ¢ < 1, the Saha equation is
often simplified to,
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which is the form to be used in the following stability
analysis.

V. ACOUSTIC PERTURBATION TO JOULE
HEATING

By using the Saha equation to predict the ionization
fraction, the conductivity is determined by the tempera-
ture and neutral density of a gas. Under the assumption
that the ionization changes in phase with the temper-
ature and pressure, one can expect that a sound wave



passing through the gas will also cause oscillatory heat-
ing that is in phase with the acoustic pressure. This would
satisfy the Rayleigh criterion.

To demonstrate that process, the temperature[22] and
neutral density can be expanded to first order in terms
of the acoustic pressure field pq,
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Here, Ty and Ny are the temperature and neutral density
in the absence of a sound field. By using the linearizations
in Egs. (7) and (8) in the Saha equation (6) and Drude
conductivity equation (4), the Joule heating in the pres-
ence of a constant electric field can be written to first
order in terms of the acoustic field as,
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When 2kpT < x, the last term which is due to the vary-
ing ionization fraction dominates. Note that in general T'
and Hy will vary as a function of position. In this initial
analysis, however, we take them to be uniform.

VI. WAVE EQUATION WITH NEGATIVE
DAMPING

Keeping only the largest, time dependent term in Eq.
(9), the acoustic wave equation in the presence of a fixed
power input can be written explicitly in terms of acoustic
pressure as
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Note that the sign of the term on the right hand side
is opposite of a damping term. Negative damping is a
characteristic of self-oscillation and often causes systems
to depart from the linear regime. Examples of negative
damping and other types of positive feedback can be
found in [23, 24].

The possibility of amplification due to a sound wave
traversing a partially ionized gas has been considered be-
fore in the literature and used to explain traveling stri-
ations in plasma tubes|[7, 8, 14]. Those treatments, how-
ever, did not address the increased ionization fraction

due to the temperature swing of the adiabatic compres-
sion of the gas, because the electron recombination time
was assumed long compared to an acoustic period. In the
previously reported cases, the neutral density was much
lower than those considered here, so Saha equilibrium is
not achieved within an acoustic oscillation. By consider-
ing how the adiabatic temperature swing causes increased
ionization via Saha’s equation, we show here that a colli-
sional, partially ionized gas may demonstrate RF-fueled
self-oscillation more readily than previously anticipated.

VII. SELF-OSCILLATION IN A SPHERICAL
CAVITY

Self-oscillation will occur when amplification exceeds
losses. In order to assess whether this amplification mech-
anism can generate acoustic energy sufficient to exceed
the acoustic losses, we will solve Eq. (11) in the simplest
representative case, a spherical cavity with rigid walls
and a uniform temperature. Following the technique pre-
sented in [14], we will compare the growth time constant
due to amplification to the decay constant due to acoustic
damping. At the low acoustic amplitudes characteristic
of the onset of amplification, these constants can be cal-
culated independently. To determine conditions for the
onset of amplification, a comparison of these time con-
stants serves as a valid proxy for determining whether the
energy added to the acoustic field exceeds that lost due
to acoustic damping. The unique geometry of a spher-
ical cavity simplifies the calculation of damping losses
and offers other benefits as will be explained in the next
section.

Amplification due to time-varying ionization can be
studied by applying the wave equation in Eq. (11) in a
spherical cavity of radius R containing a homogeneous
gas of temperature Tp, speed of sound ¢, and density pg.
Here, we assume the walls are perfectly rigid and consider
only the first breather mode, in which case the acoustic
pressure field assumes the form,
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where jo is the spherical Bessel function and «; satisfies

j'(maq) = 0. Using this functional form, the wave equa-

tion in Eq. (11) generates the characteristic equation,
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The real term determines the resonance frequency and is
dominated by the cavity’s geometry. The imaginary term,
which is the negative damping or amplification, will cause
an exponential growth with time constant,

2p0621€BT0

Tamp = (7 _ 1)2HOX (14)



VIII. DAMPING DUE TO THERMAL

DIFFUSION

Martin Greenspan et al [25] performed probably the
most careful analysis of the resonant modes of a sphere
in order to make an extraordinarily accurate thermome-
ter which was also a device capable of determining the
universal gas constant with an accuracy of 1.7 ppm. In
so doing, they highlighted reasons why a spherical cav-
ity is better for determination of thermodynamic proper-
ties and for acoustic resonance measurements than other
shapes that also apply well for improving conditions for
amplification: 1) In the breather mode the velocity is ev-
erywhere perpendicular to the surface, so there is no vis-
cous damping at that surface. 2) Spheres have the small-
est surface to volume ratio, so losses at the surface are
minimized. 3) Acoustic energy density is peaked away
from the walls. 4) The higher order resonance frequencies
are not linear multiples of the breather and therefore less
easily excited.

These issues under consideration, the main source of
damping in a spherical cavity is thermal loss to the fixed
temperature walls. The timescale of this damping is given
in [25] as,
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where Dy is the coeflicient of thermal diffusivity. By com-
paring the growth time scale, Eq. (14), to the decay time
scale, Eq. (15), it is possible to determine the feasibility
of the amplification process. As microwave power is in-
creased, Tamp— T decreases toward zero, and the acoustic
quality factor diverges.When 74y, < Ts, the cavity will
amplify its resonant modes. Here we consider which con-
figurations of temperature, incident power, and number
density encourage amplification. This approach might be
compared to the analysis of more typical thermoacoustic
engines where the quality factor is found to diverge for a
sufficient temperature gradient across the stack[26].

The growth and decay timescales are plotted in Fig-
ure 2 for Argon with a neutral density of 2.5 x 10'? /cc
in a bulb with a radius of 2 cm, and subjected to 2.45
GHz microwaves with incident powers ranging from 500
W to 2 kW. The electron-neutral collision cross section,
a was taken to be 2 x 10717 ¢cm?, and the thermal diffu-
sivity adapted from [27] was approximately 10™* W/m
K. With sufficient power applied, the amplification time
is shorter than the damping time for a range of temper-
atures. The increased time constant at low temperatures
occurs because the plasma doesn’t absorb power at low
conductivity as explained in the next section.
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FIG. 2. A comparison of the acoustic damping time constant,
Tw, and the acoustic amplification time constant, 74mp, for
three incident powers, neutral density No = 2.5 x 10*° /ce,
and microwave quality factor Q. = 1000. When 7gmp < T,
the energy added to the acoustic field by the absorbed mi-
crowave exceeds the acoustic losses. The increase in amplifi-
cation time at low temperatures is due to the inability of low
temperature plasma to absorb microwaves as described in the
text. To illustrate how the quality factor impacts the ampli-
fication time, the 2 kW case is shown both with Q. = 1000
(solid), and Q. = 2000 (dotted).

IX. COUPLING SUFFICIENT MICROWAVE
POWER

For microwave radiation to couple to the sound field, it
must first be absorbed by the hot gas. If the conductivity
of the hot gas is too low, the energy will ultimately dissi-
pate elsewhere such as in the microwave cavity walls. In
the appendix, we calculate the power absorbed per unit
volume within the gas, Hy, as a function of temperature
by comparing the microwave dissipation in the walls to
that absorbed in the plasma. It is found to be,
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where A is a geometrical factor that depends on the
plasma’s effect on the shape of the mode. Note that in
the limit of low temperature where o — 0, Hy — 0, and
at reasonably high temperatures, Hy — P;,/Vp.

The volumetric power absorption in Eq (16) is used to
calculate the amplification time in Eq. (14). The effect
this has can be seen in the low temperature side of Figure
2 where Q. and A were set to 1000 and 1 respectively[11].
In general, both acoustic time scales depend on the gas,
its density, and its temperature. An example of the range
of parameter space in which amplification might be pos-
sible is shown in figure 3.
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FIG. 3. For each power, acoustic amplification exceeds ther-
mal acoustic damping, Tamp < T, to the left of the solid curve.
In the region to the right of the dashed line, the electron-
neutral collision time is short enough to justify use of the
Drude conductivity. Below the dotted line, the microwave
penetration depth is larger than the plasma radius, which jus-
tifies use of a constant electric field throughout the plasma.
The shaded area represents the region in parameter space in
which this analysis predicts acoustic self-oscillation for the 2
kW case.

X. CONCLUSION

We have presented a theoretical outline of how acous-
tic self-oscillation may happen more readily than previ-
ously expected when heating due to acoustic compression
causes enhanced ionization. We have also shown that this
type of amplification is experimentally feasible. Further
work will need to consider nonhomogeneous temperature
profiles and electron recombination times. Self-oscillation
provides a path toward generating extreme sound fields in
a plasma. Further research should determine which non-
linear process limits the ultimate achievable amplitude,
and what role plasma self-oscillation could then play in
nonlinear acoustics and thermoacoustics.
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XII. APPENDIX

When the plasma conductivity is high enough, it is able
to absorb all the incident microwave power. However,
when the conductivity is low, some of the microwave in-
variably is absorbed by the microwave cavity walls. This
crossover limits the acoustic gain at low temperatures.
In this appendix we calculate the fraction of the input
power that is absorbed by the plasma as a function of
the plasma conductivity.

The power loss due to the finite conductivity of the
metallic cavity walls is,

1 -
P, = h x H|?d 17
5o [l Tilda (17)

where § = /2/wpo,, is the skin depth of the metallic

cavity walls, 0., is the conductivity of the walls, H is the
magnetic field vector (not to be confused with the volu-
metric heating, H), 7 is a unit vector perpendicular to
the wall, and the integral is taken over the entire cavity
surface S[28]. The power loss due to the finite conductiv-
ity of the plasma is,

Ip
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where o, is the conductivity of the plasma assumed to be

constant over its volume, E is the electric field, and the
integral is taken over the plasma volume V,. Assuming a
matched source, the source power, P;,, will equal the sum
of P, and P,. We can then write the power per volume

absorbed by the plasma as a function of the input power,
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We can gain some insight into this equation by writing
the wall losses in terms of the unloaded (no plasma) qual-
ity factor,

WeQ fVc |E0|2dV

L [g 1 x Ho|2da’

Qc:

(20)

where EO and ﬁo indicate the fields in the absence of the
plasma, and the energy integral is taken over the cavity
volume V.. Hy can then be written,

Pi Eow‘/c -t
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where the unitless constant A is,
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The constant A depends on the particular geometry of

the microwave cavity, the location and size of the plasma

bulb, as well as its conductivity. However, for low plasma

conductivity, we may approximate A as being indepen-

dent of ¢ and use Eq. (21) to determine the low temper-
ature behavior of the acoustic gain.



