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Abstract
Collective cell migration underlies morphogenesis, tissue regeneration, and cancer progression. How
the biomechanical coupling between epithelial cells triggers and coordinates the collective migration
is an open question. Here we develop a one-dimensional model for an epithelial monolayer which
predicts that after the onset of migration at an open boundary, cells in the bulk of the epithelium
are gradually recruited into outward-directed motility, exhibiting travelling wave-like behaviour.
We find an exact formula for the speed of this motility wave proportional to the square root of the
cells’ contractility, which accounts for cortex tension and adhesion between adjacent cells.

Introduction
Through collective cell motion, groups of cells move together, for example, during gastrulation,

tissue vascularization, tumor invasion or wound healing [1–3]. Such multicellular motion can also
be recapitulated in cell culture experiments. Studies investigating the motion of kidney epithelial
[4, 5] or endothelial [6–8] cells, as well as immune cells in explanted lymph nodes [9] indicate an
intriguing motion pattern, self-organized by the interplay of cell-cell interactions.
Studies on the directed expansion of an epithelial layer can investigate either a long-term expansion
of a cell colony with free boundaries unfolding over several days or a shorter-term response initiated
by removal of a barrier. While the long-term expansion is driven primarily by cell proliferation
[10–12], the short-term response is dominated by directed migration of cells into the newly opened
area [13, 14]. Cell displacements are guided by cell polarity, a complex of biochemical processes
establishing a specific spatial pattern of intracellular signaling molecules [15], which is often ex-
plained by a positive feedback between actin polymerization and polarization signals that stabilize
the leading edge of migrating cells [16–18].
Intercellular coordination of polarity is an intriguing, yet little understood process. The best
understood biochemical signaling mechanism is the planar cell polarity pathway [19, 20] that
couples spatially separated bistable intra-cellular states among adjacent cells [21, 22]. Endothelial
cells were also reported to transmit cell polarity information utilizing membrane curvature [23].
Recent experiments further stresses the importance of mechanosensing (modulation of biochemical
signalling processes by mechanical stresses) [24–27] in coordinating and especially in triggering cell
motion.
Existing computational models have modelled the coordination between adjacent cells during the
collectice migration [28–36]. However, how intra-cellular and inter-cellular mechanobiology regu-
lates cell polarization and coordinated initiation of motion, and also influences the speed at which
motility wave propagates through a monolayer of cells are not well understood. Here, we theo-
retically explore how a mechanism, which involves mechanical forces and biomechanical feedback
in and in-between cells, is capable to propagate cell polarity during the expansion of an epithelial
monolayer. We demonstrate that a minimal model of this process predicts a travelling wave that
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transmits polarization information to the bulk of the monolayer. We derive closed-form equations
for its shape and speed.

Results and Discussion

Particle model
We propose a one-dimensional model of interacting particles to study how cell motility is syn-

chronised through an epithelial cell layer expanding into a “wound”, an area devoid of cells. We
start with a node-spring model of N cells (indices i = 1, ..., N) in which every cell is represented
by its scalar position xi and polarity ai. Neighbouring cells are connected by elastic springs whose
constant κ is a phenomenological parameter which we will call contractility. It accounts for both
the stiffness of the cells mediated by their contractile cortex and the mechanical coupling between
neighbouring cells mediated by adhesion proteins.
To represent the interplay between cell polarity, cell contractility, mechanical coupling, and actual
cell motion, we model the cell velocities as the sum of the polarity-dependent motility M(ai) and
the passive velocities due to elastic forces acting between adjacent cells [37, 38],

dxi
dt

=M(ai) +
1

η
(Fi,+ + Fi,−) , (1)

where the drag coefficient η accounts for cell-substrate adhesion, and can be interpreted as averaged
effect of adhesion complexes undergoing permanent turnover [39]. Fi,+ = κ(xi+1 − xi − l0) is an
assisting elastic force exerted by cell i+1 that pulls the cell i forward, while Fi,− = −κ(xi−xi−1−l0)
is an elastic force exerted by cell i− 1 that resists the migration of cell i (Fig. 1(a)). For the last
and leading cells, we set F1,− = FN,+ = 0. The constant l0 is both, the initial and the equilibrium
distance between adjacent cells; see Fig. 1(a). The motility function M is defined by a Hill
function with half-saturation polarity α > 0 ensuring a finite maximal cell speed Mmax, namely
M(ai) =MmaxMn(ai) where Mn(ai) = ani /(a

n
i + αn).

To describe self-sustained polarisation we adopt a previously proposed model [8] similar to the one
recently employed in [14],

dai
dt

= −βai + γ
dxi
dt

, (2)

where 1/β and γ represent the persistence time of polarisation and reinforcement of polarisation
through actual motion [40], respectively. According to Equation (1) this latter effect includes up-
regulation of polarity through mechanical stress [14, 27, 41]. It is qualitatively equivalent to earlier
models in which cell polarity aligns with cell velocity due to the inherent asymmetry created in a
moving cell [32, 42, 43]; review in [28].

Figure 1: One-dimensional particle model. (a) Top: initially, cells are uniformly distributed
and spaced at equilibrium distance at positions xi(0) and only the leading cell N is polarized.
Bottom: elastic forces applied on a cell at time t. For example, cell N − 1 feels force FN−1,+
towards the cell-free surface (+, green arrow); and force FN−1,− in the backward (-, green arrow)
direction. (b) Steady-state polarities of a single cell visualized as intersections of the active velocity
a2/(a2 + α2)(solid curves) and polarity a (gray dotted line). For half-saturation polarity α = 0.3
(black) three steady-state polarities are: a∗1 = 0 (stable, solid arrow), a∗2 = 0.1 (unstable, dashed
arrow), and a∗3 = 0.9 (stable, solid arrow). Thus, starting with an initial polarity greater than a∗2,
the cell will ultimately move with constant velocity and polarity. If α is too large, e.g. 0.6 (red
dashed), there is no non-zero steady-state polarity.
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We reduce the number of parameters in Equations (1) and (2) by defining the nondimensional
variables t̃ = βt, x̃i = (β/Mmax)xi, ãi = (β/γMmax) ai, and we introduce the two nondimensional
parameters α̃ = αβ/γMmax and κ̃ = κ/βη. To keep the notation simple, we immediately remove
the ∼ symbols. After non-dimensionalisation the model is given by

dxi
dt

=
ani

ani + αn
+ κ(xi+1 − 2xi + xi−1) ,

dai
dt

= −ai +
dxi
dt

.

(3)

Note that the motion of a single cell without adjacent cells is characterized by ẋ = M(a) and
ȧ = −a + M(a). In this case, for a sufficiently low half-saturation polarity α, the single cell
polarity has a bistable behavior: the stable rest state with zero polarity a∗1 = 0 coexists with a
stable steady-state with constant non-zero polarity a∗3 (Fig. 1(b), solid arrows), and an unstable
steady-state a∗2 (Fig. 1(b), dashed arrow), which separates the domains of attraction of the two
stable states. Such bistable behavior has been experimentally observed in [17, 44]. We assume that
the leading cell’s polarity satisfies aN (t = 0) > a∗2, to mimic the migratory stimulus through the
presence of a cell-free area to which the leading cell is exposed, while the trailing cells are initially
unpolarised, a1(t = 0) = ... = aN−1(t = 0) = 0.
The numerical solution of Equations (3) shows that the polarization of the leading cell is propagated
backward into the bulk of the epithelial layer; see Fig. 2(a,c), in agreement with recent experimental
observations [13, 14, 34, 45, 46]. This is reminiscent of a travelling wave with a characteristic speed
which we will call polarization wave speed.

Figure 2: Migratory dynamics of a group of N = 20 cells obtained from the particle model with
half-saturation polarity α = 0.3 and Hill coefficient n = 2. The cells’ displacement (top row)
and polarity (bottom row) are shown versus time. Initially, only the leading cell (solid arrow, in
contrast to dashed arrow showing last cell) is polarized, a20(0) = 0.8, a1(0) = ... = a19(0) = 0. The
cells’ contractility is either weak (a, b: κ = 0.1) or strong (c, d: κ = 1) in which case polarization
propagates significantly faster (compare a and c).

Simulations indicate that the polarization wave speed is faster if cells are more contractile (large
κ); see Fig. 2(c,d). This agrees with the recent calculations by Bui et al. [36] that larger junctional
force magnitudes are associated with faster collective cell migration. We also found that the
polarization wave propagates faster for a lower half-saturation polarity value α. A lower α implies
a lower polarization threshold a∗2 and therefore earlier switching from passive movement to active
self-propelled motion.
To test the robustness of the results in Fig. 2, we extended the motility function M(a) onto the
negative domain as M(−a) = −M(a) and included additive noise in Equation (2). This allows
cells to polarize in either direction. The numerical results confirm that the overall behavior of
the model remains the same, however the uni-directional migration is now superimposed onto a
symmetric random movement; see Fig. 3.
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Figure 3: Position of N = 50 cells as a function of time derived from the particle model, when
white noise ξi with magnitude ζ is added to Equation (2): dai/dt = −βai + γdxi/dt + ζ ξi, for
N cells with indices i = 1, ..., N . Simulation parameters are contractility κ = 1, half-saturation
polarity α = 0.45, Hill coefficient n = 10, and ζ = 0.45 (a) and 0 (b), where the initial polarity of
10 cells close to the free edge are given by 0.8. The solid and dashed arrows point to the position
of cells 50 (leading) and 1 (last). In the presence of random polarization direction, shown in (a),
cells occasionally move backward. In both (a) and (b) the polarization wave propagates through
the layer of cells with similar speed (dashed lines).

Continuum model
In order to use travelling wave analysis to compute the shape and speed of the polarization

wave, we derive a continuum description of the particle model (3) whereby we model a population
of cells with number density ρ = ρ(x, t) moving along the x-axis according to the velocity field
v = v(x, t). The velocity changes the density through a continuity equation and the cell polarity
a(x, t) through transport,

∂ρ

∂t
+

∂

∂x
(ρv) = 0 ,

∂a

∂t
+ v

∂a

∂x
= −a+ v . (4)

To obtain the continuum description of the velocity field, we convert the distances between cell
centers to density. Using xi+1 − xi = 1/ρi+ 1

2
, we re-write the expression for velocity in the

system (3) as ẋi = Mn(ai) + κ(1/ρi+ 1
2
− 1/ρi− 1

2
). Multiplying and dividing the last bracket by

xi+1 − xi = 1/ρi+ 1
2
, the continuum limit of velocity is

v =Mn(a) + κ
1

ρ

∂

∂x

(
1

ρ

)
=Mn(a)− κ

1

ρ3
∂ρ

∂x
. (5)

Traveling wave analysis
To identify travelling polarity and density waves, we aim to solve the system (4) and (5) looking

for solutions which can be written as fixed profiles with respect to a moving coordinate frame,
ρ(x, t) = R(z), a(x, t) = A(z), where z = x + ct parametrizes the wave profiles and c > 0 is the
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wave speed. This way, R = R(z) and A = A(z) are the fixed profiles for density and polarity
waves which propagate backwards into the monolayer of unpolarized cells at the constant speed
c. They will be determined assuming that: (i) the polarity wave profile A connects the two stable
steady-states a∗1 = 0 and a∗3, which characterize the single-cell dynamics (Fig. 1(b)), and (ii) the
density wave profile R connects the density of resting cells with R−∞ = ρ0 at z → −∞ to the
density of moving cells with R∞ at z →∞ ; see Fig. 4(a,b).
Substituting the traveling wave ansatz in the system (4) and (5) we obtain cR′ + (RMn(A))

′ −
κ
(
R′/R2

)′
= 0 and cA′+

(
Mn(A)− (κ/R3)R′

)
(A′ − 1)+A = 0. By integrating the first equation

and determining the integration constant at z → −∞ (where R→ ρ0 and A→ 0; Fig. 4(a,b)), we
obtain −cρ0 + cR + RMn(A) = (κ/R2)R′. Using this expression we eliminate R′ in the second
equation and obtain the following dynamical system for the travelling wave profiles,

R′ =
R2

κ

[
R
(
c+Mn(A)

)
− cρ0

]
,

A′ = 1−R 1

ρ0

(
1

c
A+ 1

)
.

(6)

The steady states of the system (6) satisfyMn(A) = A and R = ρ0 c/(A+c). Hence its fixed points
are (R−∞, A−∞) = (ρ0, 0), (R2, A2) = (ρ0 c/(c+ a∗2), a

∗
2), and (R∞, A∞) = (ρ0 c/(c+ a∗3), a

∗
3),

where R∞ < R2 < R−∞ = ρ0 and a∗1 = 0 < a∗2 < a∗3, as shown in the context of single cell motility
in Fig. 1(b). The linear stability analysis reveals that the stable fixed points, (ρ0, a∗1 = 0) and
(R∞, a

∗
3), are saddle points, whereas (R2, a

∗
2) is a focus; see Fig. 4(c). We analyze the asymptotics

of the dynamics of travelling density and polarity waves in the system (6) by examining the stability
of the three fixed points (R−∞, A−∞) = (ρ0, 0), (R2, A2) = (ρ0c/(c+ a∗2), a

∗
2) and (R∞, A∞) =

(ρ0c/(c+ a∗3), a
∗
3). To this end we evaluate the Jacobian of the system at those steady-states. The

Jacobian of Equations (6) is:

J =

 1
κ

(
3cR2 + 3R2Mn(A)− 2cρ0R

)
1
κR

3M ′n(A)

− 1
ρ0
(Ac + 1) − R

ρ0c

 ,

The evaluation of the Jacobian J at the first steady-state (R−∞, A−∞) = (ρ0, 0) is given by

J1 =

 cρ20
κ 0

− 1
ρ0
− 1
c

 .

The determinant ζ1, trace χ1, and discriminant σ1 of J1 are:

ζ1 = −ρ
2
0

κ
, χ1 =

(
cρ20
κ
− 1

c

)
,

σ1 =

(
cρ20
κ
− 1

c

)2

+
4ρ20
κ

.

This implies that the fixed point (R−∞, A−∞) = (ρ0, 0) is a saddle point. We then evaluate
Jacobian Jm for m = 2 and 3 at the second and third steady-states (R2, A2) = (ρ0c/(c+ a∗2), a

∗
2)

and (R∞, A∞) = (ρ0c/(c+ a∗3), a
∗
3) as:

Jm =


c2ρ20

κ(c+a∗m)2
(3c+ 3a∗m − 2(c+ a∗m))

c3ρ30M
′
n(a
∗
m)

κ(c+a∗m)3

− 1
cρ0

(c+ a∗m) − 1
c+a∗m

 ,

where we used Mn(a
∗
m) = a∗m. The determinant, trace, and discriminant of the Jm are:

ζm =
c2ρ20(M

′
n(a
∗
m)− 1)

κ(c+ a∗m)2
, χm =

c2ρ20 − κ
κ(c+ a∗m)

,

σm = χ2
m − 4ζm .

In the limit of large Hill coefficient n the Hill function Mn(A) becomes a step function. In this
regime the polarity at steady-state a∗2 → α and M ′n(a∗2) → ∞. This implies that σ2 < 0 and the
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eigenvalues of J2 are complex conjugate such that (R2, A2) is a focus. This focus point is unstable
when cρ0 >

√
κ, where χ > 0 and becomes stable for cρ0 <

√
κ. Likewise, in (R∞, A∞), the

steady polarity increases a∗3 → 1 as n → ∞. In addition M ′n(a
∗
3) → 0. This results in σ3 > 0,

i.e. the eigenvalues are real and have different signs, since ζ3 < 0. Thus, (R∞, A∞) is a saddle point.

Figure 4: Travelling wave analysis. (a, b) Qualitative shapes of polarity A and density R wave
profiles versus wave variable z. Rest state: (R−∞, A−∞); motile state: (R∞, A∞). Arrow shows
the direction of the polarization wave speed c. (c) Phase diagram of the system (6) for a set of
parameters (α = 0.2, n = 10, κ = 1, ρ0 = 1) and the approximately corresponding wave speed
c = 2 obtained from Equation (9). The system exhibits a heteroclinic orbit (green solid curves)
corresponding to the travelling wave profiles. Red closed circles: saddle points; red open circle:
the focus; purple square: (R∞, α). Additional trajectories (blue dashed) are depicted.

Our goal is to determine the polarization wave speed c such that the dynamical system (6) exhibits a
heteroclinic orbit connecting the two saddle nodes, which corresponds to the continuous transition
from the non-motile cell state to the motile state. We are not aware of explicit solutions of
Equations (6) for a general Hill-function Mn(A). In the limit n → ∞, however, Mn(A) becomes
a step function and the phase space splits into two domains, where either M∞ = 0 (for A < α)
or M∞ = 1 (for A > α). In both domains, the equations for the density and polarity profiles
are decoupled and can be solved explicitly. On the domain A > α, the stable manifold of the
saddle point at (R∞, A∞) is a straight trajectory (Fig. 4(c), green arrow). Therefore, we know
the coordinates of the point where the trajectory leaves the domain A < α (Fig. 4(c), purple
square). We normalize the wave variable z such that the trajectory crosses the interface between
the domains at z = 0, i.e. R(z = 0) = R∞ = ρ0c/(c + 1) and A(z = 0) = α (Fig. 4(c), purple
square). We then introduce the rescaled density P (z) = R(z)/ρ0 and re-write the system (6) on
the domain A < α as,

P ′ =
c P 2

χ
(P − 1) , A′ = 1− P

(
1

c
A+ 1

)
, (7)

where we temporarily use the short notation χ = κ/ρ20. The solution for the first equation in
the system (7), with terminal condition P (0) = c/(c + 1), is P (z) = g−1 (cz/χ+M), where
g(y) = 1/y + log (1/y − 1) and M = 1 + 1/c− log(c) (see Fig. 5).
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Figure 5: Inverse function g−1(Q) for g(y) = 1/y + log (1/y − 1).

Substituting this solution into the second equation in the system (7), coupled to the terminal
condition A(0) = α, yields

A(z) =
c

c2/χ+ 1

 1

g−1
(
M + cz

χ

) − 1

+

(
α(c2/χ+ 1) + c

)
g−1(M)− c

g−1(M)(c2/χ+ 1)

 1
g−1(M) − 1

1

g−1(M+ cz
χ )
− 1


χ

c2

.

(8)
We recall our aim of constructing a heteroclinic orbit connecting the two saddle points; see Fig. 4(c).
In the limit z → −∞, the density profile P tends to P (−∞) = 1, but we also require that the
polarity profile satisfies A(−∞) = 0; see Fig. 5. The first term in (8) does satisfy this require-
ment. The second term, however, tends to ±∞, unless its leading factor vanishes. Therefore the
requirement is

(
α(c2/χ+ 1) + c

)
g−1(M)− c = 0. Using g−1(M) = c/(c+ 1) we conclude

c =
1

ρ0

√
κ

(
1

α
− 1

)
. (9)

The formula (9) for the polarization wave speed agrees with numerical estimates based on the
particle model, when varying either the contractility κ or the half-saturation polarity for α < 0.5;
see Fig. 6 and Fig. 7(a,b). Finally, reconstituting the physical dimensions of all quantities involved,
the polarization wave speed reads

c =
1

ρ0

√
κβ

η

√
γMmax

αβ
− 1 (10)

showing that the speed of retrograde movement of the boundary separating polarized and unpolar-
ized cells is inversely proportional to the geometric mean of the characteristic mechanical response
timescale (η/κ) and of the persistence time of the cell polarization (1/β). Also, the asymptotic
moving density written in physical dimensions is given by ρ∞ = ρ0/(1 +Mmax/c), with c given by
Equation (10). Having the wave speed c, the following explicit solutions for the polarity A and
density R profiles define the shape of the polarization and density waves propagating with speed
(9); see Fig. 7(c,d):

A(z) =

c α
(

1

g−1(M+ρ20
cz
κ )
− 1

)
z < 0

1 + (α− 1)e−
z

1+c z ≥ 0
(11)

and

R(z) =

{
ρ0 g

−1 (ρ20 czκ +M
)

z < 0

ρ∞ = ρ0
c
c+1 z ≥ 0 .

(12)
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Figure 6: Polarization wave speed c versus cellular contractility κ. Speed c is derived from the
particle model for N = 2000 cells in the contractility range 0.1 ≤ κ ≤ 100 at two different values for
half-saturation polarity α = 0.05 and 0.3, each repeated for three different Hill coefficients n = 2, 6,
and 10 (circle, square, and triangle symblos, respectively). Speed values correspond to mean ±
SD. The dashed lines are the fits to the mean velocities. For α = 0.05: c = 4.71

√
κ (dashed blue),

c = 4.25
√
κ (dashed green), and c = 4.23

√
κ (dashed magenta). For α = 0.3: c = 1.58

√
κ (dashed

blue), c = 1.48
√
κ (dashed green), and c = 1.49

√
κ (dashed magenta).

Figure 7: Comparison of the particle and continuum models. (a) Polarization wave speed c versus
cells’ contractility 0.1 ≤ κ ≤ 100. Velocities (mean ± SD) are calculated by the particle model for
N = 2000 cells at half-saturation polarities α = 0.05 and 0.3, each repeated for Hill coefficients
n = 2, 6, and 10 (circle, square, and triangle symbols, respectively). The output of the continuum
model is derived from Equation (9) (black curves). Both models show that c is proportional to√
κ, independently of n; as shown in Fig. 6. (b) Polarization wave speed c versus α. Particle and

continuum models are run for two different κ, shown with symbols (mean ± SD) and solid curves,
respectively. At α ≥ 0.5, the motility does not propagate into the interior of the cell layer in the
particle model simulations; see Fig. 8. (c, d) Quantitative shapes of polarity and density wave
profiles in the instantaneous polarization limit n→∞ (for formulas, see Equations (11, 12)).

Note, in the regime where the threshold for polarization is high, α > 0.5, the polarization wave
appears to be unstable and cannot be reproduced numerically. Instead a depolymerization wave

8



emerges; see Fig. 8.

Figure 8: Position of cells versus time derived from the particle model for N = 50 cells with
contractility κ = 0.1, half-saturation polarity α = 0.6, and Hill coefficient n = 10, where the
initial polarity of 10 cells from the leading edge were assigned as 0.8. The solid arrow points to
the position of the leading cell 50. The motility wave does not propagate into the monolayer, as
α > 0.5. Instead, the trajectories exhibit a depolarization wave.

Equation (10) can be tested experimentally by perturbing epithelial cells in various ways. Pertur-
bation of upstream regulators of the motor protein myosin-II could be used to test the dependence
on contractility κ and/or on the efficiency of the motile machinery Mmax. One may also interfere
with the coupling (adhesion and mechanosensitive feedback) between adjacent cells through ge-
netic modification of the expression of e-cadherin, which – in the context of our 1D model – might
affect both κ and the threshold for active motion α. Alternatively, one might focus on perturbing
intracellular mechanisms driving and maintaining polarization which is reflected in the parameters
β (persistence) and γ (polarization) instead.
Naturally, certain features of the expansion of the cell monolayer cannot be captured within the
constraints of the one-dimensional model. For example, once the cell motility is activated the co-
herence of the collective migration is dependent on how well-ordered the alignment of the direction
of cell polarization is maintained during migration. The alignment of the cell trajectories is likely
to be sensitive to noise [47, 48] and to the mechanical coupling between cells. Among other things,
it might affect how deep into the bulk of the cell sheet the polarization can reach. The edge of the
cell sheet may also produce finger-like instabilities [49] which could also have an affect the wave of
cell polarization. Those questions will have to be analyzed based on an extended two-dimensional
model of epithelial collective migration.
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