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The existence of topological order is frequently associated with strongly coupled quantum matter. Here,
we demonstrate the existence of topological phases in classical systems of densely packed, hard, anisotropic
polyhedrally shaped colloidal particles. We show that previously reported transitions in dense packings lead to
the existence of topologically ordered thermodynamic phases, which we show are stable away from the dense
packing limit. Our work expands the library of known topological phases, whose experimental realization could
provide new means for constructing plasmonic materials that are robust in the presence of fluctuations.

I. INTRODUCTION

Topological phases are exotic states of matter that are typ-
ically associated with strongly interacting quantum systems,
in which topological protection stabilizes certain physical be-
haviors against environmental perturbations [1]. In quantum
systems, protection of this type can be invaluable in appli-
cations for which coherence is crucial. In a similar spirit,
many applications for classical soft matter systems of col-
loidal nanoparticles would benefit from topological order in
the presence of environmental perturbations. In colloidal sys-
tems, entropic effects are important [2–4] and typical interac-
tion strengths are on the order of the thermal scale. Indeed,
recent work has shown that thermal fluctuations in soft sys-
tems can, in a variety of contexts, drive structural reconfigura-
tion [5–8], an important feature of functional nanomaterials.
However, for other applications, the preservation of structural
order against thermal fluctuations is vital. If soft matter was
topologically ordered, it could be used in building structures
with robust features.

Recent work [9] has shown that topological states can exist
in specialized classical mechanical systems, and that the dy-
namics of classical systems can manifest topological effects
[10, 11]. The topological states that occur in those systems
are expressed in terms of Witten indices, whose existence re-
lies on the spectrum of excitations in nearly-isostatic lattices.
Additionally, topologically protected phases exist in a variety
of classic phononic [12–17] and photonic [18] systems.

Here, we show that the point-set topology of contacts that
distinguishes structures of hard colloids at infinite pressure
(aka “putative densest packings”) [19] leads to the existence of
topologically distinct phases. We prove peturbatively that, in
general, topologically distinct putative densest packings lead
to the existence of associated thermodynamic phases away
from infinite pressure. We demonstrate numerically that topo-
logical order persists at finite pressure. Surprisingly, we find
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that thermodynamic phases that are topologically protected at
the highest possible packing densities preserve near-perfect
topological order at packing densities sufficiently low that
topological protection need not persist.

Our approach provides a general framework for investigat-
ing and classifying the structure of thermodynamic systems
of hard colloids near the dense packing limit. The topological
order we observe is of a strikingly different origin – and con-
sequently, has different properties – than topological states in
quantum matter. Ref. [9] showed that the existence of topo-
logical phases is not uniquely the preserve of strongly inter-
acting quantum matter, and our results raise the possibility
that topological order is a widespread phenomenon in classi-
cal systems.

II. ANALYTICAL FIRST-ORDER PHASE TRANSITION
AT INFINITE PRESSURE

Ref. [19] showed that, for families of hard anisotropic
shapes at infinite pressure, continuous deformations of par-
ticle shape result in continuous changes in putative densest
packings. It was also shown that non-analytic behavior in
curves, surfaces, or hypersurfaces φd(αi) of maximal pack-
ing density φd as a function of particle shape αi occur if and
only if there is a change in the point-set topology of contacts
between particles in the dense packing structure; Fig. 1 il-
lustrates this point. We argue that, generically, this leads to
distinct, solid thermodynamic phases away from infinite pres-
sure. Since pressure is defined in units of kBT , we can think
of the infinite pressure limit as a sort of zero temperature limit
of the system, which may be a more useful way to think about
these hard particle systems in reference to other works involv-
ing topological order. Note that the focus of this analysis is to
draw a distinction between adjacent solid phases, rather than
on the existence of distinct solid and liquid phases.

We make our argument using the framework of digital
alchemy [20]. Digital alchemy extends the traditional ther-
modynamic ensemble for particle self-assembly through con-
sideration of thermodynamically conjugate variables (termed
“alchemical potentials” µ) coupled to changes in particle at-
tributes. Here, we consider changes in particle shape as the
alchemical variable for the packings in [19] and the associ-
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FIG. 1. Surfaces (solid blue and green lines) of maximal packing
density (φd) as a function of particle shape (α) have been shown [19],
in general, to exhibit non-analytic behavior at the point (α∨, φ∨) that
is associated with a change in the topology of contacts between ad-
jacent particles. Within the blue and green triangular regions, dense
packings exhibit topological distinction by particle contacts. How-
ever, within the gray region bounded above by the dashed blue and
green lines, it is unknown, in general, whether topological contact
types persist (top panel). We show that there is a first-order phase
transition, indicated by the divergence of the so-called alchemical
potential [20] near the valley packing discontinuity (bottom panel).

ated alchemical potential is given by

µα =
1

N

∂F

∂α
, (1)

where N is the number of particles in the system, F is the
free energy, and α is a shape parameter. To understand the
phase behavior of dense suspensions of anisotropic colloids
away from infinite pressure, it is convenient to study the al-
chemical potential in the vicinity of the intersection of two

packing curves, where there is a change in the topology of
particle contacts (α∨, φ∨ in Fig. 1).

It was previously shown [19] that for generic, anisotropic
colloids, each fragment of the dense packing surface is a topo-
logically distinct packing. We will assert that in each topolog-
ical equivalence class of packings there are the same number
of “microstates” or entropy. This is a reasonable assumption
because in most cases there is only one topologically allowed
dense packing, and in the cases where there are sliding sur-
faces, the sliding surfaces should be topologically equivalent.
We assume that, for some shape with alchemical parameter α
describing the particle shape, there is a densest packing φd.
We can find the free energy at a lower packing density φ via
thermodynamic integration according to

F (φ, α) = F (φd(α), α)−
∫ φd

φ

dφ′
∂F (φ′, α)

∂φ′
. (2)

Using the relationship between packing density and volume,
and the definition of pressure, this can be written as

F (φ, α) = F (φd(α), α)−
∫ φd

φ

dφ′
N`dP (φ′)

φ′2
, (3)

where ` is a characteristic length scale for the system, which
we take to be the particle size, and assume that changes in α
preserve the particle volume. For convenience, we will take
P ∗ = `dβP to be the dimensionless pressure (where β is in-
verse temperature).We decompose the free energy into the ki-
netic part and the configurational part. We assume that the
configurational part F̃ (φd(α), α) is constant along a single
topological family of packings, and the kinetic part Fk does
not depend on density, so that

F (φ, α) = Fk(α) + F̃ (φ∨, α∨)−
∫ φd

φ

dφ′
NP ∗(φ′)
βφ′2

, (4)

where we are following the notation of [20] for decompos-
ing the free energy into kinetic and configurational parts [21].
Take ∆α as the range over which the packing is optimal, and
also take δα so that

0 < δα� ∆α. (5)

We then approximate F (φ∨, α∨−δα) using the midpoint rule
as

F (φ∨, α∨ − δα) ≈ Fk(α∨ − δα) + F̃ (φ∨, α∨)− N(φd − φ∨)

2β

(
P ∗(φd)
φ2d

+
P ∗(φ∨)

φ2∨

)
(6)

where φd is evaluated at α∨ − δα. We can approximate

φd(α∨ − δα)− φ∨ ≈ δα
∣∣∣∣∂φd∂α

∣∣∣∣
α=α∨

(7)

so that

F (φ∨, α∨ − δα) ≈Fk(α∨ − δα) + F̃ (φ∨, α∨)

− Nδα

2β

∣∣∣∣∂φd∂α

∣∣∣∣
α=α∨

(
P ∗(φd)
φ2d

+
P ∗(φ∨)

φ2∨

)
.

(8)
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We can estimate the alchemical potential in the limit that α
approaches α∨ from the left as

µα ≈
1

Nδα

(
Fk(α∨)− Fk(α∨ − δα)

+
Nδα

2β

∣∣∣∣∂φd∂α

∣∣∣∣
α=α∨

(
P ∗(φd)
φ2d

+
P ∗(φ∨)

φ2∨

))
(9)

so that

µα ≈
1

N
F ′k(α∨) +

1

2β

∣∣∣∣∂φd∂α

∣∣∣∣
α=α∨

(
P ∗(φd)
φ2d

+
P ∗(φ∨)

φ2∨

)
.

(10)
The first term in Eq. (10) is a correction factor that comes
from differentiating the trace of the moment of inertia tensor.
As long as the shape parametrization is continuous, this term
is finite and in [19] it certainly always is. However, P ∗(φd)
is formally infinite. That means µα → ∞ as α → α−∨ . If
we carry out the same consideration for α∨ + δα everything
carries through up to Eq. (10), except that the sign of the sec-
ond term is reversed. This means µα → −∞ as α → α+

∨ . A
sketch of this result is in Fig. 1.
µα is a first derivative of the free energy, which means that

φ∨, α∨ is a first order thermodynamic phase transition. An-
other way of seeing this is the fact that the alchemical potential
diverges near α∨, meaning that at φ∨ for any finite alchemical
potential the system will have a thermodynamically preferred
α that is a finite distance from α∨. This means that if we re-
gard α as an order parameter, there is no way at φ∨ of having
it take the value of α∨, so that it must change discontinuously.
We note that µα can also be interpreted as a stress that results
from a strain dα [20]. This transition exists solely because of
the non-analytic behavior of the dense packing surface, which
reflects the topology of contacts among densely packed parti-
cles.

III. DELINEATION OF TOPOLOGICAL PHASES

Next we consider what happens below maximum pack-
ing density. We consider packings λi where i ∈ {A,B};
λA and λB are on either side of the phase transition shown
schematically in Fig. 1. To distinguish between these pack-
ings, we construct an order parameter that takes advantage of
the way λA and λB are defined topologically. Ref. [19] de-
fines each packing according to the types of contacts (face-
face, face-vertex, face-edge, vertex-vertex, vertex-edge and
edge-edge) shared between adjacent particles. These con-
tacts map to a set of intersection equations that mathemat-
ically describe each contact by relating particle shape pa-
rameters to the geometry of the two particle unit cell of the
packing, described by vectors for the lattice and particle(s)
within the unit cell. Each packing λi has Ki unique (mean-
ing unshared with the other packing) intersection inequalities∣∣Ci,k∣∣ ≥ 0 (where k = 1, 2, . . . ,Ki) that define the packing.
As an example, a packing λA might be described by a rela-
tion CA,1 = [a· < −1, 1, 1 > −(αa + αc)], where a is a

lattice vector and αa and αc are parameters that describe par-
ticle shape. Note that the range of parameters could include
any lattice vector (a, b, c), the displacement vector between
the two particles in the unit cell (d), or any of three shape
parameters (αa, αb, αc). Three shape parameters fully char-
acterize the family of particle shapes [19] considered in this
paper; we describe them fully in the next section.

When the shape parameters and unit cell geometry corre-
spond to densest packing, all the Ci,k = 0. If the geometry of
the unit cell does not correspond to the densest packing, then
some

∣∣Ci,k∣∣ ≥ 0. Changes in unit cell geometry (while par-
ticle shape is fixed) effectively provide a means of measuring
changes to particle contact; at lower packing densities, then,
the saturation or near-saturation of the intersection inequali-
ties (i.e. all Ci,k ≈ 0) would imply that particle contacts have
(through thermal fluctuation) remained approximately equal
to the particle contacts at infinite pressure, preserving unit cell
geometry and topological order.

We now define an order parameter of the form θij where
i represents a stable or metastable thermodynamic phase that
is putatively isostructural with λi [22] and λj is the packing
against which the state will be evaluated. For example, θAA
is defined as the evaluation of a packing λA in its own inter-
section equations (those of λA), and it evaluates to unity at
maximal packing density by construction. Conversely, θAB
(pertaining to the same packing λA evaluated in the intersec-
tion equations of λB) evaluates to zero at maximal packing by
construction.

To construct θij , several variables must first be defined. The
packing λi is a function of particle shape α and packing den-
sity φ ≤ φd by definition. We define ξij (a function of parti-
cle shape α and packing density φ) to reflect the evaluation of
packing λi in the intersection equations of packing type λj as

ξij(φ, α) = e
− 1
Kj

Kj∑
k=1

∣∣Cj,k(λi(φ,α))∣∣
. (11)

When φ = φd, ξij describes the saturation of λj’s intersection
equations by λi at its maximum packing density, lying on its
putative densest packing surface. We thus denote this special
case by

ξideal
ij = ξij(φd, α). (12)

To construct a generalized order parameter for a set of two
adjacent packings λA and λB , we then compute four quan-
tities (ξAA, ξAB , ξBA, ξBB) that consider all four evaluation
types in i ∈ {A,B} and j ∈ {A,B}, which we use to build
vectors that represent coordinates in the [ξiA, ξiB ] plane

DA =

[
ξAA, ξAB

]
, DB =

[
ξBA, ξBB

]
. (13)

Similarly, we construct vectors to represent the maximum
density packings

Dideal
A =

[
ξideal
AA , ξ

ideal
AB

]
, Dideal

B =

[
ξideal
BA , ξ

ideal
BB

]
. (14)
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The distance between the ideal structures in the [ξiA, ξiB ]
plane is

Dideal
AB =

√
(Dideal

A −Dideal
B ) · (Dideal

A −Dideal
B ). (15)

Finally, we define θij to distinguish the topology of the two
packings, making a generalized expression for any packing λi
evaluated in the intersection equations of a packing type λj

θij = 1−

√
(Di −Dideal

j ) · (Di −Dideal
j )

Dideal
AB

. (16)

Since we do not have a method to directly measure the topo-
logical invariant of a packing, we use our order parameter to
estimate topological order of a packing λi being evaluated us-
ing the intersection equations of a packing type λj . We find
that our order parameter, in some specific packings, can tend
to underreport topological order by a small amount (see Sec-
tion VB) but visual inspection confirms that the same contacts
still manifest themselves in these packings. Since we are try-
ing to show the mere existence of topological order in these
systems, a slight underreport does not affect our overall con-
clusions.

IV. NUMERICAL METHODS

Topologically distinct packings can be found for a range of
families of anisotropic colloids. For concreteness, we con-
sidered packings in the two-parameter family of triangle in-
variant polyhedral shapes, ∆323, reported in Ref. [19]. This
family of shapes includes three Platonic solids (tetrahedron,
octahedron, cube) and truncations thereof. The family can be
described by two independent shape parameters, αa and αc
(following the convention of [8]), denoting shape edge trun-
cation and vertex truncation respectively. In [19], these vari-
ables are instead called u and v respectively. A third shape pa-
rameter that appears in the intersection equations, αb, is equal
to 1 in this shape family. Authors in [19] showed the exis-
tence of 75 topologically distinct two-particle dense packings
of polyhedra in this family. This family has the largest num-
ber of closely spaced packings, which one might expect could
reduce stability, making this set of systems a suitable candi-
date for investigating stability. Also, because the number of
adjacent packing states is too large to study exhaustively, we
arbitrarily chose two for extensive study. We chose two dis-
tinct packing boundaries (valleys which have a packing λi on
either side, where i ∈ {A,B}), with one boundary (I) located
between phases labelled ‘52’ and ‘58’ and the other boundary
(II) between phases labelled ‘74’ and ‘69’ (numbering con-
vention can be found in Ref. [19]).

For each boundary, we chose one shape parameter (either
αa or αc) to remain constant, and then moved along the axis
of the other α. For boundary I, we studied a range of con-
stituent particles in αa = [2.80, 2.88] and set αc = 1.52 (the
difference in topology of these packings is shown in Fig. 2). In
the packing labelled ’52’, both particles in the unit cell have a

coordination number of 14 (coordination numbers were mea-
sured using the particles located in the first nearest neighbor
shell), across the range of αa studied. Similarly, in the pack-
ing labelled ’58’, both particles in the unit cell have a coor-
dination number of 14, across the range of αa studied. For
boundary II, we set αa = 1.80 and studied a range of con-
stituent particles in αc = [1.90, 1.96] (the difference in topol-
ogy of these packings is shown in Fig. 3). In the packing la-
belled ’74’, both particles in the unit cell have a coordination
number of 12, across the range of αc studied. However, in the
packing labelled ’69’, both particles in the unit cell have a co-
ordination number of 12 near αc = 1.90 but eventually have
a coordination number of 13 near αc = 1.96.

We initialized systems of 1024 identical particles in both
λA and λB at various densities. Particle positions and orien-
tations were well defined for initialization in [19]. We sam-
pled systems in the isochoric ensemble using the hard particle
Monte Carlo (HPMC) [23] extension of the simulation toolkit
HOOMD-blue [24, 25]. Although the volume remained fixed,
box shear and aspect ratio moves were allowed, and move
sizes were tuned such that acceptance ratios were approxi-
mately 0.3. We computed pressure during these simulations
via the scaled distribution function [26], whose measurement
is implemented in HPMC [27]. Ensemble averages were taken
over five replicates and five snapshots per replicate simulation,
where each simulation snapshot was separated by 106 MC
timesteps, well beyond the calculated autocorrelation time of
the system pressure. For each data point, we constructed a
system in the ideal putative densest packing structure and then
expanded this structure to the target packing density.

Free energies were computed via the Frenkel-Ladd [28, 29]
method. The Einstein crystals for these simulations were the
same packings described above, with an expansion performed
down to the desired packing density at the beginning of the
simulation. An external force field Λ tethered particles to
their crystal sites with a spring constant of k = exp(25) in
units of kBT . We fixed length units by taking particles to
have unit volume. Every 1.4 × 105 timesteps, k was linearly
decreased until it was eventually 0; each time k was changed,
move sizes were tuned, 105 timesteps were run for equilibra-
tion, and the lattice energy was computed in the remaining
4.0× 104 timesteps.

V. RESULTS

A. Boundary I

Fig. 4(a) shows the curves of maximal packing density
φd for each packing type, indicating the protected regions in
darker shading under them. Below that are curves of free en-
ergy as a function of both packing and shape at various pack-
ing densities φ well below the maximum packing density φd.
Several possibilities exist below φd, and we test for these pos-
sibilities:

• Packing states could become thermodynamically unsta-
ble at any finite packing density below φd, meaning that
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FIG. 2. Example dense packing structures (where packing λA=52

is blue and packing λB=58 is green) of anisotropic shapes, including
“exploded” views that show the location and orientation of neighbor-
ing particles, and densely packed units.

packing is a kind of singular limit with no associated
thermodynamic phase.

• Distinct phases persist below φd, but these phases do
not preserve topological order, which would occur if
other contacts proliferate in the lower packing density
phases.

• Distinct phases with topological order persist.

To rule out non-existent phases, we compute the free en-
ergy of decompressed packing states. Plots of free energy
(Fig. 4(a)) show that even at packing densities well below φd,
two phases persist up to some crossing. The location of this
crossing at packing densities below φ∨ need not be at α∨, and
we find that it does deviate from α∨ at lower packing den-
sity. The thermodynamically preferred regions are colored in
lighter shades of the protected regions. To verify that the two
phases at finite pressure have persistent and distinct topology
of particle packing, we compute the relevant order parameters
from Eq. (16) for each structure. This calculation is performed
by extracting the unit cells of the thermalized packings of λA
and λB at a packing density φ (the unit cell extraction tech-
nique is outlined in Appendix A).

To rule out the possibility that the phases lose topological
order, we computed the θij order parameters in the phases
corresponding to thermodynamic states in our free energy
calculations. We find that at packing densities well below
φ∨, phases identified by the free energy calculation corre-
spond to phases that differ in the topology of particle contacts
measured through the order parameters θij . In Fig. 4(b,d,f)
we evaluate the order parameter θiA on structures λi where
i ∈ {A = 52, B = 58} and find that over a range of packing
densities, θiA evaluates to near unity on λA and vanishes on
λB . Conversely, in Fig. 4(c,e,g) we evaluate the order param-
eter θiB on λA and λB and find that over a range of packing
densities, θiB evaluates to near unity on λB and vanishes on
λA.

FIG. 3. Example dense packing structures (where packing λA=74

is blue and packing λB=69 is green) of anisotropic shapes, including
“exploded” views that show the location and orientation of neighbor-
ing particles, and densely packed units.

These results indicate that the phases can be identified by
the topology of the related putative densest packings, and pos-
sess residual topological order, or order that matches the order
of a topological state at a packing density where topological
protection has not been proven to exist. The residual topo-
logical order we observe in Fig. 4 suggests that crystal struc-
tures present in densely packed colloidal suspensions maintain
a topologically consistent set of contacts between particles at
densities where other competing contact topologies could ex-
ist, but are unlikely to do so due to the existence of a more
thermodynamically favorable topological state.

B. Boundary II

Fig. 5(a) contains similar results for the 2nd boundary stud-
ied in this work, as it shows that a free energy crossing exists
at packing densities well below the maximal packing density.
In Fig. 5(b,d,f) we evaluate the order parameter θiA on struc-
tures λi where i ∈ {A = 74, B = 69} and find that over a
range of packing densities, θiA evaluates to near unity on λA
and vanishes on λB . Conversely, in Fig. 5(c,e,g) we evalu-
ate the order parameter θiB on λA and λB and find that over
a range of packing densities, θiB evaluates to near unity on
λB and vanishes on λA. Again, these results indicate that the
phases can be identified by the topology of the related puta-
tive densest packings, and possess residual topological order.
These results also suggest that this type of residual topologi-
cal order can be found at valleys throughout this packing land-
scape, and that this type of behavior is generalizable to many
different dense colloidal packings.

In this system though, it should be noted that there is no-
ticeable deviation in the order parameters θBA and θBB as αc
approaches the value of 1.96. θBA (in Fig. 5(f)) trends slightly
upward and θBB (in Fig. 5(g)) slightly downward, and it is a
subtlety of the packing (λB=69) that, when captured by our
order parameter, produces such deviation. We do not believe
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FIG. 4. Panel (a) shows the curves of maximal packing density at φ∨, outlining the two protected packing regions, where packing λA=52 is
blue and packing λB=58 is green. Lower curves indicate computed free energies at three packing densities (0.85, 0.80, 0.75). Darker shaded
colors indicate protected regions, while lighter shaded colors indicate free energy preferred regions of the (α, φ) phase diagram. The gray
region is a region where the preferred phase is unknown. Panels (b, d, f) indicate topological order evaluated using the intersection equations for
λA=52 and panels (c, e, g) indicate the same using the intersection equations for λB=58. The dotted black line roughly demarcates boundaries
between thermodynamically preferred packings as a function of packing density, and is meant to guide the eye.

that this slight deviation indicates a change in topology, and
we address how such deviations might occur in Appendix B.

VI. DISCUSSION

The topologically distinct phases of dense suspensions of
anisotropic colloids that we find here are dissimilar to topo-
logical phases in quantum matter in almost all respects, except
in their stability against perturbations. For instance, whereas
the topological entropy of ground-state degeneracy that arises
from entanglement is important in quantum systems [30], in
our systems, instead, shape entropy [2] quantifies ground state
degeneracy. Moreover, whereas the geometric topology that
underlies topological order in quantum systems allows a con-
siderable mathematical apparatus to be brought to bear in un-
derstanding those states, the point-set topology that underlies
the classical, topological order we identify here is more lim-
ited. Nevertheless, despite the rudimentary form of the topo-

logical order reported here, colloidal systems remain robust
against perturbation, since they persist even at lower pack-
ing densities where topological protection is no longer re-
quired. This robust persistence would be a key desirable fea-
ture for applications in regimes away from the infinite pres-
sure limit. Moreover, because the form of topological order
is more rudimentary, previous work [19] demonstrating that
topological features (such as particle contact types between
faces, edges and vertices) generically distinguish phases of
densely packed colloids suggests that this form of topological
order is widespread in colloidal systems [31–35].

To leverage this topological order in experiment we note
that though our order parameters are based on contact types
that nominally arise at infinite pressure, we showed that topo-
logical order persists at finite pressure, meaning that alter-
ations in contact do not proliferate at lower packing densi-
ties. This finding is potentially useful in constructing plas-
monic materials that have robust response in the presence of
thermal fluctuations, changes in particle shape [36] or the be-
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FIG. 5. Panel (a) shows the curves of maximal packing density at φ∨, outlining the two protected packing regions, where packing λA=74 is
blue and packing λB=69 is green. Lower curves indicate computed free energies at three packing densities (0.85, 0.80, 0.75). Darker shaded
colors indicate protected regions, while lighter shaded colors indicate free energy preferred regions of the (α, φ) phase diagram. The gray
region is a region where the preferred phase is unknown. Panels (b, d, f) indicate topological order evaluated using the intersection equations for
λA=74 and panels (c, e, g) indicate the same using the intersection equations for λB=69. The dotted black line roughly demarcates boundaries
between thermodynamically preferred packings as a function of packing density, and is meant to guide the eye.

havior of stabilizing ligands [37, 38]. It is known that the
plasmonic response of systems of anisotropic nanoparticles
depends strongly on the type of contacts between nanopar-
ticles [39]. We find that the topology of contacts between
anisotropic nanoparticles is stable over a broad range of pack-
ing densities. When situated in the context of the zoo of dis-
tinct sets of contact types that has been shown to exist [19] in
families of anisotropic nanoparticles and the variety of syn-
thesis techniques that can readily produce such particles in
the laboratory [40–43], our work points to potential avenues
for creating nanomaterials with a diversity of robust forms of
plasmonic response.
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Appendix A: Unit Cell Extraction

To perform the order parameter calculation described in the
main text, one must compute a set of intersection expressions
of the form

Cλ,k(αa, αc,~a,~b,~c, ~d) (A1)

where λ is a lattice, αa and αc are shape parameters of the
particle, {~a,~b,~c} are the lattice vectors of the two particle unit
cell, and ~d is the displacement vector between the particles
in the two-particle unit cell. While the shape parameters are
readily available during the calculation of these intersection
equations, unit cell information is not. We extracted this in-
formation from each thermalized system snapshot in the fol-
lowing manner:

1. We extracted the lattice vectors {~a,~b,~c} from the snap-
shot.

2. We used the unit cell defined by the extracted lattice
vectors to find the lattice basis.

3. We iterated through all possible (right-handed) permu-
tations of the lattice vectors, and associated transforma-
tions of the basis such that it remained in the interior

of the unit cell, to minimize
Kλ∑
k=1

∣∣Cλ,k∣∣, defined in the

main text.

To extract the lattice vectors, we first chose a subset of par-
ticles, hereafter called {O}, that we initialized to have identi-
cal locations in the unit cell of the lattice. We calculated the
local environment of each member i of {O} , defined as the
set of its J nearest neighbor vectors ~rij = ~rj − ~ri, where
j is an index over the J nearest neighbors of i that are also
members of {O}. We then clustered members of {O} by the
similarity of their environment according to an “environment
matching” scheme, which we have made available as a part
of the open-source analysis package freud [44]. Briefly, the
software determines if a set of N vectors {~r} is similar to,
or “matches,” another set of N vectors {~r′}, by attempting
to find a one-to-one mapping between {~r} and {~r′} such that
|~rn−~r′n′ | < t for every mapping pair (n, n′) for some thresh-
old t. ~rn is the n-th member of {~r}, and 1 ≤ n ≤ N . ~r′n′ is
the n′-th member of {~r′}, and 1 ≤ n′ ≤ N . If that mapping is
found, then {~r} and {~r′} “match.” Here, we compared the en-
vironment of every member of {O} to every other member of
{O}. We chose J by inspection, to produce an environment
for each member of {O} that would be approximately simi-
lar to eye and that would contain vectors capable of spanning
three dimensions. We chose t = 0.1〈rmax〉, where 〈rmax〉 is
the average over the set of distances from every member of
{O} to its J-th nearest neighbor (also in {O}).

We chose the largest subset of members of {O}with match-
ing environments, {Om}, and took the average environment
over the set of environments of all members of {Om}. We
then found a minimal volume unit cell from these J aver-
age vectors. We computed the Niggli reduced cell [45] from

this minimal volume unit cell using the open-source soft-
ware package niggli, available at https://github.com/
atztogo/niggli.

We then extracted the unit cell basis. To do this, we con-
structed a new local environment for every member i of {O},
this time consisting of K nearest neighbor vectors ~rik =
~rk − ~ri, where k is an index over the K nearest neighbors
of i, regardless of whether those neighbors are members of
{O} or not. We computed the average local environment over
every environment found in this manner, and wrapped these
average neighbor vectors into the reduced unit cell found in
the previous step. We clustered the wrapped neighbor lo-
cations using the DBSCAN clustering algorithm [46] in the
scikit-learn Python module [47], and determined average po-
sitions of all clusters of points. We verified that our clustering
procedure produced two positions in the unit cell, one near a
unit cell corner and one in the interior of the unit cell. We
determined K by automatically detecting a minimal cut-off
radius rcut within which all particles had a number of near-
est neighbors in a small, two-member set of nearest neighbor
numbers {K ′}. We imposed an additional constraint that both
members of {K ′} had to be greater than 10, in order to find
suitable environments for basis extraction. We then chose K
to be the larger member of {K ′} that resulted in a clean, two-
particle basis by the method above.

We then took a corner of the unit cell to be the origin of our
coordinate system, and defined the displacement vector ~d to
point from this origin to the basis position in the interior of the
cell. Each possible corner-origin corresponded to a triplet of
permutations of lattice vectors such that they remained right-
handed. We iterated through all corners and associated triplets

to minimize
Kλ∑
k=1

∣∣Cλ,k∣∣, defined in the main text. Additional

special care had to be taken to compare our extracted unit cells
with the unit cells as expressed in Ref. [19]; those minutiae
were specific to the way we initialized our simulations and
will not be discussed here.

Appendix B: Effectiveness of the Order Parameter

The order parameter, as previously described, uses the unit
cell geometry in order to characterize the topology of a pack-
ing. Specifically, we extract unit cell parameters (described
above) and evaluate the appropriate, unique, intersection in-
equalities in order to describe the topology of the packing.
When a packing is no longer maximally dense (φ < φd), the
inequalities are no longer saturated (by definition) and θij can,
and in general will, be less than one. However, there are dif-
ferent ways that a packing can expand. It could expand in
a direction where space emerges more quickly between con-
tacts shared with the adjacent packing (which would not be
reflected in θij) or could change more quickly for contacts
that appear in one packing and not in the other (which would
result in a change in θij). Therefore, the fact that we observe
small deviations in θij is not surprising and expected.

As an example, consider the packing λB=69 as seen in Fig.
5, specifically the order parameter where this packing is eval-

https://github.com/atztogo/niggli
https://github.com/atztogo/niggli


9

FIG. 6. Panel (a) shows the vector components (ax (blue), ay
(green), az (red)) for the simulation box (dashed) and the extracted
unit cell (solid) of λB=69. The box vectors are scaled uniformly to
match the unit cell vectors. In panel (a), the ay and az fall directly
onto one another, so both cannot be seen. Panels (b) and (c) show the
same but instead for (bx, by , bz) and (cx, cy , cz) respectively. Panel
(d) shows the comparison of the order parameters θAA (blue) and
θBA (green) for both the system with box moves (solid) and without
box moves (dashed). Panel (e) shows the same but for θAB (blue)
and θBB (green).

uated in its own intersection equations (θBB). At φ = 0.85,
we can see that θBB remains around unity (Fig. 5(c)) as we
move along αc = [1.90, 1.96] and that θBB behaves similarly
for φ = 0.80 (Fig. 5(e)), although this time it remains slightly
below unity. However, at φ = 0.75 (Fig. 5(g)), θBB decays

slightly as we approach αc = 1.96, away from unity. Ad-
ditionally, we see that when this packing is evaluated in the
other packing’s intersection equations (Fig. 5(f)), that θBA in-
creases slightly as we approach αc = 1.96, away from zero.

This would seem to imply that the topology appreciably
changes as we move toward αc = 1.96, but visual inspec-
tion confirms that this is not the case. We instead postulate
that each packing type λi (where i ∈ {A,B}) has a unique
response to collective motion in the system, where collective
motion comes from Monte Carlo box moves used in our simu-
lations, which involve box aspect ratio moves (which attempt
to change the box aspect ratio) and box shear moves (which
attempt to shear the box). Since each packing is defined in a
different way, each packing could have a unique response to
this collective motion and therefore cause one of the scenarios
for contacts described above.

We studied the packing λB=69 in order to prove that col-
lective motion is the cause of changes in θBB and θBA at
φ = 0.75. First, we performed NPT simulations of λB=69

with Monte Carlo box moves turned on, for four statepoints
(αc = [1.90, 1.92, 1.94, 1.96]), so that we could better exam-
ine the effect of box moves as a function of shape. The sys-
tem box vector components (which are scaled by a constant
factor representing the box-to-unit-cell size ratio) are plot-
ted (dashed lines) along with extracted unit cell vectors (solid
lines) in Fig. 6(a,b,c). Each point represents the vector com-
ponent averaged over five frames of a simulation (where each
frame is separated by 106 MC timesteps). As we move from
αc = 1.90 to αc = 1.96, we show both sets of vectors to con-
firm two things: (i) our extracted unit cell vectors match the
box vectors when appropriately scaled and (ii) as the shape
parameter changes from αc = 1.90 to αc = 1.96, there is
an appreciative change in several of the vector components,
enough that we believe this would significantly change the
value of the order parameter, since it is a function of extracted
unit cell parameters. In λB=69 the unit cell naturally length-
ens as a function of the shape parameter, which can be seen
in [19]. It appears that because of this fact, more box moves
are accepted that result in a change in the x-components of all
three lattice vectors (shown in blue in Fig. 6(a,b,c)), allowing
for the box to lengthen further as we move from αc = 1.90 to
αc = 1.96.

Next, we show what happens if Monte Carlo box moves
are removed from the simulation and the only moves that
are allowed are typical translation/rotation moves. We took
the same four shape parameters αc = [1.90, 1.92, 1.94, 1.96]
and this time performed two simulations for each shape, one
where these box moves were applied and one where they were
not. Results of these simulations are included in Fig. 6(d,e).
Each point represents the average order parameter over five
frames of a simulation where each frame is separated by 106

MC timesteps. The points connected by a solid line represent
simulations where box moves are turned on (similar to the
order parameters shown in Fig. 5(f,g)) and the dashed lines
where box moves are turned off. From the figure it is clear
that box moves are driving the order parameters away from
zero in the case of θBA and from unity in the case of θBB .

We believe that this actually further emphasizes the topo-
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logical order exhibited by these dense packings, since even
when collective motion is allowed to occur in the system, it
only seems to change the calculated order parameters by a

small amount at φ = 0.75 as seen in Fig. 5, and visual inspec-
tion confirms that the topological character of the packings
remains the same.
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