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The emerging field of self-driven active particles in fluid environments has recently created significant interest
in the biophysics and bioengineering communities owing to their promising future biomedical and technological
applications. These microswimmers move autonomously through aqueous media where under realistic situations
they encounter a plethora of external stimuli and confining surfaces with peculiar elastic properties. Based on a far-
field hydrodynamic model, we present an analytical theory to describe the physical interaction and hydrodynamic
couplings between a self-propelled active microswimmer and an elastic interface that features resistance toward
shear and bending. We model the active agent as a superposition of higher-order Stokes singularities and elucidate
the associated translational and rotational velocities induced by the nearby elastic boundary. Our results show
that the velocities can be decomposed in shear and bending related contributions which approach the velocities of
active agents close to a no-slip rigid wall in the steady limit. The transient dynamics predict that contributions
to the velocities of the microswimmer due to bending resistance are generally more pronounced than to shear
resistance. Bending can enhance (suppress) the velocities resulting from higher-order singularities whereas the
shear-related contribution decreases (increases) the velocities. Most prominently, we find that near an elastic
interface of only energetic resistance toward shear deformation, such as that of an elastic capsule designed for
drug delivery, a swimming bacterium undergoes rotation of the same sense as observed near a no-slip wall. In
contrast to that, near an interface of only energetic resistance toward bending, such as that of a fluid vesicle
or liposome, we find a reversed sense of rotation. Our results provide insight into the control and guidance of
artificial and synthetic self-propelling active microswimmers near elastic confinements.

I. INTRODUCTION

Artificial nano- and microscale machines hold great po-
tential for future biomedical applications such as precision
nanosurgery, biopsy, or transport of radioactive substances
to tumor sites1–3. These active particles have the ability
to move autonomously in biofluids and could reach inac-
cessible areas of the body to perform delicate and precise
tasks. Recent advances in the field have provided a funda-
mental understanding of various physical phenomena aris-
ing in active matter systems4–12, which exhibit strikingly
different behavior than their passive counterparts. Suspen-
sions of active agents display fascinating collective behav-
ior and unusual spatiotemporal patterns, including propa-
gating density waves13–15, motility-induced phase separa-
tion16–20, and the emergence of active turbulence21–26.
While passive particles can be set into motion under the

action of an external field, active particles self-propel by
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converting energy from their environment into mechani-
cal work. At low Reynolds numbers, microswimmers have
to employ effective self-propulsion mechanisms that break
the time-reversal symmetry of the Stokes flow4, a property
commonly referred to as Purcell’s scallop theorem27–30. For
instance, many biological microswimmers perform a non-
reciprocal deformation cycle of their body via, e.g., rotating
flagella or beating cilia31–34, whereas synthetic microswim-
mers move via phoretic effects caused by their asymmetric
surface properties35–43, or by non-reciprocal deformation of
their shape44–55.
In many biologically relevant situations, motion occurs

in the presence of surfaces that significantly modify the hy-
drodynamic flows and thereby strongly affect the transport
properties, function, and survival of suspended particles
and microorganisms. Confining boundaries play an impor-
tant role in many engineering and biological processes rang-
ing from the rheology of colloidal suspensions56–58 to the
transport of nanoparticles and various molecules through
micro- and nanochannels59,60. Moreover, microswimmers
encounter in their natural habitats a plethora of different
types of surfaces with various geometric and elastic proper-

mailto:abdallah.daddi.moussa.ider@uni-duesseldorf.de


2

ties. Examples include sperm cells in the female reproduc-
tive tract61, bacterial pathogens in microvasculature chan-
nels62, or bacteria in biofilms63. Thus, surface-related ef-
fects on their motility may entail important consequences
for a large number of biological systems, including biofilm
formation, bacterial adhesion, and microbial activity64,65.

Transport properties of active agents near a no-slip rigid
planar wall reveal various interesting features66–83, includ-
ing their escape from the wall, a stationary hovering state,
or gliding along the boundary maintaining a constant ori-
entation during their navigation. Interestingly, flagellated
bacteria display circular swimming trajectories close to sur-
faces as a consequence of hydrodynamic couplings84. Their
swimming direction can be qualitatively influenced by the
nature of the boundary conditions at the interface such
that, e.g., the circular motion is reversed at a free air-
liquid interface when compared to a no-slip wall85. Bacte-
rial swimming in the close vicinity of a boundary has been
addressed theoretically using a two-dimensional singularity
model combined with a complex variable approach86, a re-
sistive force theory87, or a multipole expansion technique85.
Further, it has been shown that the presence of a nearby
wall can lead to a change in the waveform assumed by ac-
tuated flagella causing a strong alteration of the resulting
propulsive force88. Under applied shear flow, swimming
bacteria89–95 and sperm cells96–98 near surfaces may inhibit
their circular motion and exhibit rheotaxis leading to mo-
tion against imposed shear flow. Likewise, the rheotactic
behavior of a self-diffusiophoretic particle has been inves-
tigated numerically by means of boundary integral simula-
tions99. Direct measurements of the flow field generated by
individual swimming E. coli both far from and near a solid
surface have revealed the relative importance of fluid dy-
namics and rotational diffusion in bacterial locomotion100.
More recently, it has been shown that E. coli bacteria use
transient adhesion to nearby surfaces as a generic mecha-
nism to regulate their motility and transport properties in
confinements101. Remarkably, a nearby wall alone can en-
able self-phoresis of homogeneous and isotropic active par-
ticles102. The behavior of self-propelled nano- and micro-
rods in a channel has further been investigated theoretically
and numerically103–109.

Unlike fluid-fluid or fluid-solid interfaces, elastic bound-
aries generically stand apart because they endow the sys-
tem with memory. Such an effect results in a long-lasting
anomalous subdiffusive behavior on nearby particles110–113.
The emerging subdiffusion can significantly enhance resi-
dence time and binding rates and thus may increase the
probability to trigger the uptake of particles by living cell
membranes via endocytosis114,115. Moreover, theoretical
investigations of model microswimmers immersed in an
elastic channel have predicted an enhancement in swim-
ming speed as the swimmers deform the flexible bound-
aries via hydrodynamic flows116. In addition, it has been
demonstrated that reciprocal motion close to a deformable
interface can circumvent the scallop theorem and result to
a net propulsion of microswimmers at low Reynolds num-
bers117. Theoretically, the motion of a passive particle near

FIG. 1. Illustration of the system setup. An axisymmetric active
microswimmer modeled as a prolate spheroid is trapped at z = h
above an elastic interface infinitely extended in the xy-plane.
The lengths of the short and long semi-axes are denoted by a
and c, respectively. Setting the orientation of the swimmer, the
unit vector ê points along the symmetry axis of the swimmer.
The pitch angle of the swimmer relative to the horizontal plane
is denoted by θ ∈ [−π/2, π/2] (complement of the polar angle in
spherical coordinates). On both sides of the elastic interface, the
surrounding fluid is Newtonian and characterized by the same
dynamic viscosity η. The figure shown in the inset is a top view
of the local reference frame associated with the microswimmer,
where ρ0 is the radial distance and ϕ ∈ [0, 2π) is the azimuthal
orientation.

a fluid membrane possessing surface tension118,119, bend-
ing resistance120, or surface elasticity121,122 has thoroughly
been studied. The corresponding diffusion coefficient in the
steady limit is found to be universal and identical to that
predicted near a hard wall with no-slip boundary condi-
tions121.
Here, we investigate the influence of nearby elastic

boundaries possessing resistance toward shear and bending
on the dynamics of microswimmers at low Reynolds num-
ber. Our analytical approach is based on the far-field hy-
drodynamic multipole representation of active microswim-
mers and valid in the small-deformation regime. We find
that the shear- and bending-related contributions to the
overall induced translational and rotational velocities re-
sulting from the hydrodynamic interactions with an elastic
interface may have promotive or suppressive effects. In
the steady limit, the swimming velocities are found to be
independent of the membrane elastic properties and to ap-
proach the corresponding values near a no-slip wall.
The remainder of the paper is organized as follows. In

Sec. II, we present the governing equations of low-Reynolds-
number fluid motion and introduce, in the small deforma-
tion regime, a relevant model for an elastic interface fea-
turing resistance toward both shear and bending. In ad-
dition, we describe in terms of the multipole expansion of
the Stokes equations the self-generated flow field induced by
an active microswimmer near an elastic interface. We then
evaluate in Sec. III the induced swimming velocities due
to hydrodynamic interactions with the interface and dis-
cuss the interplay between shear and bending deformation
modes, as well as their corresponding roles in the overall
dynamics. Concluding remarks are contained in Sec. IV.
Some mathematical details, which are not essential for the
understanding of the key messages of our analytical ap-
proach, are relegated to the Appendices.

II. THEORETICAL DESCRIPTION

We consider the behavior of an axisymmetric microswim-
mer near a planar elastic interface of infinite extent in the
xy-plane, i.e., the z-direction is directed normal to that
plane. The swimmer is modeled as a prolate spheroid
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of short semi-axis a and long semi-axis c, trapped above
the elastic interface at position z = h. Here, we adopt
a local coordinate system attached to the swimmer such
that θ ∈ [−π/2, π/2] is the pitch angle and ϕ ∈ [0, 2π) is
the azimuthal orientation in the xy-plane, see Fig. 1 for a
graphical illustration of the system setup.
We model the swimming behavior in the far-field limit

(i.e., c ≪ h) by using a combination of fundamental so-
lutions to the Stokes equations in the vicinity of an elas-
tic interface123,124. Further details on the swimmer model
are provided after stating the exact Green’s functions for a
point-force singularity near a planar elastic boundary and
derivation of the corresponding higher-order singularities
that are obtained via a multipole expansion (see Sec. III).

A. Low-Reynolds-number hydrodynamics – Stokes equations

For a viscous, incompressible Newtonian fluid, the Navier
Stokes equations in the overdamped, low-Reynolds-number
limit simplify to the time-independent Stokes equations,6,27

η∇2v(r)−∇p(r) + fB(r) = 0 , (1a)

∇ · v(r) = 0 , (1b)

where r denotes the spatial coordinate, η is the shear vis-
cosity, v denotes the fluid velocity, p is the pressure field,
and fB here represents the body force density acting on the
fluid domain by the immersed objects.
The fundamental solution of the Stokes equations for a

point-force singularity fB = fδ(r−r0) (Stokeslet) placed at
position r0 in an otherwise quiescent unbounded (infinite)
fluid domain is expressed in terms of the free-space Green’s
function given by the Oseen tensor125,126. Assuming that
the point force is directed along the unit vector ê such
that f = f ê, the induced flow and pressure fields reads

v∞
S (r) =

f

8πη
G∞(r, r0; ê) , p∞S (r) =

f

4π
P∞(r, r0; ê) ,

(2)
where the Stokeslet solution is given by G∞(r, r0; ê) =
(ê+ (ê · ŝ) ŝ) /s, with s = r − r0, s = |s| denoting the
distance from the singularity position, and ŝ = s/s. Like-
wise, the corresponding solution for the pressure field is
P∞(r, r0; ê) = ê · ŝ/s2.

B. Model for the elastic interface

The interface is modeled as a 2D elastic sheet made of
a hyperelastic material featuring resistance toward both
shear and bending. Shear elasticity of the interface is de-
scribed by the well-established Skalak model127, which is
commonly utilized as a practical model for the descrip-
tion of red blood cell membranes128–131. The interface
resistance toward bending is described by the Helfrich
model132–135.

For an elastic interface infinitely extended in the xy-
plane, the linearized tangential and normal traction jumps
across the interface due to shear and bending deformation
modes are expressed in terms of the displacement field u

of the interface relative to the initial planar configuration
via110

[σzj ] = −κS

3

(

∆‖uj + (1 + 2C) ∂jǫ
)

, j ∈ {x, y} , (3a)

[σzz ] = κB∆
2
‖uz , (3b)

where κS is the shear modulus, C = κA/κS denotes the
Skalak parameter (with the area expansion modulus κA),
and κB is the bending modulus. Here we use the nota-
tion [σij ] = σij(z = 0+)− σij(z = 0−) to denote the jump
in the viscous stress tensor across the elastic interface. In
addition, ǫ = ∂xux + ∂yuy denotes the dilatation function,
and ∆‖ = ∂2

x + ∂2
y stands for the Laplace-Beltrami opera-

tor136. The normal components of the hydrodynamic stress
tensor are expressed in the Cartesian coordinate system in
the usual way as σzj = −pδzj + η (∂jvz + ∂zvj).

To relate the displacement of the elastic interface to
the fluid velocity field, we impose a hydrodynamic no-slip
boundary condition. The latter, in Fourier space, takes a
particularly simple form in the small-deformation regime.
Specifically118,

v|z=0 = iωu , (4)

with ω being the frequency in the Fourier domain. Ac-
cordingly, the components of the fluid velocity field eval-
uated at the surface of reference z = 0 are assumed to
coincide with those of the material points composing the
deformable interface. The particular case of zero frequency
corresponds to the “stick” boundary condition which ap-
plies for an infinitely-extended rigid wall121. It is worth
mentioning that, if the elastic interface undergoes a larger
deformation, the no-slip condition stated by Eq. (4) takes
a nonlinear form because the condition has to be applied at
the deformed interface. This situation has been considered,
for instance, in Refs. 137–144. Since our attention here is
restricted to the system behavior in the small-deformation
regime, for which |u| ≪ h, applying the no-slip boundary
condition at the position of the undisplaced interface is ap-
propriate for our theoretical analysis.

As described in detail in Refs. 110 and 112, the behavior
of a particle close to an elastic interface can conveniently be
characterized in terms of the two dimensionless parameters

β =
6Bhηω

κS
, βB = 2h

(

4ηω

κB

)1/3

, (5)

where B = 2/(1 + C). Note that both β and β3
B ∝ ω, and

can thus be viewed as dimensionless frequencies associated
with shear and bending deformation modes, respectively.

The exact Green’s functions for a point-force singular-
ity acting close to an elastic interface possessing shear and
bending rigidities have recently been calculated by some of
us, see, e.g., Refs. 110 and 113 for their details of deriva-
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tion. The ê-directed Stokeslet near the elastic interface can
be obtained from the tensorial description of the Green’s
function via

G(r, r0; ê) = 8πηG(r, r0) · ê . (6)

The frequency-dependent Green’s functions G associated
with a point-force exerted at position r0 above an elastic
interface can be derived using a standard two-dimensional
Fourier transform technique118,120 and applying the under-
lying boundary conditions at the planar surface of refer-
ence. Accordingly, the Green’s functions can be expressed
in terms of convergent infinite integrals over the wavenum-
ber. Explicit analytical expressions of the components of
the Green’s functions due to a Stokeslet near an elastic
interface are listed for convenience in Appendix A.

C. Multipole expansion

The flow field generated by a microswimmer can be de-
composed into a multipole expansion of the solution of the
Stokes equations [Eq. (1)] near an elastic interface. Then,
the linearity of the Stokes equations permits the description
of the far-field flow induced by a microswimmer in terms of
a superposition of different singularity solutions124. While
the leading order flow field of a driven particle is a force
monopole (Stokeslet) field which decays as s−1, force- and
torque-free microswimmers typically create a force dipole
field in leading order4,6 which decays as s−2. The next-
higher-order singularities are the force quadrupole, source
dipole, and rotlet dipole, which all decay as s−3. The
Green’s functions for higher-order singularities can be ob-
tained as derivatives of the Stokeslet solution123. For ex-
ample, for a force dipole (D),

GD(r, r0; ê,a) = (a ·∇0)G(r, r0; ê) , (7)

wherein ∇0 denotes the nabla (gradient) operator taken
with respect to the singularity position r0. The force
quadrupole (Q) can then be determined from the force
dipole as

GQ(r, r0; ê,a, b) = (b ·∇0)GD(r, r0; ê,a) . (8)

In addition, we define the source dipole (SD) singularity
which can be derived from a singular potential solution
satisfying the Laplace equation124. It can be expressed in
terms of the Stokeslet solution via

GSD(r, r0; ê) = −1

2
∇

2
0G(r, r0; ê) . (9)

Further, we define the rotlet dipole (RD) singularity as

GRD(r, r0; ê, c) = c ·∇0GR(r, r0; ê) , (10)

where the Green’s function for the rotlet (R) is obtained as

GR(r, r0; ê) =
1

2

(

GD(r, r0; b,a)−GD(r, r0;a, b)
)

, (11)

where a and b are unit vectors with a × b = ê (× de-
notes the cross product). Note that the rotlet is the lead-
ing order flow field of a force-free particle but where an
external torque is applied. The flow field due to a rotlet
dipole can further be expanded as a combination of two
force quadrupoles as

GRD(r, r0; ê, c) =
1

2

(

GQ(r, r0; b,a, c)−GQ(r, r0;a, b, c)
)

.

Expressions of the higher-order Stokes singularities in an
unbounded (infinite) fluid are provided in Appendix B.
In the presence of external forces and torques acting on

the microswimmer, the Stokeslet, G(r, r0; ê), and rotlet
GR(r, r0; ê), solutions have to be added to our description.
Collecting results, the self-generated flow field induced by
an axially-symmetric microswimmer initially located at po-
sition r0 and oriented along the direction of the unit vec-
tor ê can be written up to third order in inverse distance
from the swimmer location as

v(r) = vS(r)+ vR(r)+ vD(r) + vSD(r)+ vQ(r)+ vRD(r) ,
(12)

where we have defined the velocities

vS(r) = αS G(ê) , vR(r) = αR GR(ê),

vD(r) = αD GD(ê, ê) , vSD(r) = αSDGSD(ê) ,

vQ(r) = αQ GQ(ê, ê, ê) , vRD(r) = αRD GRD(ê, ê) ,

not writing the dependence of the flow singularities on r

and r0 explicitly any longer.
The Stokeslet coefficient αS has dimension of

(length)2(time)−1, the rotlet coefficient αR and dipolar co-
efficient αD have dimension of (length)3(time)−1, whereas
the remaining higher-order multipole coefficients αSD,
αQ, and αRD have dimensions of (length)4(time)−1. The
magnitude and sign of these coefficients depend on the
propulsion mechanism as well as on the swimmer shape.
For a valuable discussion on the physical meaning and
interpretation of these singularities, we refer the reader to
recent works by Spagnolie and Lauga124, and Mathijssen et

al.145.

III. SWIMMING NEAR AN ELASTIC INTERFACE

In the presence of confining boundaries, the swimming
direction ê of the microswimmer and its distance h from
the boundary dictate the hydrodynamic flows, as sketched
in Fig. 1. The orientation ê is described by the unit vector

ê = (cos θ cosϕ, cos θ sinϕ, sin θ) , (13)

where, again, θ denotes the pitch angle (such that θ = 0
corresponds to a swimmer that is aligned parallel to the in-
terface), and ϕ is the azimuthal orientation that we, with-
out loss of generality, set initially to zero.
The total self-generated flow field of the swimmer ex-

pressed by Eq. (12) can be decomposed into terms of the
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bulk contribution v∞ and a correction v∗ that is required
to satisfy the boundary conditions at the elastic interface,

v = v∞ + v∗ . (14)

The latter encompasses the Stokeslet contribution to the
flow field that we have determined in previous works110,146

in addition to the higher-order singularity solutions that we
calculate here. It is worth emphasizing that v∞ is the sum
of the bulk flow fields of the different multipoles such that

v∞ = lim
β,βB→∞

v . (15)

The induced translational and rotational velocities due to
the fluid-mediated hydrodynamic interactions between the
elastic interface and a microswimmer of prolate ellipsoidal
shape located at position r0 are provided by Faxén’s laws126

as

vHI = v∗(r)|
r=r0

, (16a)

Ω
HI =

1

2
∇× v∗(r) + Γê× (E∗(r) · ê)

∣

∣

∣

∣

r=r0

. (16b)

These expressions have been restricted to leading order in

swimmer length c. Here, E∗ =
(

∇v∗ + (∇v∗)
T
)

/2 is

the rate-of-strain tensor associated with the reflected flow,
with T denoting the transpose. Further, Γ = (γ2−1)/(γ2+
1) ∈ [0, 1) is a shape factor (also known as Bretherton
constant147,148) that depends on the aspect ratio γ of the
prolate spheroidal microswimmer, defined as the ratio of
major to minor semi-axes, i.e. γ = c/a ≥ 1. It vanishes
for a sphere and approaches one for needle-like particles of
large aspect ratio. Higher-order correction terms in Γ to
the induced hydrodynamic fields can be obtained using the
multipole method, see, e.g., Ref. 146.

Due to the linearity of the Stokes equations [Eqs. (1)] we
can consider the effect of each higher-order singularity on
the swimming behavior independently. Thus, in the follow-
ing we provide solutions for the translational and rotational
velocities, vHI and Ω

HI, induced by fluid-mediated hydro-
dynamic couplings of the individual contributions with the
nearby elastic boundary.

Remarkably, the total velocities due to hydrodynamic in-
teractions with an elastic interface endowed simultaneously
with both shear and bending resistances can be written as
a superposition of the velocities induced by hydrodynamic
interactions with an interface of pure shear (βB → ∞) and
pure bending (β → ∞) resistances. Accordingly, the total
wall-induced linear and angular velocities can be obtained
by evaluating both contributions independently,

vHI = vHI
∣

∣

S
+ vHI

∣

∣

B
, (17a)

Ω
HI = Ω

HI
∣

∣

S
+ Ω

HI
∣

∣

B
, (17b)

where the subscripts S and B stand for shear and bending,
respectively. However, it is worth mentioning that this is
only true for a planar elastic interface. For curved inter-

faces, a coupling between shear and bending deformation
modes exists149–153.
Near a no-slip wall, the induced hydrodynamic interac-

tions of the multipole flow fields created by a microswimmer
located at a given position and orientation is independent
of time124 (assuming that the strengths of the singularities
are constant). This is in contrast to an elastic interface
where memory effects can lead to time-dependent contri-
butions vHI(t) and Ω

HI(t). One way to realize such a time
dependence is to assume that the microswimmer is initially
at rest with a given orientation (θ, ϕ) at a distance h from
the interface and suddenly starts to swim and sets the sur-
rounding fluid into motion at time t = 0. However, we do
not allow the microswimmer to actually move towards the
interface but its position and orientation is kept fixed by ap-
plying just the right external forces F ext and torques T ext,
e.g., via optical traps, aligning magnetic fields, or other
micro-manipulation techniques. Denoting by v0 the bulk
swimming speed, i.e., in the absence of the confining in-
terface, the swimming velocities and rotation rates are re-
lated to the external forces and torques required to trap
the swimmer near the interface via

(

v0ê+ vHI(t)
Ω

HI(t)

)

+ µ ·
(

F ext(t)
T ext(t)

)

= 0 , (18)

Note, the forces and torques are zero for t < 0, but finite
and time-dependent for t ≥ 0 when the flow fields created
by the microswimmers interact with the elastic interface.
Here µ is the position- and orientation-dependent hydro-
dynamic grand mobility tensor of a spheroid near an elastic
interface146. We have neglected thermal fluctuations and
all possible steric interactions with the interface. We were
able to calculate vHI(t) and Ω

HI(t) for all considered mul-
tipole flows. The solutions for vHI(t) are shown in Tab. C3
and Tab. C4. Similar expressions exist for ΩHI(t) but they
are not shown here because of their complexity and length-
iness.
In the following we discuss the different contributions

stemming from the different multipoles. Before doing so,
we present typical numbers which we used to produce the
results shown below. The shear and bending properties of
the elastic surface entail a characteristic time scale of shear
as TS = 6ηh/(BκS), in addition to a characteristic time
scale of bending as TB = 8ηh3/κB

110. Thus, we define the
scaled times τS = t/TS and τB = t/TB associated with shear
and bending deformation modes, respectively. Note that,

for h =
(

3κB/(4BκS)
)1/2

, it follows that TS = TB. This
corresponds to the situation in which both shear and bend-
ing equally manifest themselves in the system at intermedi-
ate time scales111. In typical situations128, elastic red blood
cells have a shear modulus κS = 5 × 10−6 N/m, a Skalak
ratio C = 100, and a bending modulus κB = 2×10−19 Nm.
By considering a dynamic viscosity of the surrounding New-
tonian viscous fluid η = 1.2 × 10−3 Pa · s, as well as a
micron-sized swimmer of size a = 10−6 m located above the
interface at h = 5a, it follows that TS ≃ 0.36 s and TB = 6 s.
Therefore, at later times, bending effects are expected to
manifest themselves in a more pronounced way than shear.
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For the results presented below, we use τ := τS = 16τB as
the scaled time of the system.

We distinguish contributions relevant for force- and
torque-free swimming and contributions stemming from ex-
ternal forcing, where particular focus lies on a trapped mi-
croswimmer in the vicinity of an elastic interface.

A. Force- and torque-free contribution

Here we discuss the swimming behavior of an active agent
near an elastic boundary by following the theoretical frame-
work discussed in Sec. II. We consider different higher-order
singularities that describe features of the swimming motion
of a variety of active agents. In addition to the leading-
order far-field of a microswimmer in terms of a force-dipole
(1/s2), we consider further details of the propulsion mech-
anisms that contribute to the flow field with the order of
1/s3. These include, for example, contributions of the fi-
nite size cell body, the anisotropy in the swimming mecha-
nism, and the rotation/counter-rotation of body parts dur-
ing swimming. Yet, the importance of the contribution of
each of these singularities depends strongly on the geome-
try of the active agent, its swimming mechanism, and its
distance from the elastic interface.

1. Force dipole

The flow field induced by a force dipole, vD(r) =
αD GD(ê, ê), is the leading contribution to describe the hy-
drodynamics of many microswimmers, which are net-force-
free by definition27. The sign of the dipolar coefficient αD

distinguishes between pusher (αD > 0) and puller (αD < 0)
microswimmers. Some bacterial microorganisms, such as
E. coli, exploit (bundles of) helical filaments called flag-
ella for their propulsion, the rotation of which causes the
entire bacterium to move forward in a corkscrew-like mo-
tion154–156. Here, the translation-rotation coupling of the
hydrodynamic friction of the flagellum yields a net propul-
sion of the swimmer. Since these swimmers push out the
fluid along their swimming axis, they are referred to as
pushers. Another broad class of microswimmers, includ-
ing, for example, the algae Chlamydomonas reinhardtii157,
pull in (averaged over one whole swimming stroke) the fluid
along the axis parallel to their swimming direction, and are
thus classified as pullers.

Both pushers and pullers may conveniently be modeled,
e.g., via minimal models based on the insertion of force
centers that co-move with the body of the swimmer158–162,
or as squirmers163–165. The latter are driven by pre-
scribed tangential velocities at their (spherical or ellip-
soidal) surfaces and were introduced to model microor-
ganisms that self-propel by the beating of cilia covering
their bodies31–33,166. The squirmer model has been previ-
ously used to address, e.g., the hydrodynamic interaction
between two swimmers167,168, the influence of an imposed

external flow field on the swimming behavior169,170, or low-
Reynolds-number locomotion in complex fluids171–174.

We now return to the mathematical problem and remark
that a tilted force dipole (that is directed along ê) can
be expressed in terms of force dipoles aligned parallel and
perpendicular to the elastic interface as85

GD(ê, ê) = GD(êx, êx) cos
2 θ +GD(êz, êz) sin

2 θ

+GSS(êx, êz) sin(2θ) ,
(19)

where GSS is the symmetric part of the force
dipole, commonly referred to as stresslet, GSS(a, b) =
(GD(b,a) +GD(a, b)) /2. By inserting the Stokeslet solu-
tion (see Appendix A) into Eq. (7), the self-generated dipo-
lar flow field vD(r) can be evaluated and expressed in terms
of infinite integrals over the wavenumber. The frequency-
dependent components of the induced translational, vHI,
and rotational, Ω

HI, velocities, of the microswimmer re-
sulting from dipolar interactions with the elastic interface,
as given by Eq. (16), are listed in integral form in Tab. C1
of Appendix C. The velocities in Fourier space depend on
the dipolar coefficient αD, the distance h from the elastic
interface, the orientation θ of the swimmer with respect
to the interface, as well as on the dimensionless frequen-
cies β and βB, reflecting shear and bending contributions,
respectively.

In Fig. 2 (a) – (c), we present the time evolution of the
induced swimming velocities and rotation rates due to dipo-
lar hydrodynamic interactions with a planar elastic inter-
face. The latter has only energetic resistance toward shear
(green), only energetic resistance toward bending (red),
or simultaneously possesses both shear and bending resis-
tances (black). Here, we consider a spheroidal swimmer
with an aspect ratio γ = 4 (corresponding to a shape fac-
tor Γ = 15/17), as measured experimentally for the bac-
terium Bacillus subtilis175. The swimmer is inclined by a
pitch angle θ = π/6 with respect to the horizontal direc-
tion. Results are rendered dimensionless by scaling with the
corresponding hard wall limits listed in Tab. I. As already
mentioned, the total swimming velocity near a planar inter-
face with both shear and bending resistance is obtained by
linearly superimposing the individual contributions stem-
ming from each deformation mode.

The translational and rotational velocities of the mi-
croswimmer induced by the presence of the elastic inter-
face amount to small values at short times (τ ≪ 1), be-
cause the interface is still relatively undeformed and there-
fore hardly imposes any elastic resistance toward the flow
field induced by the microswimmer. Consequently, the sys-
tem exhibits initially a “bulk-like” behavior. For increasing
times, such that τ ≃ 1, the presence of the elastic interface
becomes more noticeable. The induced swimming veloci-
ties monotonically increase in magnitude before reaching at
long times (τ ≫ 1) the steady limits. These correspond to
the velocities induced near a no-slip wall and are indepen-
dent of the membrane shear and bending properties. There-
fore, the elasticity of the boundary only contributes at in-
termediate time scales to the temporal changes of the swim-
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FIG. 2. (Color online) Evolution of the scaled induced translational and rotational swimming velocities associated with a force
dipole [(a) – (c)], source dipole [(d) – (f)], force quadrupole [(g) – (i)], and rotlet dipole [(j) – (l)], resulting from hydrodynamic
interactions with a planar elastic interface of pure shear (green), pure bending (red), or both shear and bending (black) resistances.
The swimmer has an aspect ratio γ = 4 and is oriented by a pitch angle θ = π/6 relative to the horizontal direction. Here,
the velocities are scaled by the corresponding hard-wall limits listed in Tab. I, except that the x-component of the rotlet dipolar
contribution shown in panel (j) is scaled by αRD/(8h

4) (because this component vanishes in the steady limit). The scaled time
is τ := τS = 16τB.

(a)

(b)

Interface type hnvHI
x hnvHI

z hn+1ΩHI
y

F
o
rc
e
d
ip
o
le Shear 3αD

16
sin(2θ) −

αD

16

(

3 cos2 θ − 2
)

3αD

64
Γ sin(2θ) cos2 θ

Bending 3αD

16
sin(2θ) −

5αD

16
(3 cos2 θ − 2) 3αD

64
sin(2θ)

(

4 + Γ
(

4− 3 cos2 θ
))

Hard wall 3αD

8
sin(2θ) −

3αD

8

(

3 cos2 θ − 2
)

3αD

32
sin(2θ)

(

2 + Γ(2− cos2 θ)
)

S
o
u
rc
e
d
ip
o
le Shear −

αSD

16
cos θ −

3αSD

8
sin θ −

3αSD

16
cos θ

(

1 + Γ
(

2− cos2 θ
))

Bending −
3αSD

16
cos θ −

5αSD

8
sin θ −

3αSD

16
cos θ

(

1 + 2Γ
(

2− cos2 θ
))

Hard wall −
αSD

4
cos θ −αSD sin θ −

3αSD

16
cos θ

(

2 + 3Γ(2− cos2 θ)
)

Q
u
a
d
ru
p
o
le Shear

αQ

32
cos θ

(

21 cos2 θ − 16
) 3αQ

8
sin θ cos2 θ

3αQ

64
cos θ

(

3Γ cos4 θ + 2(1− 2Γ) cos2 θ + 8Γ
)

Bending
3αQ

32
cos θ

(

11 cos2 θ − 8
)

αQ

8
sin θ

(

15 cos2 θ − 4
) 3αQ

64
cos θ

(

−9Γ cos4 θ + 2(11 + 8Γ) cos2 θ + 8(Γ− 2)
)

Hard wall
αQ

16
cos θ

(

27 cos2 θ − 20
)

αQ

4
sin θ

(

9 cos2 θ − 2
) 3αQ

32
cos θ

(

−3Γ cos4 θ + 6(Γ + 2) cos2 θ + 8(Γ− 1)
)

Interface type h3vHI
y h4ΩHI

x h4ΩHI
z

R
o
tl
et

d
ip
o
le Shear 3αRD

32
sin(2θ) 3αRD

16
sin(2θ) −

3αRD

32

(

3 cos2 θ − 2
)

Bending −
3αRD

32
sin(2θ) 3αRD

64
sin(2θ)

(

2 + Γ
(

3 cos2 θ − 4
))

3αRD

32
Γ cos2 θ

(

4− 3 cos2 θ
)

Hard wall 0 3αRD

64
sin(2θ)

(

6 + Γ(3 cos2 θ − 4)
)

−
3αRD

32

(

3Γ cos4 θ + (3− 4Γ) cos2 θ − 2
)

TABLE I. Expressions of the induced translational and rotational swimming velocities resulting from (a) force dipolar, source
dipolar, force quadrupolar, and (b) rotlet dipolar hydrodynamic interactions with a planar elastic interface in the steady limit.
Here, n = 2 for the force dipole and n = 3 for the source dipole and force quadrupole. The swimming velocities near a no-slip hard
wall are obtained by linear superposition of the shear- and bending-related contributions.

ming behavior, whereas, in the steady state, the swimmer
essentially experiences the response of the fully deformed
interface that does not change its overall shape of deforma-
tion any longer. It is worth emphasizing that the hard-wall
limits are reached (if and) only if the interface is simultane-
ously endowed with resistance toward shear and bending.
Interestingly, at intermediate time scales, the shear-related
contribution to the rotational velocity [Fig. 2 (c)] exceeds
to a certain extent its steady value.

In the steady limit, the sign and magnitude of the swim-
ming velocities are strongly dependent on the dipolar co-

efficient αD as well as on the pitch angle θ. In this situ-
ation, because vz

HI
D ∝ −αD

(

3 cos2 θ − 2
)

for all interface
types (see Tab. I), it follows that, for a small pitch angle,

such that |θ| < arccos
(√

6/3
)

, a pusher-type microswim-
mer (αD > 0) tends to be attracted toward the interface,
while a puller (αD < 0) tends to be repelled away from
it. This behavior is purely hydrodynamic in origin as has
been discussed earlier by Lauga and collaborators for the
case of a hard wall124,176. In particular, the hard-wall lim-
its are predominately determined by the bending-related
contribution. This implies that, for the dipolar hydrody-
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FIG. 3. (Color online) Evolution of the scaled swimming velocities associated with a Stokeslet [(a) – (c)] and rotlet [(d) – (f)] due
to hydrodynamic interactions with an elastic interface showing pure shear (green), pure bending (red), or both shear and bending
rigidities (black). Here, the swimmer has an aspect ratio γ = 4 and an orientation θ = π/6 with respect to the horizontal direction.
The velocities are scaled by the corresponding hard-wall values except that the x component of the rotlet contribution is scaled
by αR/(8h

4). We set τ := τS = 16τB.

namic interactions, the effect due to the bending rigidity
is more pronounced than that due to shear. In addition,
since Ωy

HI
D ∝ αD sin (2θ), a pusher-type swimmer tends to

be oriented along the parallel direction (θ = 0 is a stable
fixed point), while the interface tends to align a puller in
the direction normal to the interface (θ = ±π/2). Hence,
in the absence of external trapping, a puller will tend to
swim either toward or away from the interface, depending
on whether it is initially pitched toward (θ < 0) or away
from the interface (θ > 0). Particularly, the extensional
flow and the shear-related contribution to the rotation rate
vanishes for a sphere (Γ = 0). In such a case, the reori-
entation of the swimmer is solely dictated by the interface
bending properties.
In addition to the leading-order contribution of a force

dipole, next-higher-order singularity solutions are useful to
describe details of the propulsion mechanism of an active
agent. The time-dependent translational and rotational ve-
locities induced by higher-order singularities close to the
elastic surface for the start-up motion from static condition
are presented in Tab. C3 of Appendix C, and the steady
limits are shown in Tab. I.

2. Source dipole

The far-field hydrodynamic flows induced by the finite
size of a swimming object can be described by a source

dipole, vSD(r) = αSDGSD(ê). For the type of microswim-
mers that propel themselves by means of activity on their
surfaces, as it is the case for many active colloidal parti-
cles37,38,177 or ciliated microorganisms28,34, a source dipo-
lar coefficient αSD > 0 is expected. In contrast to that, it
is expected that αSD < 0 for non-ciliated but flagellated
microswimmers145.
We now consider the scenario of a microswimmer initially

at rest before starting to pump the fluid, in a way anal-
ogous to what we have introduced in the previous discus-
sion regarding the force dipole contribution. The respective
scaled induced translational and rotational velocities result-
ing from source dipolar hydrodynamic interactions exhibits
a similar logistic sigmoid curve varying between 0 and 1,
see Fig. 2 (d) – (f). Similar as for the force dipole contri-
bution, at long times the corresponding values of a no-slip
wall are approached. The bending-related contribution to
the swimming velocities is found to be once again more
pronounced than that due to shear resistance.
For all types of interface, the induced normal swim-

ming velocity in the steady limit can be cast into the form
vz

HI
SD ∝ −αSD sin θ. Therefore, the swimmer tends to be

attracted to the interface for αSD > 0 when it is oriented

toward it (θ < 0) and tends to be repelled from the in-

terface otherwise. Moreover, since Ωy
HI
SD ∝ −αSD cos θ it

follows that θ = π/2 is a stable fixed point for αSD > 0,
thus favoring the escape of the swimmer from the interface
in the absence of external trapping. In contrast to that,
θ = −π/2 is a stable fixed point for αSD < 0, leading to
hydrodynamic trapping of the swimmer near the interface.

3. Force quadrupole

The flow fields generated by a fore–aft asymmetry of
the propulsion mechanism can be captured in terms of a
force quadrupole vQ(r) = αQGQ(ê, ê, ê). Such contribu-
tions play a pivotal role for flagellated microorganisms,
such as bacteria178 and sperms179, where an asymmetry
between the length of the forward-pushing cell and the
flagella impacts the propulsive force distribution along the
agent and thereby the hydrodynamic flows. resulting effects
have been found to induce correlated motion between ad-
jacently swimming bacteria178. It is expected that αQ > 0
for microswimmers with large cell bodies and short flag-
ella, while αQ < 0 holds for long-flagellated microorganisms
with small cell bodies124,145.
Interestingly, the translational velocity vx

HI
Q induced by

a force quadrupole parallel to an elastic surface displays at
intermediate time scales a weakly non-monotonic behavior
before reaching the steady state, see Fig. 2 (g). In par-
ticular, the velocity induced by a surface with pure shear
resistance displays the opposite effect than the one induced
by a surface with bending resistance at long times con-
sidering the present set of parameters. This implies that,
e.g., if bending resistance increases the swimming velocity
tangent to the interface, then shear resistance decreases it
and vice versa. The induced translational velocity perpen-
dicular to the elastic boundary and the rotational velocity
quasi monotonically increase in magnitude over time as re-
sulting from adding both shear and bending contributions,
see Fig. 2 (h) – (i). Notably, the bending effect is once again
more pronounced than the one associated with shear. In the
steady state, the translational and rotational velocities ap-
proach those induced by a rigid wall, as has been observed
for the other higher-order singularity solutions presented
above.
Depending on the types of interface, the force quadrupole

coefficient, and the pitch angle, quadrupolar hydrodynamic
interactions in the steady limit may lead to attraction or
repulsion of swimming microorganisms in a complex way.
Considering an interface with only energetic resistance to-
ward shear, we find that vz

HI
Q ∝ αQ sin θ. Thus, the swim-

mer tends to be repelled from the interface when αQ and θ
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(a)

(b)

Interface type hvHI
x hvHI

z h2ΩHI
y

S
to
k
es
le
t Shear − 5αS

8 cos θ −αS

4 sin θ αS

16 cos θ
(

2− 3Γ cos2 θ
)

Bending −αS

8 cos θ − 5αS

4 sin θ −αS

16 cos θ
(

2 + 3Γ
(

4− 3 cos2 θ
))

Hard wall − 3αS

4 cos θ − 3αS

2 sin θ − 3αS

8 Γ cos θ
(

1 + sin2 θ
)

Interface type h2vHI
y h3ΩHI

x h3ΩHI
z

R
o
tl
et

Shear −αR

8 cos θ − 3αR

16 cos θ −αR

8 sin θ

Bending αR

8 cos θ −αR

16 cos θ
(

2− 3Γ sin2 θ
)

− 3αR

16 Γ sin θ cos2 θ

Hard wall 0 −αR

16 cos θ
(

5− 3Γ sin2 θ
)

−αR

16 sin θ
(

2 + 3Γ cos2 θ
)

TABLE II. Expressions of the induced translational and rotational swimming velocities resulting from (a) Stokeslet and (b) rotlet
near an elastic interface in the quasi-steady limit of vanishing frequency, or equivalently for t → ∞. The swimming velocities near
a no-slip hard wall are obtained by linear superposition of the shear- and bending-related contributions in the vanishing-frequency
limit.

have both the same sign, and tends to be attracted toward
the interface otherwise. An analogous discussion holds as
well for an interface with only energetic resistance toward
bending, or for an interface with both shear and bending
deformation modes, provided that |θ| < arccos

(

2
√
15/15

)

in the former, and |θ| < arccos
(√

2/3
)

in the latter case.

Next, considering an interface with energetic resis-
tance only toward shear, the rotation rate in the steady
state Ωy

HI
Q ∝ αQ cos θ. Thus, the swimmer in the absence

of external trapping tends to rotate toward the interface
when αQ > 0, and away from the interface when αQ < 0.
For an elastic interface possessing pure bending resistance,
the swimmer may also assume in the steady state an oblique
alignment along a pitch angle θ = ±θΓ, where

θΓ = arccos





1

3

√

8 +
11

Γ
−
√

136 +
32

Γ
+

121

Γ2



 .

Consequently, for αQ > 0, force quadrupolar hydrodynamic
interactions tend to orient the swimmer along θ = −θΓ
when θ < θΓ, and along θ = π/2 otherwise. In contrast
to that, for αQ < 0, the swimmer tends to be reoriented
toward θ = θΓ when θ > −θΓ, and along θ = −π/2 oth-
erwise. An analogous discussion holds when the interface
is endowed with both shear and bending resistances in the
steady limit (hard wall), where the oblique alignment in
this situation is found to be along

θΓ = arccos





√

1 +
2

Γ
−
√

11

3
+

4

3Γ
+

4

Γ2



 .

4. Rotlet dipole

In addition, the flow field produced by flagellated mi-
croorganisms can be altered by rotation of their body parts,
such as the rotation of their flagella bundle and the counter
rotation of the cell body in E. coli bacteria84. The induced
flow far-field can be included at lowest order in terms of
a rotlet dipole, vRD(r) = αRD GRD(ê, ê). A tilted rotlet
dipole can conveniently be expanded as a combination of
rotlet dipoles orientated parallel and perpendicular to the
interface as

GRD(ê, ê) = GRD(êx, êx) cos
2 θ +GRD(êz , êz) sin

2 θ

+GRR(êx, êz) sin(2θ) ,

(20)

whereGRR(a, b) =
(

GRD(a, b)+GRD(b,a)
)

/2 denotes the
symmetric part of the rotlet dipole. Similar to the force
quadrupole contribution, the induced swimming velocity
parallel to the elastic surface displays a non-monotonic be-
havior before approaching zero at long times, see Fig. 2 (j).
In addition, the shear- and bending-related parts may have
opposite contributions to the overall translational velocity
tangent to the interface. At long times, again the veloci-
ties of a microswimmer induced by a rigid, no-slip wall are
recovered.
Interestingly, the rotation rate around the swimmer body

is found to be shear dominated where bending does not
play a significant role [Fig. 2 (k)]. Moreover, the rotlet-
dipolar hydrodynamic interactions induce a non-vanishing
rotation rate about an axis perpendicular to the interface,
see Fig. 2 (l). This naturally leads in the absence of ex-
ternal trapping to an overall “swimming in circles”, as
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(a)

(b)

Interface type vHI
x vHI

z ΩHI
y

Force dipole

Shear τ−2
S τ−3

S τ−3
S

Bending τ
−4/3
B τ−1

B τ
−4/3
B

Source dipole /
Quadrupole

Shear τ−3
S τ−4

S τ−4
S

Bending τ
−4/3
B τ−1

B τ
−4/3
B

Stokeslet

Shear τ−1
S τ−3

S τ−2
S

Bending τ−1
B τ

−1/3
B τ−1

B

Interface type vHI
y ΩHI

x ΩHI
z

Rotlet dipole

Shear τ−3
S τ−4

S τ−4
S

Bending τ
−4/3
B τ

−4/3
B τ

−5/3
B

Rotlet

Shear τ−2
S τ−3

S τ−3
S

Bending τ−1
B τ−1

B τ
−4/3
B

TABLE III. Expressions of the long-time decay of the swim-
ming velocities due to (a) dipolar, source dipolar, quadrupolar,
and (b) rotlet dipolar hydrodynamic interactions with an elastic
interface. Here, τS = t/TS and τB = t/TB with TS = 6ηh/(BκS)
and TB = 8ηh3/κB are characteristic time scales associated with
shear and bending deformation modes, respectively.

has been previously reported for E. coli near walls84,180

and explained via corresponding theoretical studies that
include phenomenological representations of the rotating
flagella81,181. As this component vanishes for the other sin-
gularities discussed above, we thus expect the introduction
of a rotlet dipole to be the simplest possible hydrodynamic
modeling of this circling behavior near surfaces. Remark-
ably, this rotation rate is independent of the shape factor Γ
in the shear-related part but vanishes for a sphere (Γ = 0)

in the bending-related part. Considering a swimmer that is
aligned parallel to the interface (θ = 0) in the steady limit,
we obtain

Ωz
HI
RD

∣

∣

S
= −3αRD

32h4
, (21a)

Ωz
HI
RD

∣

∣

B
=

3αRD

32h4
Γ , (21b)

Ωz
HI
RD

∣

∣

S+B
= −3αRD

32h4
(1− Γ) . (21c)

Therefore, assuming that αRD > 0, circular motion is ex-
pected to be clockwise (when viewed from top) near an
interface with pure shear or with both shear and bend-
ing rigidities [Eqs. (21a) and (21c)], and counterclockwise
near an interface with pure bending [Eq. (21b)]. This is
in agreement with the behavior observed for a torque-free
doublet of counterrotating spheres around its center near
an elastic interface182. It is worth mentioning that, in the
steady limit, the system behavior near an interface with
pure bending resistance is analogous to that near a flat
fluid-fluid interface separating two immiscible fluids with
the same viscosity contrast.

B. Contributions due to external forces and torques

Nature offers a plethora of external stimuli and forces
that impact the swimming motion of active agents. Ex-
amples include gravitational fields183–186. The far-field hy-
drodynamics of externally-trapped self-propelled particles
near elastic boundaries can readily be captured in terms
of a Stokeslet and rotlet solution to the Stokes equation.
The corresponding translational and rotational velocities
as functions of time as well as the steady limits are pre-
sented in Tabs. C3 and II.

1. Stokeslet

In the presence of an external force, the Stokeslet sin-
gularity can be used to capture the associated hydrody-
namic flow157 and calculate the induced velocity of the
microswimmer as vS(r) = αS G(ê). Similar as before, a
tilted Stokeslet can be decomposed into a superposition of
Stokeslets directed parallel and perpendicular to the inter-
face as G(ê) = G(êx) cos θ+G(êy) sin θ. In contrast to the
higher-order singularities used to model force-free swim-
ming, the Stokeslet introduces a far field of the fluid flow
that decays as 1/h and thus represents the leading-order
contribution.
In Fig. 3 (a) – (c), we present the variations of the

induced swimming velocities due to a Stokeslet singular-
ity acting near a planar elastic interface with pure shear
(green), pure bending (red), or both shear and bending de-
formation modes (black), using the same parameters as in
Fig. 2. While resistance toward shear manifests itself in a
more pronounced way for the translational motion parallel
to the interface, the effect of bending is dominant for the
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translational motion normal to the interface and for the
rotation rate.

In the remainder of our discussion, we assume that the
Stokeslet coefficient αS > 0. Correspondingly, the swimmer
in the steady state tends to be attracted to the interface
when θ > 0, and repelled from it when θ < 0. Near an in-
terface with resistance only to shear such that Γ ≤ 2/3

(or γ ≤
√
5), it follows that Ωy

HI
S ∝ cos θ. Therefore,

the swimmer tends to be reoriented toward the inter-
face (θ = −π/2). In contrast to that, for Γ > 2/3, the
swimmer tends to align along the oblique direction given

by θΓ = arccos
(√

6Γ/(3Γ)
)

when θ > −θΓ, and along

θ = −π/2 otherwise. Near an interface of either pure
bending resistance or both shear and bending resistance,
Ωy

HI
S ∝ − cos θ, leading to swimmer reorientation away

from the interface (θ = π/2). Notably, Ωy
HI
S vanishes in

the hard-wall limit for a spherical microswimmer (Γ = 0).

2. Rotlet

The far-field of an external torque applied to the mi-
croswimmer can be described in terms of a rotlet singular-

ity. The rotlet-related contribution to the induced trans-
lational velocity resulting from hydrodynamic interactions
with the elastic interface has a single non-vanishing com-
ponent along the y direction, for which both shear and
bending have equal but opposite contributions to the over-
all dynamics, see Fig. 3 (d). For the induced rotation rates
[Fig. 3 (e) – (f)], the relative importance of shear and bend-
ing elasticity depends strongly on the swimmer geometry
and orientation. Analogously to a rotlet dipole, the induced
rotational velocity normal to the interface is independent
of the shape factor Γ near an interface of only shear resis-
tance, and vanishes for a spherical microswimmer (Γ = 0)
near an interface of resistance only to bending.

C. Long-time decay of swimming velocities

Finally, we briefly comment on the leading-order behav-
ior of the hydrodynamically-induced swimming velocities
at long times in approaching the steady limits. Results
are summarized in Tab. III for various singularity and in-
terface types. For higher-order singularities, the rotation
rates are found to decay similarly or much faster than
the translational swimming velocities. Most importantly,
the shear-related contributions to the swimming velocities
experiences a faster decay in time compared to those re-
lated to bending. Therefore, the system behavior is shear-
dominated at early times, while bending is expected to play
the more dominant role at later times.

IV. CONCLUSION

We have derived exact solutions for the translational and
angular velocities of a trapped microswimmer in the vicin-
ity of a deformable surface that features resistance towards
bending and shear. Based on far-field calculations we show
that the velocities can be decomposed into bending and
shear related contributions, which can display opposed be-
havior, i.e., while one of them enhances the velocities, the
other decreases them and vice versa. In particular, the
elastic properties of the interface introduce history to the
hydrodynamic couplings, which manifests itself in time-
dependent translational and rotational velocities of the ap-
proaching microswimmer. These velocities strongly depend
on the swimming direction, the distance from the interface,
the body shape, and details of the swimming mechanism
encoded in the singularity coefficients. By accounting for
both, bending and shear resistances, the steady state veloc-
ities agree with those of an active agent close to a planar,
rigid wall.

Our results provide a detailed analysis of far-field hy-
drodynamic interactions of trapped, self-propelled parti-
cles with a deformable surface and are expected to con-
tribute to our understanding of microswimmer motion in
their natural surroundings. Based on the proposed theo-
retical framework, future investigations could elucidate the
spatiotemporal behavior of freely moving microswimmers
nearby an elastic interface and analyze more closely the po-
tential accumulation of microswimmers at the deformable
surface in comparison to a rigid wall176. Moreover, an addi-
tional, intrinsic curvature of the surface can be included in
our model150,187, which could provide a fundamental ingre-
dient for our understanding of microswimmer entrapment
and accumulation in realistic biological set-ups.

ACKNOWLEDGMENTS

We thank Arnold J. T. M. Mathijssen and Maciej Lisicki
for invaluable discussions. A.D.M.I, A.M.M., and H.L.
gratefully acknowledge support from the DFG (Deutsche
Forschungsgemeinschaft) through the projects DA 2107/1-
1, ME 3571/2-2, and LO 418/16-3. C.K. gratefully
acknowledges support from the Austrian Science Fund
(FWF) via the Erwin Schrödinger Fellowship (Grant No.
J 4321-N27). A.Z. acknowledges support from the FWF
through a Lise Meitner Fellowship (Grant No. M 2458-
N36). M.M and M.R.A. acknowledge the support of the
National Science Foundation (NSF) via Grant No. CMMI-
1562871. S.G. thanks the Volkswagen Foundation and the
DFG (SFB-TRR 225, subproject B07, 326998133) for fi-
nancial support.”



12

Appendix A: Green’s functions for a Stokeslet near an elastic

interface

The components of the Green’s functions can be ex-
pressed in terms of convergent improper (infinite) integrals
over the wavenumber and assume the following form

Gxx =
1

4π

∫ ∞

0

dq q

(

G̃+J0(qρ0) + G̃−J2(qρ0) cos(2ϕ)

)

,

Gyy =
1

4π

∫ ∞

0

dq q

(

G̃+J0(qρ0)− G̃−J2(qρ0) cos(2ϕ)

)

,

Gzz =
1

2π

∫ ∞

0

dq q G̃zzJ0(qρ0) ,

Gxy =
1

4π

∫ ∞

0

dq q G̃−J2(qρ0) sin(2ϕ) ,

Grz =
i

2π

∫ ∞

0

dq q G̃lzJ1(qρ0) ,

Gzr =
i

2π

∫ ∞

0

dq q G̃zlJ1(qρ0) ,

wherein ρ0 =
√

(x− x0)2 + (y − y0)2 denotes the radial
distance and ϕ := arctan((y−y0)/(x−x0)) is the azimuthal
angle (c.f. inset of Fig. 1). Here Jn(·) represents the n-th
order Bessel function of the first kind188 and we introduce

G̃±(q, z, ω) := G̃tt(q, z, ω)± G̃ll(q, z, ω) ,

with

G̃ll =
1

4ηq

(

(1− q|z − h|)e−q|z−h|

+

(

2iqh(1− qh)(1− qz)

β − 2iqh
+

8iq5zh4

β3
B − 8i(qh)3

)

e−q(z+h)

)

,

G̃tt =
1

2ηq

(

e−q|z−h| +
iBqh

β − iBqh
e−q(z+h)

)

.

The remaining Green’s functions in Fourier space read

G̃zz =
1

4ηq

(

(1 + q|z − h|) e−q|z−h|

+

(

2iq3zh2

β − 2iqh
+

8i(qh)3(1 + qz)(1 + qh)

β3
B − 8i(qh)3

)

e−q(z+h)

)

,

G̃lz =
i

4ηq

(

− q(z − h)e−q|z−h|

+

(

2i(qh)2(1 − qz)

β − 2iqh
− 8iq4zh3(1 + qh)

β3
B − 8i(qh)3

)

e−q(z+h)

)

,

G̃zl =
i

4ηq

(

− q(z − h)e−q|z−h|

+

(

− 2iq2zh(1− qh)

β − 2iqh
+

8iq4h4(1 + qz)

β3
B − 8i(qh)3

)

e−q(z+h)

)

.

The Green’s functions comprise both bulk contributions
and the frequency-dependent corrections due to the pres-
ence of the elastic interface. The terms involving β and

βB are, respectively, contributions associated with shear
and bending. Moreover, the remaining components of the
Green’s functions can readily be obtained from the usual
transformation relations. Specifically, this means Gxz =
Grz cosϕ, Gyz = Grz sinϕ, Gzx = Gzr cosϕ, Gzy = Gzr sinϕ,
and Gyx = Gxy. In the quasi-steady limit of vanishing fre-
quency (β = βB = 0), the Green’s functions reduce to the
well-known Blake tensor near a no-slip wall189,190. Phys-
ically, this limit corresponds to an infinitely stiff wall, for
which the displacement field at the interface identically van-
ishes.

Appendix B: Higher-order singularities in an unbounded fluid

domain

In this Appendix, we provide for completeness analyti-
cal expressions of the higher-order Stokes singularities in
an unbounded fluid domain, i.e., in the absence of the con-
fining elastic interface. By making use of the analytical
recipes introduced in Sec. II C, we readily obtain

G∞
R =

1

s2
(ê× ŝ) ,

G∞
D =

1

s2

(

3 (ê · ŝ)2 − 1
)

ŝ ,

G∞
SD =

1

s3
(3 (ê · ŝ) ŝ− ê) ,

G∞
Q =

1

s3

(

3
(

5 (ê · ŝ)3 − 3 (ê · ŝ)
)

ŝ−
(

3 (ê · ŝ)2 − 1
)

ê

)

,

G∞
RD =

3

s3
(ê · ŝ) (ê× ŝ) ,

where, again, s = r−r0 denotes the position vector relative
to the singularity location, s = |s|, ŝ = s/s, and ê stands
for the orientation unit vector of the swimmer as defined
by Eq. (13) of the main body of the paper. Notably, the
rotlet (R) and force dipole (D) decay in the far-field limit
as 1/s2, whereas the source dipole (SD), force quadrupole
(Q), and rotlet dipole (RD) undergo a faster decay as 1/s3.

Appendix C: Expression of the induced-swimming velocities in

the frequency and temporal domains

Here, we present the main mathematical expressions ob-
tained in this paper in the form of tables. We provide
in tables C1 and C2 explicit analytical expressions of the
frequency-dependent translational swimming velocities and
rotation rates resulting from the fluid-mediated hydrody-
namic interactions with a nearby planar elastic interface.
In tables C3 and C4, we list the corresponding expressions
in the temporal domain for the start-up motion from static
conditions. As already mentioned in the main text, only
the induced translational swimming velocities in the tem-
poral domain are provided. The rotation rates have rather
lengthy and complex analytical expressions and thus are
not listed here.
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F
o
rc
e
d
ip
o
le

vx
HI
D

αD sin(2θ)

2h2

∫ ∞

0

du

(

NS
D

S
+

8u6

8u3 + iβ3
B

)

e−2u

vz
HI
D

αD

(

2− 3 cos2 θ
)

h2

∫ ∞

0

du

(

u3(u− 1)

2u+ iβ
+

4u5(u+ 1)

8u3 + iβ3
B

)

e−2u

Ωy
HI
D

sin(2θ)

24h3

∫ ∞

0

du

(

u3

S

(

HS
D +AS

D cos2 θ
)

+
12u6

8u3 + iβ3
B

(

8 + Γu
(

4− 3 cos2 θ
))

)

e−2u

S
o
u
rc
e
d
ip
o
le

vx
HI
SD −αSD cos θ

h3

∫ ∞

0

du

(

NS
SD

S
+

4u6

8u3 + iβ3
B

)

e−2u

vz
HI
SD −αSD sin θ

h3

∫ ∞

0

du

(

2u4

2u+ iβ
+

8u5(1 + u)

8u3 + iβ3
B

)

e−2u

Ωy
HI
SD −αSD cos θ

h4

∫ ∞

0

du

(

u4

S

(

HS
SD +AS

SD cos2 θ
)

+
4u6

8u3 + iβ3
B

(

1 + Γu
(

2− cos2 θ
))

)

e−2u

Q
u
a
d
ru
p
o
le

vx
HI
Q

αQ cos θ

4h3

∫ ∞

0

du

(

u3

S

(

NS
Q +MS

Q cos2 θ
)

+
4u6

8u3 + iβ3
B

(

4u(2− 3u) + (15u− 8) cos2 θ
)

)

e−2u

vz
HI
Q

αQ sin θ

h3

∫ ∞

0

du

(

u4

2u+ iβ

(

2(2− u) + (5u− 8) cos2 θ
)

+
4u5(1 + u)

8u3 + iβ3
B

(

2(1− u) + (5u− 3) cos2 θ
)

)

e−2u

Ωy
HI
Q

αQ cos θ

8h4

∫ ∞

0

du

(

u4

S

(

W S
Q cos4 θ +AS

Q cos2 θ +HS
Q

)

+
u6

8u3 + iβ3
B

(

WB
Q cos4 θ +AB

Q cos2 θ +HB
Q

)

)

e−2u

R
o
tl
et

d
ip
o
le

vy
HI
RD

αRD sin(2θ)

h3

∫ ∞

0

du

(

NS
RD

4S
− 2u6

8u3 + iβ3
B

)

e−2u

Ωx
HI
RD

αRD sin(2θ)

16h4

∫ ∞

0

du

(

u4

S

(

GS
RD +KS

RD cos2 θ
)

+
8u6

8u3 + iβ3
B

(

4(1− Γu) + 3Γu cos2 θ
)

)

e−2u

Ωz
HI
RD

αRD

8h4

∫ ∞

0

du

(

u4

S

(

W S
RD cos4 θ +AS

RD cos2 θ +HS
RD

)

+
8Γu7

8u3 + iβ3
B

((

4− 3 cos2 θ
)

cos2 θ
)

)

e−2u

S
to
k
es
le
t

vx
HI
S −αS cos θ

h

∫ ∞

0

du

(

NS
S

S
+

4u5

8u3 + iβ3
B

)

e−2u

vz
HI
S −αS sin θ

h

∫ ∞

0

du

(

2u3

2u+ iβ
+

8u3 (u+ 1)
2

8u3 + iβ3
B

)

e−2u

Ωy
HI
S −αS cos θ

h2

∫ ∞

0

du

(

u2

2S

(

HS
S +AS

S cos
2 θ
)

+
4u5

8u3 + iβ3
B

(

1 + 2Γu+ 3Γ− Γ(u+ 3) cos2 θ
)

)

e−2u

R
o
tl
et

vy
HI
R

αR cos θ

2h2

∫ ∞

0

du

(

HS
R

S
+

8u5

8u3 + iβ3
B

)

e−2u

Ωx
HI
R

αR cos θ

h3

∫ ∞

0

du

(

u3

4S

(

GS
R +KS

R cos2 θ
)

− 4u5

8u3 + iβ3
B

(

1− Γu+ Γu cos2 θ
)

)

e−2u

Ωz
HI
R

αR sin θ

h3

∫ ∞

0

du

(

u3

4S

(

HS
R +KS

R cos2 θ
)

− 4u6

8u3 + iβ3
B

Γ cos2 θ

)

e−2u

TABLE C1. Expressions of the frequency-dependent evolutions of the induced-swimming velocities resulting from hydrodynamic
interactions with the elastic interface. Here, we have used the abbreviation S = 2Bu2 + (B + 2)iβu− β2.
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D

NS
D u2

((

2u2 − 4u+B + 2
)

iβ + 2Bu
(

u2 − 2u+ 2
))

HS
D 3Γ

(

2
(

2u2 − 4u+ 2−B
)

iβ + 4Bu2(u − 2)
)

+ 6 ((4u−B − 4)iβ + 2Bu(2u− 3))

AS
D 3Γ

(

3(−u2 + 2u+B − 1)iβ + 3Bu(−u2 + 2u+ 1)
)

SD

NS
SD u3(Bu+ iβ)(u − 1)

HS
SD 2 (Bu+ iβ) (1 + 2Γ(u− 1))

AS
SD − (Bu+ iβ) Γ(u− 1)

Q

NS
Q −

(

4iβ
(

3u2 − 8u+ 5 +B
)

+ 4Bu
(

3u2 − 8u+ 7
))

MS
Q

(

15u2 − 38u+ 5B + 23
)

iβ +Bu
(

15u2 − 38u+ 33
)

W S
Q Γ

(

6iβ(B − 2− u2 + 3u)− 6Bu2(u− 3)
)

AS
Q 2Bu(15u− 28) + Γ

(

iβ(26− 9B + 12u2 − 38u) + 2Bu(6u2 − 19u+ 4)
)

+ iβ(30u− 5B − 46)

HS
Q Γ

(

4iβ(2u+B − 2) + 8Bu2
)

− 24Bu(u− 2) + 4iβ(10 +B − 6u)

WB
Q 24Γu(1− u)

AB
Q 8 (15u− 8 + Γu(6u− 7))

HB
Q 32(2− 3u+ Γu)

RD

NS
RD 2u3 ((1 +B − u)iβ +Bu(3− u))

KS
RD Γ (6Bu(u− 2)− 3iβ(2 +B − 2u))

GS
RD Γ (4iβ(2 +B − 2u)− 8Bu(u− 2)) + 16Bu+ 4iβ(2 +B)

W S
RD Γ (3iβ(2 +B − 2u) + 6Bu(2− u))

AS
RD Γ (4iβ(2u− 2−B) + 8Bu(u− 2))− 6B(2u+ iβ)

HS
RD 4B(2u+ iβ)

S

NS
S u

((

u2 − 2u+B + 1
)

iβ +Bu
(

u2 − 2u+ 3
))

HS
S Γ

((

4u2 − 2u−B − 2
)

iβ + 2Bu
(

2u2 − u− 2
))

+ (2u− 2−B) iβ + 2Bu (u− 2)

AS
S −Γ

(

2
(

u2 + u− 2−B
)

iβ + 2Bu
(

u2 + u− 4
))

R

HS
R u2 ((2u− 2−B) iβ + 2Bu (u− 2))

KS
R Γ ((−4u+B + 4) iβ − 2Bu (2u− 3))

GS
R −KS

R − 6Bu− (B + 4)iβ

HS
R −2B (2u+ iβ)

TABLE C2. Expressions of the frequency-dependent coefficients appearing in Tab. C1.
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∫ ∞
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(

τ3S + 4τ2S + 6τS + 6
)

8 (1 + τS)
4 +

∫ ∞

0

du u3ξ(u)

)
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)
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∫ ∞

0
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)
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(
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)

TABLE C3. Expressions of the time-dependent evolutions of the induced-swimming velocities due to hydrodynamic interactions

with the elastic interface. Here, ξ(u) = e−2u
− e−2u(1+τBu

2) is a bending-related dimensionless function.

JS
D 3B2τ5S + 12B(1 +B)τ4S + 4 (1 + 4B(B + 3)) τ3S + 4 (4 +B (3B + 16)) τ2S + 2 (8 +B (B + 24)) τS + 8 (B + 2)

Y S
Q

21B3τ7S + 21B2 (6 + 5B) τ6S + 42B (5B + 6 (B + 3)) τ5S +
(

187B3 + 1260B (B + 1) + 88
)

τ4S + 2
(

58B3 + 561B2

+1260B + 220
)

τ3S + 2
(

5B3 + 348B2 + 1122B + 440
)

τ2S + 12
(

5B2 + 116B + 58
)

τS + 24 (5B + 22)

JS
Q

16B3τ7S + 16B2 (5B + 6) τ6S + 32B
(
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)
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(
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)
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)
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)
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(
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)
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(
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R B2τ4S +B (4 + 3B) τ3S + 2B(6 +B)τ2S +B(8 +B)τS − 4(1−B)

TABLE C4. Expressions of the time-dependent coefficients appearing in Tab. C3.
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E. Clement, A. Lindner, and A. Zöttl, “Oscillatory surface rheo-
taxis of swimming E. coli bacteria,” Nat. Comm. (2019).

96F. P. Bretherton and N. M. V. Rothschild, “Rheotaxis of sperma-
tozoa,” Proc. Roy. Soc. 153, 490–502 (1961).

97V. Kantsler, J. Dunkel, M. Blayney, and R. E. Goldstein, “Rheo-
taxis facilitates upstream navigation of mammalian sperm cells,”
Elife 3 (2014).

98C.-k. Tung, F. Ardon, A. Roy, D. L. Koch, S. S. Suarez, and
M. Wu, “Emergence of upstream swimming via a hydrodynamic
transition,” Phys. Rev. Lett. 114, 108102 (2015).

99W. E. Uspal, M. N. Popescu, S. Dietrich, and M. Tasinkevych,
“Rheotaxis of spherical active particles near a planar wall,” Soft
Matter 11, 6613–6632 (2015).

100K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and R. E.
Goldstein, “Fluid dynamics and noise in bacterial cell–cell and
cell–surface scattering,” Proc. Natl. Acad. Sci. U.S.A. 108, 10940–
10945 (2011).

101E. P. Ipiña, S. Otte, R. Pontier-Bres, D. Czerucka, and F. Peruani,
“Bacteria display optimal transport near surfaces,” Nat. Phys. , 1
(2019).

102E. Yariv, “Wall-induced self-diffusiophoresis of active isotropic col-
loids,” Phys. Rev. Fluids 1, 032101 (2016).



18

103J. Elgeti and G. Gompper, “Self-propelled rods near surfaces,”
Europhys. Lett. 85, 38002 (2009).

104J. Elgeti and G. Gompper, “Microswimmers near surfaces,” Eur.
Phys. J. Special Topics 225, 2333–2352 (2016).

105A. Daddi-Moussa-Ider, M. Lisicki, A. J. T. M. Mathijssen,
C. Hoell, S. Goh, J. B lawzdziewicz, A. M. Menzel, and H. Löwen,
“State diagram of a three-sphere microswimmer in a channel,” J.
Phys.: Condes. Matter 30, 254004 (2018).

106H. Wioland, E. Lushi, and R. E. Goldstein, “Directed collective
motion of bacteria under channel confinement,” New J. Phys. 18,
075002 (2016).

107M. Theers, E. Westphal, G. Gompper, and R. G. Winkler, “Mod-
eling a spheroidal microswimmer and cooperative swimming in a
narrow slit,” Soft Matter 12, 7372–7385 (2016).

108J. de Graaf, A. J. Mathijssen, M. Fabritius, H. Menke, C. Holm,
and T. N. Shendruk, “Understanding the onset of oscillatory swim-
ming in microchannels,” Soft Matter 12, 4704–4708 (2016).

109M. Kuron, P. Stärk, C. Burkard, J. de Graaf, and C. Holm, “A lat-
tice boltzmann model for squirmers,” J. Chem. Phys. 150, 144110
(2019).

110A. Daddi-Moussa-Ider, A. Guckenberger, and S. Gekle, “Long-
lived anomalous thermal diffusion induced by elastic cell mem-
branes on nearby particles,” Phys. Rev. E 93, 012612 (2016).

111A. Daddi-Moussa-Ider, A. Guckenberger, and S. Gekle, “Particle
mobility between two planar elastic membranes: Brownian motion
and membrane deformation,” Phys. Fluids 28, 071903 (2016).

112A. Daddi-Moussa-Ider and S. Gekle, “Hydrodynamic interaction
between particles near elastic interfaces,” J. Chem. Phys. 145,
014905 (2016).

113A. Daddi-Moussa-Ider and S. Gekle, “Brownian motion near an
elastic cell membrane: A theoretical study,” Eur. Phys. J. E 41,
19 (2018).

114L. Xiao, L. Wei, C. Liu, Y. He, and E. S. Yeung, “Unsynchronized
translational and rotational diffusion of nanocargo on a living cell
membrane,” Angew. Chem. Int. Ed. 51, 4181–4184 (2012).

115F. Jünger, F. Kohler, A. Meinel, T. Meyer, R. Nitschke, B. Erhard,
and A. Rohrbach, “Measuring local viscosities near plasma mem-
branes of living cells with photonic force microscopy,” Biophys. J.
109, 869–882 (2015).

116R. Ledesma-Aguilar and J. M. Yeomans, “Enhanced motility of a
microswimmer in rigid and elastic confinement,” Phys. Rev. Lett.
111, 138101 (2013).

117R. Trouilloud, S. Y. Tony, A. E. Hosoi, and E. Lauga, “Soft swim-
ming: Exploiting deformable interfaces for low reynolds number
locomotion,” Phys .Rev. Lett. 101, 048102 (2008).

118T. Bickel, “Hindered mobility of a particle near a soft interface,”
Phys. Rev. E 75, 041403 (2007).

119T. Bickel, “Probing nanoscale deformations of a fluctuating inter-
face,” Europhys. Lett. 106, 16004 (2014).

120T. Bickel, “Brownian motion near a liquid-like membrane,” Eur.
Phys. J. E 20, 379–385 (2006).

121B. U. Felderhof, “Effect of surface tension and surface elasticity of
a fluid-fluid interface on the motion of a particle immersed near
the interface,” J. Chem. Phys. 125, 144718 (2006).

122B. U. Felderhof, “Effect of surface elasticity on the motion of a
droplet in a viscous fluid,” J. Chem. Phys. 125, 124904 (2006).

123A. T. Chwang and T. Y.-T. Wu, “Hydromechanics of low-
Reynolds-number flow. Part 2. Singularity method for Stokes
flows,” J. Fluid Mech. 67, 787–815 (1975).

124S. E. Spagnolie and E. Lauga, “Hydrodynamics of self-propulsion
near a boundary: predictions and accuracy of far-field approxima-
tions,” J. Fluid Mech. 700, 105–147 (2012).

125J. Happel and H. Brenner, Low Reynolds number hydrodynamics:

with special applications to particulate media, Vol. 1 (Springer Sci-
ence & Business Media, 2012).

126S. Kim and S. J. Karrila, Microhydrodynamics: principles and

selected applications (Courier Corporation, 2013).
127R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, “Strain energy

function of red blood cell membranes,” Biophys. J. 13(3), 245–264
(1973).

128J. B. Freund, “Numerical simulation of flowing blood cells,” Annu.
Rev. Fluid Mech. 46, 67–95 (2014).
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153C. Hoell, H. Löwen, A. M. Menzel, and A. Daddi-Moussa-Ider,

“Creeping motion of a solid particle inside a spherical elastic cav-
ity: Ii. asymmetric motion,” Eur. Phys. J. E 42, 89 (2019).

154H. C. Berg, E. coli in Motion (Springer Science & Business Media,
2008).

155F. F. V. Chevance and K. T. Hughes, “Coordinating assembly of
a bacterial macromolecular machine,” Nat. Rev. Microbiol. 6, 455
(2008).

156M. Lisicki, M. Velho Rodrigues, R. Goldstein, and E. Lauga,
“Swimming eukaryotic microorganisms exhibit a universal speed
distribution,” eLife (2019).

157K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval,
“Direct measurement of the flow field around swimming microor-
ganisms,” Phys. Rev. Lett. 105, 168101 (2010).

158A. M. Menzel, A. Saha, C. Hoell, and H. Löwen, “Dynamical den-
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Ebbens, “Helical paths, gravitaxis, and separation phenomena for
mass-anisotropic self-propelling colloids: Experiment versus the-
ory,” J. Chem. Phys. 147, 084905 (2017).

186J.-T. Kuhr, J. Blaschke, F. Rühle, and H. Stark, “Collective sedi-
mentation of squirmers under gravity,” Soft Matter 13, 7548–7555
(2017).

187S. E. Spagnolie, G. R. Moreno-Flores, D. Bartolo, and E. Lauga,
“Geometric capture and escape of a microswimmer colliding with
an obstacle,” Soft Matter 11, 3396–3411 (2015).

188M. Abramowitz and I. A. Stegun, Handbook of mathematical func-

tions, Vol. 1 (Dover New York, 1972).
189J. R. Blake, “A note on the image system for a Stokeslet in a no-slip

boundary,” Math. Proc. Camb. Phil. Soc. 70, 303–310 (1971).
190J. Blake and A. Chwang, “Fundamental singularities of viscous

flow,” J. Eng. Math. 8, 23–29 (1974).





0

0.5

1

1.5

10−4 10−2 100 102 104

v
∗ xH

I
D

τ

(a)

0

0.5

1

1.5

10−4 10−2 100 102 104

v
∗ zH

I
D

τ

(b)

0

0.5

1

1.5

10−4 10−2 100 102 104

Ω
∗ yH

I
D

τ

(c)

0

0.5

1

1.5

10−4 10−2 100 102 104

v
∗ xH

I
S
D

τ

(d)

0

0.5

1

1.5

10−4 10−2 100 102 104

v
∗ zH

I
S
D
τ

(e)

0

0.5

1

1.5

10−4 10−2 100 102 104

Ω
∗ yH

I
S
D

τ

(f)

-1.0

0

1

10−4 10−2 100 102 104

v
∗ xH

I
Q

τ

(g)

0

0.5

1

1.5

10−4 10−2 100 102 104

v
∗ zH

I
Q

τ

(h)

0

0.5

1

1.5

10−4 10−2 100 102 104

Ω
∗ yH

I
Q

τ

(i)

-1.0

0

1

10−4 10−2 100 102 104

v
∗ xH

I
R

D

τ

(j)

-0.5

0

0.5

1

1.5

10−4 10−2 100 102 104

Ω
∗ xH

I
R

D

τ

(k)

-0.5

0

0.5

1

1.5

10−4 10−2 100 102 104

Ω
∗ zH

I
R

D

τ

(l)



0

0.5

1

1.5

10−4 10−2 100 102 104

v
∗ xH

I
S

τ

(a)

0

0.5

1

1.5

10−3 100 103 106

v
∗ zH

I
S

τ

(b)

-0.5

0

0.5

1

1.5

10−4 10−2 100 102 104

Ω
∗ yH

I
S

τ

(c)

-1

-0.5

0

0.5

1

10−4 10−2 100 102 104

v
∗ xH

I
R

τ

(d)

0

0.5

1

1.5

10−3 100 103 106

Ω
∗ xH

I
R

τ

(e)

0

0.5

1

1.5

10−4 10−2 100 102 104

Ω
∗ zH

I
R

τ

(f)


