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Stability and nonlinear evolution of rotating magnetohydrodynamic (MHD) flows in the Prince-
ton magnetorotational instability (MRI) Experiment are examined using three-dimensional (3D)
non-axisymmetric simulations. In particular, the effect of axial boundary conductivity on a free
Stewartson-Shercliff Layer (SSL) is numerically investigated using the Spectral Finite Element
Maxwell and Navier Stokes (SFEMaNS) code. The free SSL is established by a sufficiently strong
magnetic field imposed axially across the differentially rotating fluid with two rotating rings enforc-
ing the boundary conditions. Numerical simulations show that the response of the bulk fluid flow
is vastly different in the two different cases of insulating and conducting endcaps. We find that for
the insulating endcaps, there is a transition from stability to instability of a Kelvin Helmholtz-like
mode that saturates at an azimuthal mode number m = 1, while for the conducting endcaps, the
reinforced coupling between the magnetic field and the bulk fluid generates a strong radially local-
ized shear in the azimuthal velocity resulting in Rayleigh-like modes even at reduced thresholds for
the axial magnetic field. For reference, 3D non-axisymmetric simulations have also been performed
in the MRI unstable regime to compare the modal structures.

I. INTRODUCTION

Angular momentum transport in accretion disks has
been of great interest, as the gravitationally contract-
ing material must transport angular momentum outward
through means of instabilities and turbulence [1–3]. Be-
cause the specific angular momentum (Ωr2) for these ac-
cretion disks undergoing Keplerian motion increases radi-
ally outward, accretion disks are hydrodynamically stable
to Rayleigh’s centrifugal instability. Although nonlinear
hydrodynamic instabilities also might arise in such sys-
tems, experimental and numerical work suggest that such
accretion disks are stable against purely hydrodynamic
modes [4–6] in particular in the absence of special fea-
tures [7] and some physical stratifications [8, 9]. There-
fore, the magnetorotational instability (MRI) [10, 11],
the MHD instability of a differentially rotating flow in
the presence of weak magnetic field, is believed to be the
driving mechanism of angular momentum transport in
astronomical accretion disks [12].

In search of MRI in the laboratory, experiments have
been dedicated to studying the stability of differentially
rotating flows in the MHD regime. Global MHD simu-
lations are also critical to investigate the onset and sat-
uration of MRI in Taylor-Couette flow geometry [15–20]
or in plasma [21] experiments. In particular, in order to
understand the liquid-boundary interactions of the ex-
perimental apparatus, global simulations with realistic
boundary conditions are crucial. In this paper, using
global MHD simulations, we investigate the effect of ex-
perimental axial boundaries in the Princeton MRI exper-
iment. The Princeton MRI experiment has been devel-
oped to demonstrate MRI in a laboratory setting using a
magnetized conducting fluid (GaInSn) rotating in a mod-
ified Taylor-Couette device [13, 14].

In Taylor-Couette devices, there are hydrodynamic

boundary layers that form due to differences in the ro-
tation rate between the boundaries and interior (bulk)
fluid, such as Ekman layers and Stewartson layers form-
ing perpendicular and parallel to the rotation axis [23,
24]. These boundary layers drive nontrivial secondary
circulation that modifies the bulk flow profile as a whole.
The strengths of these circulations are determined by the
differential rotation rates of the Taylor-Couette device.
On the other hand, there are magnetic-liquid interactions
that arise when an axial magnetic field is applied across
the system to drive MRI, such as magnetized Ekman or
Hartmann and magnetized Stewartson or Shercliff layers
that form perpendicular and parallel to the background
field [25, 26] in addition to MRI. Furthermore, induced
current loops that close around these layers can also non-
trivially affect the background flow dynamics, with the
strength of these interactions determined by the fluid-
boundary conductivities.

Understanding these secondary circulations is of great
importance for identifying MRI in a laboratory setting.
Initial experimental and computational studies [27, 28]
were conducted with insulating boundaries; however, re-
cent computational work has been carried out motivated
by the change from insulating axial boundary endcaps to
conducting ones. Wei et al. [29] discovered that changes
in the radial magnetic field corresponded well to the pre-
viously calculated MRI thresholds and that the nonlin-
ear saturation of the root mean square of total (volume
averaged) radial magnetic field (the “MRI signal”) had
similar dependence on key parameters such as B0, the
background magnetic field, as the linear MRI growth
rate. Most importantly, the simulations showed that the
MRI signal with conducting axial boundaries is signifi-
cantly increased [29] from the MRI signal with insulat-
ing axial boundaries. Based on these numerical predic-
tions, the axial boundaries have been changed to cop-
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per in the present Princeton MRI experiment. Experi-
mental studies have been recently conducted in the slow-
rotation regime to understand the fluid response under
the new boundary conditions [33], revealing a vastly dif-
ferent instability response in the two cases. Developing a
thorough understanding of the full fluid response in this
slow-rotation regime is essential for providing guidance
for planned experiments as well as numerical calcula-
tions in the experimentally relevant fast-rotating MRI-
unstable regime. Similar experimental and numerical
studies [30, 31] have been conducted comparing insulat-
ing and conducting axial boundaries to understand the
effects of boundary layers on the evolution of helical MRI
in the Potsdam Rossendorf Magnetic Instability Experi-
ment (PROMISE), and have led to an improved charac-
terization of helical MRI [32].

In this paper, we utilize 3D non-axisymmetric calcu-
lations to study numerically the formation of SSLs, the
resulting mode structures, and mechanism of the insta-
bilities. We first perform simulations with the initial
flow and parameter space as close as possible to the ac-
tual experiments [33] for direct comparisons. Consistent
with the experimental results [33], numerical MHD sim-
ulations using the Spectral Finite Element Maxwell and
Navier-Stokes solver (SFEMaNS) [22] code show that
the response of the bulk fluid flow is also vastly dif-
ferent in the two different cases of insulating and con-
ducting endcaps. We find that for the insulating end-
caps, there is a transition from stability to instability of
a Kelvin Helmholtz-like mode that saturates at an az-
imuthal mode number of m = 1, while for the conduct-
ing endcaps, the reinforced coupling between the mag-
netic field and the bulk fluid generates a strong shear in
the azimuthal velocity resulting in Rayleigh-like modes
(with hydrodynamic instability criterion for the angular
momentum ∂L/∂r < 0) at reduced thresholds for the
axial magnetic field. Good agreement between the sim-
ulations and the experimental results are obtained; for
the insulating boundary experiments there is a coherent
m = 1 instability that develops in the azimuthal flow,
and for the conducting boundary experiments a strong
shear profile similar to the numerical predictions is seen.
We further compare the resulting mode structure of the
Rayleigh-like modes in the conducting boundary simula-
tions with the MRI mode structures in a reference simu-
lation case.

The paper is organized as follows. The simulation
method and its experimental relevance are discussed in
Section II. In Section III, we present energy and eigen-
structure analysis for insulating and conducting bound-
ary conditions as well as comparisons with a refer-
ence MRI unstable case. We summarize the results in
Section IV and present implications for future simula-
tions and experimental efforts to identifying MRI in the
Princeton MRI Experiment.

II. METHODS

Non-axisymmetric 3D numerical simulations were con-
ducted with the Spectral Finite Element Maxwell and
Navier-Stokes solver (SFEMaNS) [22]. The solver uses
a Fourier spectral method in the azimuthal plane and a
finite-element method in the meridional plane with up
to 72,000 triangular finite element slices. While previous
work [29] focused on axisymmetric perturbations (with
only the m = 0 mode fully resolved), up to 16 spec-
tral azimuthal modes are resolved here to search for non-
axisymmetric shearing layer instabilities. Each instance
of the 3D non-axisymmetric simulation uses 256 cores
running in parallel with 2GB memory per core, and re-
quires 3 weeks to complete.

We solve the dimensionless Navier Stokes equation in
the fluid domain modeled for the Princeton MRI Experi-
ment using a cylindrical coordinate system with the units
of length, time, magnetic field, and conductivity being r1,
Ω−1

1 , r1Ω1
√
ρµ0, and σ with ρ and σ representing the den-

sity and conductivity. The dimensionless parameters of
the system are the fluid Reynolds number Re ≡ Ω1r

2
1/ν

corresponding to the viscosity, the magnetic Reynolds
number Rm ≡ Ω1r

2
1σGaInSnµ0 determining the rotation

rate, the Lehnert number B0 ≡ VA/Ω1r1 corresponding
to the magnetic field strength with VA ≡ B/

√
µ0ρ the

Alfven velocity, and the Elsasser number Λ ≡ B2
0Rm

which is the ratio of the Lorentz and Coriolis force. Fig-
ure 1 shows the simulation domain. The fluid is encapsu-
lated in 4 rotating parts: the inner cylinder, inner ring,
the outer cylinder, and the outer ring. The radii of the
inner and outer cylinder are r1 = 7 cm and r2 = 21 cm
respectively; the endcaps are divided into differentially
rotating inner and outer rings to suppress secondary cir-
culations [35]. The inner/outer ring transition radius
is rt = 14 cm, and the height of the fluid domain is
h = 28 cm. The endcap thickness d = 2 cm determines
the effective electrical thickness δ ≡ σCud/σGaInSn. The
induction equation is solved in the fluid/solid domain,
namely the conducting fluid, the copper endcaps, and
the steel inner cylinder ends. Finally, a spherical vac-
uum domain with radius rs = 280 cm surrounds the fluid
and solid domain. For the insulating endcap simulations,
the induction equation is no longer solved in the solid do-
main and the entirety of the solid domain is incorporated
into the vacuum domain, representing full insulating ax-
ial boundaries in the experiment.

We primarily perform our analysis under two differ-
ent regimes of rotation rates: the slow rotation rate
(Rm ∼ 0.6) with the Split-Stable rotation profile de-
vised to visualize the hydrodynamic response and com-
pare with initial experimental results [33], and the fast
rotation rate (Rm ∼ 10) with the MRI rotation profile to
highlight the differences in mode structure between the
slowly rotating magnetohydrodynamic response and the
fast rotating MRI. In the stability diagram in Figure 2,
the red and blue diamonds represent the experimental
and simulational parameters for the slow rotation regime
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FIG. 1. Initialization of the simulation domain. The inner
cylinder is composed of an insulating shell with stainless steel
ends, and outer cylinder is composed of stainless steel in the
experiments and an insulator in the simulations. The inner
and outer rings are composed of copper. The working fluid is
GaInSn.

FIG. 2. Visualization of the parameter space involved in
the simulations and experiments, with the curve represent-
ing marginal stability and the shaded area representing the
MRI unstable regime. The red and blue diamonds respec-
tively represent the Split-Stable experiment and simulations
that were conducted in the slow-rotation regime. The black
dot represents the MRI simulation in the fast-rotation regime
with the background field B0 = 6500 G and the differential
rotation rate ∆Ω = Ω1 − Ω2 = 4250 rpm.

respectively and the black dot represents the simulational
parameter for the fast rotation regime. The axial field
values B0 were chosen to amplify the fluid response in
the slow rotation regime and to fully destabilize MRI in
the fast rotation regime.

A “Split-Stable” (S-S) rotation profile composed of co-

rotating inner and outer components respectively is en-
forced in the simulations to amplify the effects of the
shear inside the fluid domain. The inner cylinder, in-
ner ring, outer ring, outer cylinder rotations Ω1, Ω3,
Ω4, Ω2 were configured at the relative rates Ω1 = Ω3,
Ω2 = Ω4 = 0.25Ω1 (Ω1 = 335 rpm) for this setup with
no-slip boundary conditions between ring-fluid interface.
The initial bulk fluid rotations were matched to the re-
spective ring rotations piecewise uniformly and relaxed
until a hydrodynamically steady rotation profile was es-
tablished to closely emulate the real experimental rota-
tion profile. Figure 3 shows this initial background rota-
tion profile Ω as a function of radius r at the midplane;
although there are some slight discrepancies in the flow
near the inner components r = 1.25 to r = 1.75, overall
the experimental and simulational flow closely resemble
each other in the bulk fluid. The initial flow for the sim-
ulations failed to be hydrodynamically stable for Rossby
number Ro ≡ (Ω1 − Ω2)/Ω2 = 2.35 matching the exper-
iment, so a higher differential rotation rate with Ro = 3
was used to develop the hydrodynamically stable initial
flow in the simulations. [34].

For reference, we have also performed 3D non-
axisymmetric simulations of the MRI unstable case with
the “MRI” rotation profile that lead to the optimiza-
tion of the MRI signal [29]. The relative rotation rates
were configured at Ω3 = 0.55Ω1, Ω4 = Ω2 = 0.1325Ω1

(Ω1 = 5000 rpm), and the background magnetic field
B0 = 0.2 (B = 6500 G). This simulation is not ex-
actly experimentally relevant as the background mag-
netic field is initialized instantaneously after the piece-
wise solid body (“PSB”) initial state is enforced where
the fluid in the entire volume has the same velocity as
the rotating boundaries. However the flow responds to
the applied field and relaxes rapidly before MRI growth
so that the relaxed flow could be considered as the effec-
tive initial state. Figure 3b shows the rotation profiles
of the piecewise solid body initial state and the relaxed
flow immediately after magnetic field application.

Table I lists the experimental parameters used in the
split-stable experiments [33]. The experimental parame-
ters are normalized to the aforementioned scaling in the
simulations. The dimensionless constants of the simula-
tions and experiments are summarized in Table II. The
dimensionless constants for the Split-Stable simulations
and experiments are relatively similar with the exception
of the fluid Reynolds number, which is Re ∼ 106 in the
experiments but is Re = 1000 in the simulations due to
computational limitations.

III. SIMULATION RESULTS

Here, we present simulation results for the two cases
of split-stable (S-S) case and MRI unstable case. In the
split-stable configuration, the inner and outer cylinders
rotate with the inner and outer rings respectively, re-
laxing to a flow with larger shear around the mid-radius.
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FIG. 3. Plots of the fluid rotation rate Ω as a function of
radius taken at the midplane (z = 0) of the system. a) Ini-
tialization of the hydrodynamically stable initial state is done
by relaxing a piecewise uniform state matched at the rotation
rates of the boundaries to more precisely emulate real exper-
imental fluid flows. The simulation flow for the split-stable
case is indicated in a dashed blue line, the experimental flow
in a dotted red line, and the ideal Taylor-Couette solution in
a solid black line. The experimental flow is collected using
ultrasound Doppler velocimetry (UDV) from a run with the
same ratio of inner and outer components, but at a slightly
higher rotation rate. b) Reference MRI unstable case with
piecewise solid body initial state and the relaxed rotation pro-
file. The relaxed rotation profile is the effective initial state,
which could trigger MRI for this reference case.

The effect of insulting and conducting endcap boundaries
are presented for this case. For the reference unstable
MRI case, a piecewise solid body initial state (with three
rotational frequencies) relaxes to a state with lower flow
shear unstable to MRI. For the conducting endcap cases,
the resulting mode structures and energies for the S-S
case are compared with the MRI case.

Experimental Parameters
Split-Stable Experiment

r1 6.9 cm
r2 20.3 cm
rt 13.5 cm
h 28 cm
d 2 cm

Ω1,Ω3 335 rpm
Ω2,Ω4 100 rpm

ρCu 9.0 g/cm3

ρGaInSn 6.3 g/cm3

σCu 6.0 × 107 (Ωm)−1

σGaInSn 3.5 × 106 (Ωm)−1

σsteel 1.75 × 106 (Ωm)−1

B 4200 G

TABLE I. Experimental parameters of the physical system
are displayed. The physical dimensions of the experimental
apparatus, the differential rotation rates, the densities of the
endcaps and working fluid, and the conductivities are sum-
marized.

Experiment Simulation Simulation
Split-Stable Split-Stable MRI

Re 106 Re 1000 Re 1000
Rm 0.68 Rm 0.68 Rm 10
B0 1.89 B0 1.8 B0 0.2
Λ 2.44 Λ 2.21 Λ 0.4

TABLE II. Dimensionless parameters of the system are dis-
played. The dimensionless parameters are the fluid Reynolds
number, magnetic Reynolds number, axial magnetic field
strength, and Elsasser number which corresponds to the vis-
cosity of the system, the rotation rate, the background mag-
netic field, and the relative strength of the Lorentz force and
Coriolis force respectively.

A. Split-Stable Case

Previous experimental results show that for insulat-
ing endcaps, an instability with azimuthal mode number
m = 1 develops, caused by the formation of magnetized
Stewartson-Shercliff layers (SSLs) driven by the back-
ground axial field above the threshold ΛGa > 1 [28, 33].
The results from the non-axisymmetric simulations show
the same general trend; after the background axial field
is applied the azimuthal velocity becomes globally desta-
bilized by the formation of free SSLs near the inner and
outer ring boundary. These fluctuations culminate in
Kelvin-Helmholtz like modes with an axially uniform
structure and azimuthal mode structure transitioning
from m = 4 to m = 1.

In Figure 4, we see the volumetrically averaged kinetic
energy of the insulating endcap system without the back-
ground mean flow contribution. There is a modal cascade
of power from m = 4 to m = 1 in the kinetic energy
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FIG. 4. Calculated volumetrically averaged kinetic energy
contributions for the S-S insulating boundary simulations
from azimuthal modes m = 1 to m = 4. Higher azimuthal
modes are not active.

spectrum of the system, with the m = 1 contribution
exponentially growing at early times. This qualitatively
agrees well with the previous results with the emergence
of a single dominant mode from initial multiple mode
spectra [28, 33]. The non-axisymmetric contribution to
the volumetric kinetic energy is resolved fully; kinetic
energies from higher mode numbers m > 4 are orders of
magnitude less than the m ≤ 4 and do not contribute sig-
nificantly to the volumetrically averaged kinetic energy.

Fluctuating azimuthal velocities Vθ,fl were calculated
by subtracting the time averaged mean flow Vmean from
Vθ and plotted onto the azimuthal and axial plane. The
mode structures depicted in Figure 5 clearly show the
dominantm = 1 instability in the azimuthal cross-section
at the midplane, indicating that the magnetized SSL
produced a global instability throughout the bulk fluid
rather than localized behavior near the endcaps. The
instability also has an axially uniform profile.

In contrast to the gradual and coherent fluid response
under insulating endcaps, the fluid response is much more
dynamic and rapid when conducting boundaries are en-
forced. A comparison between the azimuthal velocities
of the insulating and conducting endcaps after the back-
ground magnetic field is applied shows that there is an
immediate response in the conducting case that leads to
changes in the mean fluid flow and changes to the struc-
tural complexity of the azimuthal velocity fluctuations,
while in the insulating case the fluctuations develop more
gradually and are more structured. The m = 1 mode
eventually dominates in the insulating case, but plots of
the modal structure of the conducting case show that af-
ter the initial change in mean flow the fluctuations main-
tain an apparent azimuthal structure of m = 2.

The volumetrically averaged kinetic energy graph is
shown in Figure 6 for the conducting boundaries. Com-
paring to the insulating case, the onset of instabilities

in the conducting boundaries case is much more rapid
and diverse. Although the strength of the modal fluc-
tuations is weaker at a normalized value of 0.1 ∼ 0.2,
there is no single mode that contributes dominantly to
the kinetic energy; rather, multiple high-frequency modes
contribute. However, the primary difference lies in the
m = 0 axisymmetric evolution. In the conducting case,
we see an immediate increase in the m = 0 kinetic energy
which translates to a sudden change in the mean flow of
the system compared to the insulating case where the
mean flow doesn’t change drastically. The inset in Fig-
ure 6b shows the change in the bulk flow as the m = 0
growth sets in; the strong shear is rapidly established as
the total energy in the bulk flow is established.

Because the azimuthal velocity Vθ includes the m = 0
background mean flow, the radial (Vr) and axial (Vz) ve-
locity perturbations were visualized instead to look at
the mode structure of the instabilities. Figure 7 shows
the azimuthal and axial mode structures of the instabil-
ity. There is a clear m = 0 structure in both the radial
and axial components of velocity. There seems to also
be some modal breakdown into higher frequency in lo-
calized parts of the system near the axial boundaries,
indicating that the system is evolving quickly and tran-
sitioning from the linear phase to the turbulent phase.
The axial cross-sections show coherent structures in the
meridional plane; most noticeably we have four circula-
tory cells that span the axial plane when the instability
is saturated. The drastically different mode structure
for the conducting boundaries suggests a completely dif-
ferent instability response mechanism compared to the
insulating boundaries. For the insulating boundaries the
instability culminated in K-H like modes with m = 1 and
axially uniform mode structure, while for the conducting
boundaries the resulting instability was an axisymmet-
ric m = 0 mode with circulating cells in the meridional
plane hinting at Rayleigh-like modes.

To investigate the difference between the conducting
and insulating response, the current response to the back-
ground axial magnetic field is plotted in Figure 8. Al-
most immediately after the background magnetic field is
turned on, large currents develop in the endcap bound-
aries for the conducting case. These thick boundary layer
currents and the high conductivity of the endcaps lead to
strong magnetic coupling of the fluid to the boundaries
and result in significant return currents in the fluid vol-
ume itself. The large return currents ultimately drive
strong azimuthal Lorentz forces and Maxwell stresses
that reinforce the fluid rotation in the inner fluid volume
while decreasing the rotation of the outer fluid volume,
resulting in a sharp shear that drives the system to a
Rayleigh unstable state. In contrast, this effect is not
observed in the insulating case where the endcaps are
treated as part of the vacuum; a small volume of fluid
along the boundary interface forms a thin layer on the
fluid/vacuum interface, effectively taking the place of the
conducting endcaps. However, the low conductivity and
small current layer thickness results in a much weaker
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FIG. 5. The mode structures of the Split-Stable insulating simulation calculated for the normalized fluctuating azimuthal
velocity Vθ,fl = (Vθ − Vmean)/Vmean. a) shows the azimuthal mode structure at the midplane (z = 0) and b) the axial (r-z)
mode structure and streamlines at the azimuthal cross section θ = π/2. The computational data was taken at t = 2.1 s when
the m = 1 contribution was dominant.

coupling between the boundary and fluid compared to
fully conducting boundaries. This culminates as mini-
mal return currents that do not significantly increase the
flow shear of the system, and remains stable to Rayleigh
instabilities while still unstable to the magnetic Kelvin-
Helmholtz instability for the insulating boundaries as re-
ported previously [27, 28].

The effect of the Lorentz forces on the hydrodynamic
stability of the system in both the conducting and in-
sulating case can be seen in Figure 9, where the shear
profile q = −∂ ln Ω/∂ ln r for various timescales are plot-
ted. Almost immediately after application of the back-
ground field (t = 0.1 s), a localized peak that is above the
Rayleigh stability threshold of q = 2 appears in the shear
profile for the conducting boundaries, while the shear
profile for the insulating boundaries remain relatively
unchanged. This leads to an immediate growth in the
Rayleigh-like structures shown in Figure 7 for the con-
ducting case. For the insulating case, the development of
shear is very slow; the shear eventually does go above the
Rayleigh unstable limit at later times (t = 0.7 s) but the
onset of K-H modes forces the shear profile back below
the q = 2 threshold.

The late time shear profiles for the simulations and
experiments are plotted in Figure 10. The shear in the
insulating endcap simulations stays below q = 2 after
the development of the K-H like mode except at the in-
ner and outer cylinder boundaries where viscous forces
play a large role. The shear in the conducting simula-
tions shows localization of the shear above the Rayleigh
stability threshold q = 2 between the radii r = 1.6 and
r = 2.5. Referring back to Figure 7, we observe that
the conducting m = 0 mode structure is also localized
around these radii where q > 2, indicated in light dashed
lines, supporting the onset of hydrodynamically unstable

Rayleigh modes. Experimentally, similar q profiles are
seen in the conducting case; the same large shear is es-
tablished between r = 1.6 and r = 2.5. In the insulating
case the shear also stays well below q < 2, but the shear
profile deviates from the numerical values. This is proba-
bly because viscous forces are nontrivial in the insulating
case and the computational restraints on fluid Reynolds
number, which is 1/1000 that of the experiment, impact
the flow dynamics.

The difference in response for the conducting and in-
sulating boundaries can be understood through the work
done on line-tied K-H instabilities by Miura et al. [36].
Although the stability analysis done by Miura et al. is
for an infinite slab geometry with vertical boundaries of
finite thickness and conductivity, a rough estimate for
the stability of the cylindrical system can be extrapo-
lated by transforming the longitudinal coordinate to the
azimuthal coordinate. Modifying Eq. 36 in this paper
for our cylindrical system gives the linear growth rate γ
of line-tied K-H modes for finite axial wavenumbers:

γ2 = m2(Vθ/r1)2 − k2
zV

2
A (1)

Using the values m = 1, Vθ/r1 = 33.5rad/s, kz =
π/28cm, VA = 4.5m/s, the growth rate γ2 is negative,
indicating that the K-H mode is stabilized in the con-
ducting boundary system. Note that we have used the
shortest axial wavelength due to the line-tied boundary
condition. The mode structures with nonzero kz that
are demanded by the line-tied conducting axial bound-
aries contribute to magnetic field bending and stabilize
the K-H modes.

However, in the insulating case, the most unstable K-
H mode is associated to kz ∼ 0 resulting in the linear
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FIG. 6. Calculated volumetrically averaged kinetic energy
contributions for conducting boundary S-S simulations. a)
Azimuthal modes m = 1 to m = 4 b) m = 0, inset shows the
flow profile before initialization and after the m = 0 mode
growth. Higher azimuthal modes are not active.

growth rate in Eq. 40 of Ref. [36]:

γ = −µ0(σGaInSnd)V 2
A/h

+ [(µ0(σGaInSnd)V 2
A/h)2 +m2(Vθ/r1)2]1/2 (2)

Using the values of m, Vθ/r1, VA listed above, the con-
ductivity of the fluid layer σGaInSn = 3.5 × 106(Ωm)−1,
and the value d = 0.14cm as a rough estimate of the
layer width using the current profiles in Figure 8, the
theoretical growth rate is γth = 33.1 s−1. Analyzing
the growth rate of the line-tied K-H instability in the
insulating simulations from Figure 4 gives the numeri-
cal growth rate γsim = 4.8 s−1. Despite the differences
in the initial configuration (slab vs. cylindrical) and in-
stability stage (local linear theory vs. global nonlinear
simulations), the linear theory presented by Miura et al.
qualitatively agrees with the results of the simulations,
predicting suppression of line-tied K-H modes in the con-
ducting case and the growth of said modes in the insulat-

FIG. 7. The mode structures of the S-S conducting simulation
calculated for the fluctuating radial and axial velocity Vr, Vz.
a) shows the azimuthal mode structure of Vr at the midplane
(z = 0) and halfway to the axial boundaries (z = 1), b)
the axial mode structures of Vr, Vz, and streamlines at the
azimuthal cross section θ = π/2. The data was taken at
t = 0.1 s when the m = 0 contribution is growing rapidly.

ing case. Modification of the line-tied K-H theory for the
cylindrical geometry in the MRI experiments remains for
a future work.

B. Reference MRI Unstable Case

3D non-axisymmetric simulations of the MRI unstable
configuration with conducting boundaries are conducted
to compare with the previous 2D results and the afore-
mentioned split-stable state. Because we expect only the
MRI to be unstable in this particular region, the eigen-
structures and energy evolution of the MRI unstable con-
figuration should be significantly different from the split-
stable configuration, which is shown above to be hydro-
dynamically unstable.

The volumetrically averaged Br, called the MRI signal,
measures the change in the radial magnetic energy and
is plotted for both the split-stable case and the MRI un-
stable case in Figure 11. The starting values of the MRI
signal are different because the split-stable case is initial-
ized with an experimentally relevant rotation profile with
perturbations in Vr, which in turn imparts a nontrivial
Br when the background field is turned on. The MRI
signal starts near zero for the MRI unstable case because
a piecewise solid body initial state was used with no Vr.
The saturated value of the MRI signal in the 3D non-
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FIG. 8. The current responses Jr to the background magnetic
field for the S-S conducting and insulating simulations. The
current response and resulting Lorentz forces are strong and
immediate for conducting case while the current response is
weak for the insulating case.

FIG. 9. q = −∂ ln Ω/∂ ln r plots at times t = 0.1 s colored
in black and t = 0.7 s colored in red, taken at the midplane
for the S-S simulations. The hydrodynamically stable initial
state is colored in green. Early time behavior suggests that
the response of the shear is rapid in the conducting case, while
it is slower for the insulating case. Later time behavior has
the shear above the Rayleigh threshold q = 2 for both the
conducting and insulating cases, but the increased shear is
maintained in the conducting case while it is flattened for the
insulating case as the K-H mode develops.

axisymmetric simulations is identical to the 2D simula-
tions, implying that only the axisymmetric m = 0 com-
ponent is present. Furthermore, we can see that for the
MRI unstable case the MRI signal grows with a saturated
state orders of magnitude greater than the counterpart
in the split-stable case. This is not surprising because
the dominant instability in the split-stable case is hydro-
dynamically driven, while MRI is magnetically driven.
Interestingly enough, the MRI signal in the split-stable
case exponentially decays and gives rise to hydrodynamic
instabilities.

FIG. 10. q = −∂ ln Ω/∂ ln r plots versus radius at late times,
taken at the midplane for the S-S simulations and experi-
ments. q values above 2 are linearly unstable to Rayleigh’s
centrifugal instability. The black line indicates the q profile
of the conducting endcaps, while the red line indicates the q
profile of the insulating endcaps. The blue line indicates the
q profile of the MRI unstable configuration with conducting
endcaps.

FIG. 11. The evolution of volumetrically averaged Br (MRI
signal) for the MRI unstable and S-S simulations. The MRI
signal saturates at a much higher threshold in the MRI unsta-
ble configuration compared to the split-stable configuration.
Slight differences in the MRI signal evolution for the 2D and
3D case is due to computational mesh size; the 3D simulations
are conducted with a mesh that is 4 times finer so the initial
perturbation is smaller than the 2D simulations.

The axial and azimuthal breakdown of the mode struc-
tures of the MRI unstable case also highlights the differ-
ence between these two configurations. Figure 12 shows
the meridional cross-section of B and V for the MRI un-
stable case. Comparisons with previous 2D results [29]
yield identical axial mode structures for the 2D and 3D
case. Comparing the axial structures of the MRI unsta-



9

ble case with the split-stable case (cf. Figure 7) shows
that there is a clear difference in the axial mode struc-
ture, indicating that the instability mechanism is differ-
ent. In particular, the streamlines of V of the split-stable
case resembles four vortices while in the MRI unstable
case there are only two vortices on top of each other and
spanning the entire radius of the system.

Figure 13 shows the relevant azimuthal mode struc-
tures of Vr and Br of the split-stable configuration and
the MRI unstable configuration. The velocity fluctua-
tions are vastly different as expected by the change in
parameter space; it is interesting to note that the shear
profile of the MRI unstable configuration goes slightly
over the centrifugal instability threshold q = 2 (cf. Fig-
ure 8). However, the spatial location of the m = 0 ampli-
tude in the mode structure of Vr do not overlap with the
region of increased shear, suggesting that the centrifugal
modes are subdominant. In contrast, Br has a large ac-
tive m = 0 component orders of magnitude greater than
the mostly dormant split-stable counterpart, as expected
for the axisymmetric MRI perturbations.

IV. CONCLUSION

The effects of boundary endcap conductivity on a
free Stewartson-Shercliff in the Princeton MRI Experi-
ment were explored using 3D non-axisymmetric compu-
tational simulations. We find that the instabilities result-
ing from the formation of the free SSLs are global Kelvin-
Helmholtz like modes with insulating axial boundaries,
while the instabilities resulting from conducting axial
boundaries are Rayleigh-like modes. The difference is
attributed to the strong coupling of the conducting axial
boundary with the working fluid; the immediate evolu-
tion of thick boundary layer currents in the endcaps lead
to return currents in the fluid and stronger coupling, re-
sulting in a strong azimuthal force that ultimately re-
inforces the flow shear. The increased shear causes the
formation of quick Rayleigh modes with finite kz in the
conducting case. In the insulating case, the shear devel-
opment is too slow to support Rayleigh-like mode growth,
thus the most unstable K-H modes with zero axial wave
number (kz = 0) grow.

In summary, we find that the simulation results with
insulating and conducting axial boundaries are consis-
tent with previous experimental measurements [33] us-
ing a split-stable rotation profile to enforce large shear in
the fluid domain. Our preliminary 3D simulation of the
MRI unstable state also shows that there are significant
differences in the velocity fluctuations compared to the
split-stable case suggesting different instability mecha-
nisms as expected. The magnetic field fluctuations show
a strong dominant m = 0 component and an increasing
MRI signal, which is a promising precursor for MRI.

As experiments and simulations in the MRI unstable
regime are carried out, it is important to differentiate be-

tween the Rayleigh-like instability and the MRI. Current
experimental efforts aim towards minimizing the forma-
tion of these SSLs by adjusting the individual rotation
rates of the inner and outer rings so that the background
hydrodynamic flow becomes flatter to avoid Rayleigh in-
stabilities. Moving forward, it will be important to con-
sider 3D non-axisymmetric simulations near the stability
threshold for experimental relevance and direct compar-
isons.
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FIG. 12. Axial (r-z) mode structures of a) Vr, b) Vz, c) Br, d) Bθ for the reference MRI unstable simulation. Structures remain
axisymmetric even in the presence of non-axisymmetric modes in the simulations.
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FIG. 13. Azimuthal mode structures of Br and Vr of the S-S
and MRI unstable simulations. Mode structures of Vr are sim-
ilar in both cases with differences in radial distributions. The
azimuthal mode structures of Br and Vr of the MRI unstable
configuration and the split-stable configuration are vastly dif-
ferent from each other, with a strong, dominant axisymmetric
m=0 component in the MRI unstable configuration compared
to a weak fluctuation in the split-stable configuration.
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