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Deep learning techniques have recently demonstrated broad success in predicting complex dy-
namical systems ranging from turbulence to human speech, motivating broader questions about
how neural networks encode and represent dynamical rules. We explore this problem in the context
of cellular automata (CA), simple dynamical systems that are intrinsically discrete and thus difficult
to analyze using standard tools from dynamical systems theory. We show that any CA may readily
be represented using a convolutional neural network with a network-in-network architecture. This
motivates our development of a general convolutional multilayer perceptron architecture, which we
find can learn the dynamical rules for arbitrary CA when given videos of the CA as training data.
In the limit of large network widths, we find that training dynamics are nearly identical across
replicates, and that common patterns emerge in the structure of networks trained on different CA
rulesets. We train ensembles of networks on randomly-sampled CA, and we probe how the trained
networks internally represent the CA rules using an information-theoretic technique based on dis-
tributions of layer activation patterns. We find that CA with simpler rule tables produce trained
networks with hierarchical structure and layer specialization, while more complex CA produce shal-
lower representations—illustrating how the underlying complexity of the CA’s rules influences the
specificity of these internal representations. Our results suggest how the entropy of a physical process
can affect its representation when learned by neural networks.

I. INTRODUCTION

Recent studies have demonstrated the surprising abil-
ity of deep neural networks to learn predictive represen-
tations of dynamical systems [1–5]. For example, cer-
tain types of recurrent neural networks, when trained
on short-timescale samples of a high-dimensional chaotic
process, can learn transition operators for that process
that rival traditional simulation techniques [2, 6, 7]. More
broadly, neural networks can learn and predict general
features of dynamical systems—ranging from turbulent
energy spectra [8], to Hamiltonian ground states [9, 10],
to topological invariants [11]. Such successes mirror well-
known findings in applied domains [12], which have con-
vincingly demonstrated that neural networks may not
only represent, but also learn, generators for processes
ranging from speech generation [13] to video prediction
[14]. However, open questions remain about how the un-
derlying structure of a physical process affects its rep-
resentation by a neural network trained using standard
optimization techniques.
We aim to study such questions in the context of cel-

lular automata (CA), among the simplest dynamical sys-
tems due to the underlying discreteness of both their
domain and the dynamical variables that they model.
The most widely-known CA is Conway’s Game of Life,
which consists of an infinite square grid of sites (“cells”)
that can only take on a value of zero (“dead”) or one
(“alive”). Starting from an initial binary pattern, each
cell is synchronously updated based on its current state,
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as well as its current number of living and non-living
neighbors. Despite its simple dynamical rules, the Game
of Life has been found to exhibit remarkable properties
ranging from self-replication to Turing universality [15].
Such versatility offers a vignette of broader questions in
CA research, because many CA offer minimal examples
of complexity emerging from apparent simplicity [16–20].
For this reason, CA have previously been natural candi-
dates for evaluating the expressivity and capability of
machine learning techniques such as genetic algorithms
[21, 22].
Here, we show that deep convolutional neural networks

are capable of representing arbitrary cellular automata,
and we demonstrate an example network architecture
that smoothly and repeatably learns an arbitrary CA us-
ing standard loss gradient-based training. Our approach
takes advantage of the “mean field limit” for large net-
works [23–25], for which we find that trained networks
express a universal sparse representation of CA based on
depthwise consolidation of similar inputs. The effective
depth of this representation, however, depends on the
entropy of the CA’s underlying rules.

II. EQUIVALENCE BETWEEN CELLULAR
AUTOMATA AND CONVOLUTIONAL NEURAL

NETWORKS

Cellular automata. We define a CA as a dynamical
system with M possible states, which updates its value
based on its current value and D other cells—usually its
immediate neighbors in a square lattice. There are MD

possible unique M -ary input strings to a CA function,
which we individually refer to as σ. A cellular automaton
implements an operator G(σ) that is fully specified by a
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list of transition rules σ → m, m ∈ 0, 1, ...,M − 1, and

there are MMD

possible unique G(σ), each implementing
a different ruleset. For the Game of Life, M = 2, D = 9,
and so G(σ) is a Boolean function that maps each of the
29 = 512 possible 9-bit input strings to a single bit. A
defining feature of CA is the locality of dynamical update
rule, which ensures that the rule domain is small; the
size of D thus sets an upper bound on the rate at which
information propagates across space.

Convolutional neural networks. We define a convolu-
tional neural network as a function that takes as an input
a multichannel image, to which it applies a series of local
convolutions via a trainable “kernel”. The same kernel
is applied to all pixels in the image, and each convolu-
tional layer consolidates information within a fixed local
radius of each pixel in the input image [12]. Many stan-
dard convolutional architectures include “pooling” lay-
ers, which downsample the previous layer and thereby
consolidate local information across progressively larger
spatial scales; however, all CNN discussed in this paper
do not include downsampling steps, and thus preserve
the full dimensionality of the input image.

Cellular automata as recurrent mlpconv networks. The
primary analogy between cellular automata and tradi-
tional convolutional neural networks arises from (1) the
locality of the dynamics, and (2) simultaneous tempo-
ral updating of all spatial points. Because neural net-
works can, in principle, act as universal function approx-
imators [26], a sufficiently complex neural network ar-
chitecture can be used to fully approximate each rule
σ → m that comprises the CA function G(σ). This
single-neighborhood operator can then be implemented
as a convolutional operator as part of a CNN, allowing
it to be applied synchronously to all pixel neighborhoods
in an input image.

Representing a CA with a CNN thus requires two
steps: feature extraction in order to identify each of the
MD input cases describing each neighborhood, followed
by association of each neighborhood with an appropriate
output pixel. In the appendix, we show explicitly how
to represent any CA using a single convolutional layer,
followed by repeated 1× 1 convolutional layers. The ap-
propriate weights can be found analytically using analysis
of the CA itself, rather than via algorithmic training on
input data. In fact, we find that many representations
are possible; we show that one possible approach defines
a shallow network that uniquely matches each of the MD

input σ against a template, while another approach treats
layers of the network like levels in a tree search that iter-
atively narrows down each input σ to the desired output
m. A key aspect of our approach is our usage of only
one non-unity convolutional layer (with size 3× 3 for the
case of the Game of Life), which serves as the first hidden
layer in the network. The receptive field of these convo-
lutional neurons is equivalent to the neighborhood D of
the CA. All subsequent layers consist of 1 × 1 convolu-
tions, which do not consolidate any additional neighbor
information.

Our use of 1 × 1 convolutions to implement the logic
of the CA rule table is inspired by recent work showing
that such layers can greatly increase network expressiv-
ity at low computational cost [27]. Moreover, because
CA are explicitly local, the network requires no pooling
layers—making the network the equivalent of fitting a
small, convolutional multilayer perceptron or “mlpconv”
to the CA [27, 28]. Our general approach is compara-
ble to previous uses of deep convolutional networks to
parallelize simple operations such as binary arithmetic
[29], and it differs from efforts using less-common net-
work types with sigma-pi units, in which individual input
bits can gate one another [30].
Figure 1 shows an example analytical mlpconv repre-

sentation of the Game of Life, in which the two salient
features for determining the CA evolution (the center
pixel value and the number of neighbors) are extracted
via an initial 3 × 3 convolution, the results of which are
passed to additional 1 × 1 convolutional layers in order
to generate a final output prediction (exact weights are
given in Supplementary Material). The number of sep-
arate convolutions (four with the neighbor filter with
different biases, and one with the identity filter) is af-
fected by our choice of ReLU activations (the current
best practice for deep convolutional networks) instead
of traditional neurons with saturating nonlinearities [31].
Many alternative and equivalent representations may be
defined, underscoring the expressivity of multilayer per-
ceptrons when representing simple functions like CA.

III. A GENERAL NETWORK ARCHITECTURE
FOR LEARNING ARBITRARY CELLULAR

AUTOMATA

Having proven that arbitrary cellular automata may
be analytically represented by convolutional perceptrons
with finite layers and units, we next ask whether auto-
mated training of neural networks on time series of cellu-
lar automata images is sufficient to learn their rules. We
investigate this process by training ensembles of convo-
lutional neural networks on random random images and
random CA rulesets. We start by defining a CA as an
explicit mapping between each of 29 = 512 possible 3× 3
pixel groups in a binary image, and a single output pixel
value. We then apply this map to an ensemble of random
binary images (the training data), in order to produce a
new output binary image set (the training labels). Here,
we use large enough images (10 × 10 pixels) and train-
ing data batches (500 images) to ensure that the training
data contains at least one instance of each rule. On av-
erage, each image contains an equal number of black and
white pixels; for sufficiently large images this ensures that
each of the 512 input states is equally probable. We note
that, in principle, training the network will proceed much
faster if the network is shown an example of only one rule
at a time. However, such a process causes the network
structure to depend strongly on the order in which in-
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dividual rules were shown, whereas presenting all input
cases simultaneously forces the network to learn internal
rule representations based on their relative importance
for maximizing accuracy.

Network architecture and training parameters. Figure
2 shows the network used in our training experiments.
Our network consists of a basic mlpconv architecture cor-
responding to a single 3× 3 convolutional layer, followed
by a variable number of 1 × 1 convolutional layers [28].
No pooling layers are used, and the parameters in the
3×3 and 1×1 layers are trained together. The final hid-
den layer consists of a weighted summation, which gen-
erates the predicted value for the next state of a lattice
site. Empirically, including final “prediction” layer with
softmax classifier accelerates training on binary CA by
reducing the dependence of convergence on initial neu-
ron weights; however we omit this step here in order to
allow the same architecture to readily be generalized for
CA with M > 2. Our network may thus be considered a
fully convolutional linear committee machine.

We trained our networks using the Adam optimizer
with an L2 norm loss function, with hyperparameters
(learning rate, initial weights, etc) optimized via a grid
search (see Appendix for all hyperparameters). Because
generating new training data is computationally inexpen-
sive, for each stage of hyper parameter tuning, a new,
unseen validation dataset was generated. Additionally,
validation was performed using randomly-chosen, unseen
CA rulesets in order to ensure that network hyperpa-
rameters were not tuned to specific CA rulesets. Dur-
ing training, a second validation dataset 20% of the size
of the training data was generated from the same CA
ruleset. Training was stopped when the network predic-
tion accuracy reached 100% on this secondary validation
dataset, after rounding predictions to the nearest integer.
The loss used to compute gradients for the optimizer was
not rounded. The final, trained networks were then ap-
plied to a new dataset of unseen test data (equal in size
to five batches of training data).

We found that training successfully converged for all
CA rulesets studied, and we note that our explicit use of a
convolutional network architecture simplifies learning of
the full rule table. Because we are primarily interested in
using CNN as a way to study internal representations of
CA rulesets, we emphasize that 100% performance on the
second validation dataset a condition of stopping train-
ing. As a result, all trained networks had identical perfor-
mance; however, the duration and dynamics of training
varied considerably by CA ruleset (discussed below). Re-
gardless of whether weight-based regularization was used
during training, we found that performance on the un-
seen test data was within ∼ 0.3% of the training data for
all networks studied (after outputs are rounded, perfor-
mance reaches 100%, as expected). We caution, however,
that this equal train-test performance should not be in-
terpreted as a measure of generalizability, as would be the
case for CNN used to classify images, etc. [32]. Rather,
because a CA only has MD possible input-output pairs

(rather than an unlimited space of inputs), this result
simply demonstrates that training was stopped at a point
where the model had encountered and learned all inputs.
In fact, we note that it would be impossible to train a
network to represent an arbitrary CA without being ex-
posed to all of its inputs: since an arbitrary CA can send
any given input σ to any given output m, there is no way
for a network to predict the output for an symbol without
having encountered it previously. However, we note that
a network could, in principle, encode a prior expectation
for an unseen input symbol σ, if it was trained primarily
on CA of a certain type.
In a previous work that used a one-layer network to

learn the rules of a chaotic CA, it was found that training
without weight-sharing prevents full learning, because
different spatial regions on the system’s attractor have
different dynamical complexity [30]. In the results below,
we deliberately use very large networks with 12 hidden
layers—one 3× 3 convolutional layer, followed by eleven
1×1 convolutional layers, all with 100 neurons per layer.
These large networks ensure that the network can rep-
resent the CA ruleset in as shallow or deep a manner
as it finds—and we expect and observe that many fewer
neurons per layer are used than are available.
Training dynamics of networks. Consistent with prior

reports that large networks approach a “mean field” limit
[24, 25, 33], we find that training is highly repeatable for
the large networks that we study, even when different
training data is used, different CA rules are learned, or
the hyperparameters are altered slightly from their opti-
mal values (although this extends the duration of train-
ing). We also find that doubling the depth and width
of our networks does not qualitatively affect our results,
consistent with a large-network limit. Additionally, we
trained alternative networks using a different optimizer
(vanilla stochastic gradient descent) and loss function
(cross-entropy loss), and found nearly identical internal
structure in the trained networks (as discussed below);
however, the form of the loss curves during training was
more concave for such networks. See the supplementary
material for further details of networks and training.
Figure 3A shows the results of training a single net-

work on the Game of Life, and then applying the trained
network to the “glider,” a known soliton-like solution to
the Game. During the early stages of the training, the
activations appear random and intermittent. As train-
ing proceeds, the network adjusts to the scale of output
values generated by the input data, and then begins to
learn clusters of related rules—leading to tightening of
the output image and trimming of spurious activation
patterns.

IV. ANALYSIS OF TRAINED NETWORKS

We next consider the relevance of our training obser-
vations to the general properties of binary cellular au-
tomata. Intuition would suggest that certain sets of CA
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rules are intrinsically easier to learn, regardless of M and
D; for example, a null CA that sends every input to zero
in a single timestep requires a trivial network structure,
while the Game of Life should require a structure like Fig-
ure 1 that can identify each possible neighborhood count.
We thus repeat the training data generation and CA net-
work training process described above, except this time

we sample CA at random from the 22
9

≈ 10154 possible
rulesets for binary CA. The complexity of the dynamics
produced by a given rule are generally difficult to ascer-
tain a priori, and typical efforts to systematically investi-
gate the full CA rule space have focused on comparative
simulations of different rules [16, 17]. For example, the
Game of Life is a member of a unique set of “Class IV”
CA capable of both chaotic and regular dynamics de-
pending on their initial state; membership in this class
has been hypothesized to be a prerequisite to supporting
computational universality [15, 16]. General prediction
of dynamical class is an ongoing question in the CA liter-
ature [21], however, there is a known, approximate rela-
tionship between the complexity of simulated dynamics,
and the relative fraction λ of transitions to zero and one
among the full set of 512 possible input cases: λ = 0
and λ = 1 correspond to null CA, whereas λ = 0.5 cor-
responds to CA that sends equal numbers of input cases
to 0 and 1 [17]. This captures the general intuition that
CA typically display richer dynamics when they have a
broader range of output symbols [18, 20]. Here, instead
of using λ directly, we parametrize the space of CA equiv-
alently using the effective “rule entropy,” Hca. We define
Hca by starting from a maximum-entropy image with a
uniform distribution of input symbols (pσ ≈ 1/MD for
all σ), to which we then apply the CA rule once and then
record the new distribution of input cases, p′σ. The resid-
ual Shannon entropy Hca ≡ −

∑

σ p
′
σ log2 p

′
σ provides a

measure of the degree to which the CA rules compress
the space of available states. Hca(λ) monotonically in-
creases from Hca(0) = 0 until it reaches a global maxi-
mum at Hca(1/2) = 9, after which it symmetrically de-
creases back to Hca(1) = 0.

Figure 3B shows the result of training 2560 randomly-
sampled CA with different values of Hca. Ensembles
of 512 related cellular automata were generated by ran-
domly selecting single symbols in the input space to tran-
sition to 1 (starting with the null case σ → 0 for all σ),
one at a time, until reaching the case σ → 1 for all σ.
This “table walk” sampling approach [17] was then repli-
cated 5 times for different starting conditions.

We observe that the initial 10 − 100 training epochs
are universal across Hca. Detailed analysis of the acti-
vation patterns across the network (Supplementary ma-
terial) suggests that this transient corresponds to initial-
ization, wherein the network learns the scale and bounds
of the input data. Recent studies of networks trained
on real-world data suggest that this initialization period
consists of the network finding an optimal representation
of the input data [34]. During the next stage of training,
the network begins to learn specific rules: the number

of neurons activated in each layer begins to decrease, as
the network becomes more selective regarding which in-
puts provoke non-zero network outputs (see supplemen-
tary material). Because Hca determines the sparsity of
the rule table—and thus the degree to which the rules
may be compressed—Hca strongly affects the dynamics
of this phase of training, with simpler CA learning faster
and shallower representations of the rule table, resulting
in smaller final loss values (Figure 3B, inset). This be-
havior confirms general intuition that more complicated
CA rules require more precise representations, making
them harder to learn.
A key feature of using large networks to fit simple func-

tions like CA is strong repeatability of training across dif-
ferent initializations and CA rulesets. In the appendix,
we reproduce all results shown in the main text using
networks with different sizes and depths, and even a dif-
ferent optimizer, loss function, and other hyperparam-
eters, and we report nearly identical results (for both
training and test data) as those found using our network
architecture described above. On both the training data
and test data, we find similar universal training curves
that depend on Hca, as well as distributions of activation
patterns. This universality is not observed in “narrow”
networks with fewer neurons per layer, for which training
proceeds as a series of plateaus in the loss punctuated by
large drops when the stochastic optimizer happens upon
new rules. In this limit, randomly-chosen CA rulesets
will not consistently result in training successfully find-
ing all correct rules and terminating. Moreover, small
networks that do terminate do not display apparent pat-
terns when their internal structure is analyzed using the
approaches described below—consistent with a random
search. Similar loss dynamics have previously been ob-
served when CA are learned using genetic algorithms, in
which the loss function remains mostly flat, punctuated
by occasional leaps when a mutant encounters a new rule
[21]. For gradient-based training, similar kinetic trapping
occurs in the vicinity of shallow minima or saddle points
[35, 36], but these effects are reduced in larger networks
such as those used here.

V. INFORMATION-THEORETIC
QUANTIFICATION OF ACTIVATIONS.

That training thousands of arbitrary CA yields ex-
tremely similar training dynamics suggests that deep
networks trained using gradient optimizers learn a uni-
versal approach to approximating simple functions like
CA. This motivates us to next investigate how exactly
the trained networks represent the underlying CA rule
table—do the networks simply match entire input pat-
terns, or do they learn consolidated features such as
neighbor counts? Because the intrinsic entropy of the CA
rule table affects training, we reason that the entropy of
activated representations at each layer is a natural heuris-
tic for analyzing the internal states of the network. We
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thus define a binary measure of activity for each neuron
in a fully-trained network: when the network encounters
a given input σ, any neurons that produce a non-zero out-
put are marked as 1 (or 0 otherwise), resulting in a new
set of binary strings a(σ) denoting the rounded activation
pattern for each input σ. For example, in an mlpconv
network with only 3 layers, and 3 neurons per layer, an
example activation pattern for a specific input σ1 could
yield a(σ1) = {010, 000, 011}, with commas demarcat-
ing layers. Our approach constitutes a simplified version
of efforts to study deep neural networks by inspecting
activation pattern “images” of neurons in downstream
layers when specific input images are fed into the net-
work [25, 37–39]. However, for our system binary strings
(thresholded activation patterns) are sufficient to char-
acterize the trained networks, due to the finite space of
input-output pairs for binary CA, and the large size of
our networks; in our investigations, no cases were found
in which two different inputs (σ, σ′) produced different
unrounded activation patterns, but identical patterns af-
ter binarization (a(σ), a(σ′)).

Given the ensemble of input symbols σ ∈ {0, 1}D, and
a network consisting of L layers each containing N neu-
rons, we can define separate symbol spaces representing
activations of the entire network aT(σ) ∈ {0, 1}LN ; each
individual layer, aL,i(σ) ∈ {0, 1}N , i ∈ [0, L − 1]; and
each individual neuron aN,ij(σ) ∈ {0, 1}, i ∈ [0, L − 1],
j ∈ [0, N − 1]. Averaging over test data consisting of
an equiprobable ensemble of all MD unique input cases
σ, we can then calculate the probability pα,k for observ-
ing a given unique symbol ak at a level α ∈ {T, L,N}
in the network. We quantify the uniformity of each ac-
tivation symbol distribution p using the entropy Hα =
−
∑

k pα,k log2 pα,k, which satisfies Hα ≤ dim(α). We
condense notation and refer to the activation entropies
HT, HL,i, HN,ij as the total entropy, the entropy of
ith layer, and the entropy of the jth neuron in the ith

layer. We note that, in addition to readily quantifying
the number of unique activation patterns and their uni-
formity across input cases, the Shannon entropy natu-
rally discounts zero-entropy “dead neurons,” a common
artifact of training high-dimensional ReLU networks [31].
Our general analysis approach is related to a recently-
developed class of techniques for analyzing trained net-
works [40], in which an ensemble of training data (here,
a uniform distribution of σ) is fed into a trained network
in order to generate a new statistical observable (here,
H).

We expect and observe that 〈HN,ij〉ij < 〈HL,i〉i ≤ HT.
Unsurprisingly, the maximum entropy of a single neuron
is log2 2 = 1, and all multi-neuron layers generate more
than two patterns across the test data. We also observe
that HT ≈ 9 for all networks trained, suggesting that
the overall firing patterns in the network differed for ev-
ery unique input case—even for trivial rules like λ = 0
where a network with all zero weights and biases would
both correctly represent the rule table, and have identi-
cal firing patterns for all inputs (HT = 0). This effect

directly arises from training using gradient-based meth-
ods, for which at least some early layers in the network
produce unique activation patterns for each σ that are
never condensed during later training stages. Accord-
ingly, regularization using a total weight cost or dropout
both reduce HT.

ComparingHL,i across models and layers demonstrates
that early layers in the network tend to generate a broad
set of activation patterns that closely follow the uniform
input symbol distribution (Figure 4A). These early layers
in the network thus remain saturated at HL,i = HT ≈ 9;
however in deeper layers progressively lower entropies
are observed, consistent with fewer unique activation
patterns (and a less uniform distribution across these
strings) appearing in later layers. These trends depend
strongly on the CA rules (coloration). In the figure,
dashed lines allow comparison of HL,i to theoretical pre-
dictions for the layerwise entropy for the different types of
ways that a CNN can represent the CA. The uppermost
dashed curve corresponds to a network that generates a
maximum entropy set of 512 equiprobable activation pat-
terns in each layer. This case corresponds to a “shallow”
network that matches each input case to a unique tem-
plate at each layer. Lower dashed curves correspond to
predictions for networks that implement the CA as lay-
erwise search, in which σ that map to the same output m
are mapped to the same activation pattern at some point
before the final layer. This corresponds to a progressive
decrease in the number of unique activation patterns in
each layer. The two dashed curves shown correspond
to theoretical networks that eliminate 45% and 50% of
unique activation patterns at each layer.

We find that higher entropy rulesHca (red points) tend
to produce shallower networks due to the rule table be-
ing less intrinsically compressible; whereas simpler CA
(blue points) produce networks with more binary tree-
like structure. This relationship has high variance in
early layers, making it difficult to visually discern in the
panel save for the last layer. However, explicit calcu-
lation of the Pearson correlation r(Hca,HL,i) confirms
its presence across all layers of the network, and that
it becomes more prominent in deeper layers (Figure 4A,
inset). This trend is a consequence of training the net-
work using backpropagation-based techniques, in which
loss gradients computed at the final, Lth hidden layer
are used to update the weights in the previous (L− 1)th

layer, which are then used to update the (L− 2)th layer,
and so forth [41]. During training, the entropy of the fi-
nal layer increases continuously until it reaches a plateau
determined by the network size and by Hca. The penul-
timate layer then increases in entropy until reaching a
plateau, and so forth until HT = 9 across all σ—at which
point training stops because the test error will reach zero
(training dynamics are further analyzed in the Supple-
mentary Material). This general correlation between CA
entropy and network structure is consistent with earlier
studies in which networks were trained to label CA rule-
sets by their dynamical complexity class [42].
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The role ofHca on internal representation distributions
pL can be further analyzed using Zipf plots of activation
pattern ak frequency versus rank (Supplementary Mate-
rial): the resulting plots show that the distribution of ac-
tivation symbols is initially uniform (because the training
data has a uniform distribution of σ), but the distribu-
tion becomes progressively narrower and more peaked in
later layers. This process occurs more sharply for net-
works trained on CA with smaller Hca.

We next consider how the entropy of our observed layer
activation patterns relates to the entropy of the individ-
ual neurons HN,ij that comprise them; we suspect there
is a relation because the individual firing entropies de-
termine the “effective” number of neurons in a layer,
Neff = 2

∑
j
HN,ij . Across all layers, we observe a linear re-

lationship between HN,ij and HL,i, which saturates when
HL,i ≈ HT (Figure 4B). The lower-Hca CA lie within
the linear portion of this plot, suggesting that variation
in activation patterns in this regime results from lay-
ers recruiting varying numbers of neurons. Conversely,
higher-entropy CA localize in a saturated region where
each layer encodes a unique activation pattern for each
unique input state, leading to no dependence on the to-
tal effective number of neurons. This plot explains our
earlier observation that the dynamics of training do not
depend on the exact network shape as long as the net-
work has sufficiently many neurons: for low Hca, layers
never saturate, and are free to recruit more neurons until
they are able to pattern-match every unique input (at
intermediate and large Hca). A CA with more possible
input states (larger M or D) would thus require more
neurons per layer to enter this large-network limit.

We also consider the degree to which the decrease
HL,i vs. i arises from deeper layers becoming “spe-
cialized” to specific input features, a common observa-
tion for deep neural networks [12, 38, 41]. We quan-
tify the layer specialization using the total correlation,
a measure of the mutual information between the acti-
vation patterns of a layer, and the neurons within that
layer: Ii =

∑

j HN,ij −HL,i. This quantity is minimized

(Ii = 0) when the single neuron activations within a
layer are independent of one another; conversely, at the
maximum value individual neurons only activate jointly
in the context of forming a specific layer activation pat-
tern. Plots of Ii vs. i (Supplementary material) reveal
that during early layers, individual neurons tend to fire
independently, consistent with multi-neuron features be-
ing unique to each input case. In these early layers, Ii is
large because the number of possible activation patterns
in a single layer of the large network (2100) is much larger
than the number of input cases (29). In later layers, how-
ever, the correlation begins to decrease, consistent with
individual neurons being activated in the context of mul-
tiple input cases—indicating that these neurons are as-
sociated with features found in multiple input cases, like
the states of specific neighbors. Calculation of r(Ii,Hca)
confirms that this effect varies with Hca.

VI. DISCUSSION

We have shown an analogy between convolutional neu-
ral networks and cellular automata, and demonstrated
a type of network capable of learning arbitrary binary
CA using standard techniques. Our approach uses a
simple architecture that applies a single 3 × 3 convo-
lutional layer in order to consolidate the neighborhood
structure, followed by repeated 1 × 1 convolutions that
perform local operations. This architecture is capable
of predicting output states using a mixture of shallow
pattern-matching and deep layer-wise tree searching. Af-
ter training an ensemble of networks on a variety of CA,
we find that our networks structurally encode generic
dynamical features of CA, such as the relative entropy
of the rule table. Further work is necessary to deter-
mine whether neural networks can more broadly inform
efforts to understand the dynamical space of CA, includ-
ing fundamental efforts to relate a CA’s a priori rules
to the its apparent dynamical complexity during simu-
lation [16, 18, 22]—for example, do Class IV and other
complex CA impose unique structures upon fitted neural
networks, or can neural networks predict their compu-
tational complexity given a rule table? These problems
and more general studies of dynamical systems will re-
quire more sophisticated approaches, such as unsuper-
vised training and generative architectures (such as re-
stricted Boltzmann machines). More broadly, we note
that studying the bounded space of CA has motivated
our development of general entropy-based approaches to
probing trained neural networks. In future work we hope
to relate our observations to more general patterns ob-
served in studies of deep networks, such as the informa-
tion bottleneck [34]. Such results may inform analysis
of open-ended dynamical prediction tasks, such as video
prediction, by showing a simple manner in which process
complexity manifests as structural motifs.
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VIII. APPENDIX

A. Representing arbitrary CA with convolutional
neural networks

Here we show explicitly how a standard mlpconv mul-
tilayer perceptron architecture with ReLU activation is
capable of representing an arbitrary M state cellular au-
tomaton with a finite depth and neuron count [28]. We
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provide the following explicit examples primarily as an
illustration of the ways in which 1× 1 convolutions may
be used to implement arbitrary CA using a perceptron;
we note that real-world networks trained using optimiz-
ers will find many other heuristics and representations.
We provide the two analytic cases below for concreteness,
and to illustrate two important limits: pattern-matching
templates for each unique input across the entire net-
work, or using individual layers to eliminate cases until
the appropriate output symbol has been identified.

1. Pattern-matching the rule table with a shallow network

An arbitrary M-state cellular automaton can first be
converted into a one-hot binary representation. Given an
L×L image, we seek to generate an L×L×M stack of
binary activation images:

1. Convolve the input layer with M distinct 1×1 con-
volutional filters with unit weights, and with biases
given by 1, 0,−1, ... − (M − 1). Now apply ReLU
activation

2. Convolve the resulting image with M 1 × 1 con-
volutional filters with zero biases. Each of the
first (M − 1) convolutional filters tests a differ-
ent consecutive pair [1,−b, 0, ..., 0], [0, 1,−b, 0, ?, 0],
[0, 0, 1,−b, 0, ?, 0], ..., [0, ..., 0, 1,−b], where b is any
positive constant b ≥ M/(M − 1). The last convo-
lutional filter is the identity [0, ..., 0, 1]. Now apply
ReLU activation again.

This conversion step is not necessary when working with
a binary CA. It requires at total of (1+M)+M2 param-
eters and two layers to produce an activation volume of
dimensions L× L×M .
We now have an L×L× (M − 1) array corresponding

the one-hot encoding of each pixel’s value in an L × L
lattice. We now pattern match each of the MD possible
inputs with its corresponding correct output value. We
note that the steps we take below represent an upper
bound; if the number of quiescent versus active states in
the cellular automaton is known in advance (= λMD,
where λ is Langton’s parameter) [17], then the number
of patterns to match (and thus total parameters) may be
reduced by a factor of λ, because only the non-quiescent
“active” rules that produce non-zero output values need
to be matched.

1. Construct a block of MD S×S× (M − 1) convolu-
tional filters, where S corresponds to the neighbor-
hood size of the CA (S = 3 for a standard CA with
a Moore neighborhood). Each of the MD filters
simply corresponds to an image of each possible in-
put state, with entries equalling one for each non-
zero site, and large negative values (greater than
D(M−1)) at each zero site. For cases whenM > 2,
the depth of each convolutional kernel allows exact
matching of different non-zero values.

2. Assign a bias to each of the MD filters based on the
cellular automaton’s rule table. For S×S×(M−1)
inputs that should map to a non-zero value q, assign
a bias of (q−1)− (L−1), where L is the number of
non-zero sites in the neighborhood L ≤ D(M − 1).
This ensures that only exact matches to the rule
will produce positive values under convolution. For
inputs that should map to zero, assign any bias
≥ L, such as D(M − 1).

3. Apply the ReLU function.

2. Searching the rule table with a deep network

Another way to represent a cellular automaton with
a multilayer perceptron constitutes searching a subset of
all possible inputs in each layer. This approach requires
all input cases σ that map to the same output symbol m,
to also map to the same activation pattern at some layer
of the network. This coalescence of different input states
can occur at any point in the network before the final
layer; here we outline a general approach for constructing
maps to the same output symbol using large networks.
Assigning input cases to a unique binary strings.

Assume there areN convolutional filters. If there areMD

unique input cases, these filters can be used to generate
an n-hot encoding of the input states. n should be chosen
such that

(

N
n

)

≥ MD. Here, we assume a binary CA with
a Moore neighborhood (M = 2, D = 9). If N = 100
neurons are present in each layer, then a two-hot binary
string (n = 2) is sufficient to uniquely represent every
possible input state of a binary Moore CA, using the
following steps

1. The D pixel neighborhood is split into n
sub-neighborhoods, with sizes we refer to as
D1, D2, .., Dn. For example, for a the binary Moore
CA, we can split the neighborhood into the first 5
pixels (counted from top-left to the center) and the
remaining 4 pixels (the center pixel to the bottom
right corner. Note that the number and dimen-
sionality of these sub-neighborhoods must satisfy
the condition: if Q ≡ MD1 + MD2 + ... + MDn ,
then

(

N

Q

)

≥ MD.

2. Define MD1 + MD2 + ... + MDn filters, which
match each possible sub-neighborhood. For ex-
ample, for the neighborhood reading 101000111
from upper-left to bottom-right, two filters can
be defined that will match sub-neighborhoods con-
sisting of the first 5 bits and the last 4 bits,
using the approach described above for pattern-
matching. In this case, these filters would be
1,−100, 1,−100,−100,−100, 0, 0, 0 with a bias of
−1, and 0, 0, 0,−100,−100,−100, 1, 1, 1 with a bias
of −2.

3. Apply ReLU activation.
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4. The resulting activation map will be an n-hot bi-
nary encoding of the input state, because each
unique input case will match the same n filters from
the set of N , thus creating a unique representation.

Assigning input case binary strings to matching

output symbols. At this stage in the network, each
input case has been mapped to a unique N digit bi-
nary string with exactly n ones within it. Successive
1 × 1 convolutional filters may now be used to com-
bine different inputs into the same activation pattern.
As a simple example, if N = 5 then the possible input
cases are σ ∈ {10001, 10010,10100, 11000, 01001, 01010,
01100, 00101, 00110, 00011}. Many of these cases can be
uniquely matched by applying a filter consisting of three
ones, followed by a bias of b = 2. For example, using the
filter W = (−1,−2,−1, 0,−2) to perform the operation
h = RELU(W · σ + b) will result in an output of 1 for
the cases {10010, 00110} only. To match strings with no
overlapping bits, more than two cases must be merged
simultaneously. In general, to merge H cases using this
approach, two strings must have H − 1 overlapping bits.
For the case of binary CA with a Moore radius, an ex-

ample of a network analogous to a simple binary search
would consist of filters that reduce the 512 input cases
to 512 2-hot strings (in the first 3 × 3 convolutional
layer). Subsequent 1 × 1 convolutions could then map
these states to 256 unique cases, then 128, and so forth
until there are only two unique activation patterns left—
the first for input states that map to one, and the sec-
ond for input states that map to zero. Depending on
the λ parameter of the CA rule table, the depth (and
thus minimum number of layers) to perform this search
would be a maximum of log2 512 − 1 = 8 layers when
λ = 0.5 (i.e. when there are equal numbers of ones and
zero outputs in the rule table). This case comprises just
one example of performing a search using the depth of
a network. However, many variations are possible, be-
cause coalescence of two input states may occur in any
layer. Moreover, while the above examples describe two
input states being combined together for each filter in
a given layer, it is not difficult to construct alternative
filters that can combine more than two states together.
We thus expect that there is considerably flexibility in
the different ways that a network trained algorithmically
can internally represent input states with similar features
and similar outputs, but that these different approaches
manifest as an overall decrease in the number of unique
activation patterns observed across the depth of the net-
work.

3. Network representation of the Game of Life

We note that there are many other ways to implement
a CA that are not exactly layerwise depth search, nor
a shallow pattern match, depending on the number and
type of features being checked at each layer of the net-

work. For example, each of the D pixels in the neigh-
borhood of the CA can be checked with separate convo-
lutional kernels all in the first layer, and then different
combinations of these values could be checked in subse-
quent steps. The shallow network described above rep-
resents an extreme case, in which every value of the full
input space is explicitly checked in the first layer. This
implementation is efficient for many CA, because of the
low cost of performing multiple numerical convolutions.
However, for CA with largeM orD, the layer-wise search
method may be preferable.
For the Game of Life, we can use knowledge of the

structure of a CA in order to design a better implementa-
tion. The Game of Life is an outer totalistic CA, meaning
that the next state of the system is fully determined by
the current value of the center pixel, and the total num-
ber of ones and zeros among its immediate neighbors.
For this reason, only two unique convolutional filters are
needed.
The first filter is the identity, which is applied with

bias 0.
The second filter is the neighbor counting filter
Due specifically to our use of ReLU activation func-

tions throughout our networks (rather than sigmoids),
several copies of this filter must be applied in order to
detect different specific neighbor counts. In particular,
because the Game of Life rules require specific informa-
tion about whether the total number of “alive” neighbors
is < 2, 2, 3, or ≥ 4, we need four duplicates of the neigh-
bor counting filter, with biases (−1,−2,−3,−4), in order
to produce unique activation patterns for each neighbor
total after the ReLU activation is applied.
We thus perform a single convolution of an L×L binary

input image with 5 total 3 × 3 × 1 convolutional filters,
producing an L × L × 5 activation volume. Hereafter,
we assume that the identity filter is the lowest-indexed
filter in the stack, followed by the filters that count the
successively-increasing numbers of neighbors < 2, = 2,
= 3, and ≥ 4.
Each 5× 1 pixel across the L×L face of the activation

volume now contains a unique activation pattern that can
be matched against the appropriate output case. In the
next layer of the network, two 1× 1 convolutional filters
with depth 5 are applied

(0, 0, 4/3,−8/3,−1/3)

(3/2, 5/4,−5,−1/4,−1/4)

which are combined with biases −1/3,−7/4 and then ac-
tivated with ReLU activation, resulting in an L × L × 2
activation volume. In order to generate a final L × L
output corresponding to the next state of the automa-
ton, this volume is summed along its depth—which can
be performed efficiently as a final convolution with a 1×1
filter with value (1, 1) along its depth, and no bias. This
will produce an L × L output image correspond to the
next state of the Game.
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For an example implementation of this algorithm in
TensorFlow, see the function

ca_funcs.make_game_of_life()

in https://github.com/williamgilpin/convoca/

blob/master/ca_funcs.py.
In principle, this architecture can work for any outer-

totalistic cellular automaton, such as Life without Death,
High Life, etc—although depending on the number of
unique neighbor count and center pixel pairings that de-
termine the ruleset, the number of neighbor filters may
beed to be adjusted. For example, in the Game of Life
the cases of 0 living and 1 living neighbors do not need
to be distinguished by the network, because both cases
result in the center pixel having a value of zero in the
next timestep.
Likewise, for a purely totalistic cellular automaton

(such as a majority vote rule), only a single convolu-
tional filter (consisting of 9 identical values) is necessary,
because the value of the center pixel does not need to be
resolved by the network.

B. Neural network training details

Convolutional neural networks were implemented in
Python 3.4 using TensorFlow 1.8 [43]. Source code
is available at https://github.com/williamgilpin/
convoca.
For all convolutions, periodic boundary conditions

were implemented by manually copying pixel values from
each edge of the input image, and then appending them
onto the opposite edges. The padding option “VALID”
was then used for the first convolutional filter layer in the
TensorFlow graph.
Hyperparameters for the large networks described in

the main text were optimized using a grid search. For
each training run performed while optimizing hyperpa-
rameters, a new validation set of unseen binary images
associated with an unseen cellular automaton ruleset was
created, in order to prevent the cellular automaton rule-
set from biasing the choice of hyperparameters. Once
hyperparameters were chosen, and training on arbitrary
cellular automata started, an additional validation set
of binary images was generated for each ruleset. These
images were used to determine when to stop training.
Finally, an unseen set of binary images was used as a
test partition, in order to compute the final accuracy of
the trained networks. The training and test accuracies

(before rounding the CNN output to the nearest integer)
were within 0.3% for all networks studied, which is a di-
rect consequence of the network’s ability to represent all
input cases exactly. After rounding the CNN output to
the nearest integer, both the train and test datasets had
100% accuracy. The unrounded train and test perfor-
mance during the training of one network are shown as
a function of training epoch in Figure S1 of the supple-
mentary material.
The default networks contained one 3×3 convolutional

layer followed by 11 layers of 1×1 convolutions. The con-
volutional layer, as well as the 1× 1 layers, each had 100
filters. A depth of 12 layers was chosen for the network
ensembles analyzed in the main text, in order to facili-
tate analysis of hidden layers across a variety of depths.
Network and training parameters are given in Table I.

We also considered the degree to which the exact di-
mensions of the “large network” affect our results. We
trained another ensemble of networks with loss function,
hyperparameters, and optimizer identical to the main
text, but with the number of layers and the number of
neurons per layer doubled (Table II). As we observe in
the main text, our results remain almost identical (Fig-
ure S2 of the supplementary material, left panel). We
attribute this to the relatively small number of unique
input cases that the networks need to learn (512) as com-
pared to the potential expressivity of large networks.

As a control against the choice of optimizer and loss
affecting training, we also trained a replicate ensemble
of networks that had the same network shapes (12 lay-
ers with 100 neurons each) but a different loss function
and optimizer, for which different optimal hyperparame-
ters were found using a new grid search (Table III). We
compare results using this alternative network to the de-
fault network described in the main text, and we find the
results are nearly identical.

Figures S2 (right panel) and S3 of the supplementary
material show the results of training a network using
these parameters. The shape of the training curve is
slightly different, with the universal transient (during
which the network learns general features of the input
data such as the range and number of unique cases) being
much longer for this network. However, the later phases
of training continue similarly to the standard network,
with Hca strongly affecting the later stages of training
and the final loss. Moreover, after training has concluded,
the dependence of the internal representations of the net-
work on Hca (Figure S2 of the supplementary material)
matches the patterns seen in the default network above.
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FIGURES

Figure 1. Conway’s Game of Life as a convolutional
neural network. Two convolutional filters identify the value
of the center pixel and count the number of neighbors. These
features are then scored and summed to generate a prediction
for the system at the next timepoint.

Figure 2. Architecture of a trainable convolutional
neural network for learning cellular automata. A
schematic of the mlpconv network trained on binary cellular
automata. Dimensions, where not marked, are determined by
the dimensionality of the previous layer.

Figure 3. Training 2560 convolutional neural networks
on random cellular automata. (A) A network trained on
the Game of Life for different durations, and then applied
to images of each stage of the “glider” solution. (B) The
loss versus time during training, colored by the rule entropy
Hca. Groups of 512 related cellular automata were generated
by iteratively choosing random σ → 0 rules from the 512
possible input configurations, and setting those sites to σ →

1. 5 replicates were performed. Loss values represent the
sum over the batch; values of 10 or smaller imply that only
small rounding errors were present at the end of training. The
entropy of the resulting rule table is characteristic of the CA,
and it is indicated by Hca = 0 (blue, minimum entropy CA)
to Hca = 9 (magenta, maximum entropy CA). (Inset) The
final loss for each network at the end of training, shown as a
function of Hca.
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Figure 4. Internal representations of cellular automata
by trained networks. (A) The individual layerwise en-
tropy (HL,i/D) for the 2560 networks shown in the previous
figure. Noise has been added to the horizontal coordinates
(layer index) to facilitate visualization. As in previous figures,
coloration corresponds to the entropy Hca of the underlying
CA. Dashed lines correspond to expected trends for theoret-
ical networks that eliminates 0% of cases in each layer (i.e.,
a pattern-matching implementation), 45% of cases, and 50%
(top to bottom) (Inset) The Pearson correlation coefficient r
between the rule entropy Hca and layer entropy HL,i. Error
range corresponds to bootstrapped 25% -75% quantiles. (B)
The normalized layerwise entropy (HL,i/D) versus the nor-
malized total layerwise neuron entropy (HN,ij/N), with the
linear scaling annotated.

TABLES

0 0 0
0 1 0
0 0 0
1 1 1
1 0 1
1 1 1

Table I. Hyperparameters for networks used in the main text.

Parameter Value
Input dimensions 10 × 10 px

Number of layers 12
Neurons per layer 100
Input samples 500 images

Batch size 10 images

Weight initialization He Normal[44]

Weight scale 1
Learning rate 10−4

Max train epochs 1500
Optimizer Adam

Loss L2

Table II. Hyperparameters for the large network.

Parameter Value
Input dimensions 10 × 10 px

Number of layers 24
Neurons per layer 200
Input samples 500 images

Batch size 10 images

Weight initialization He Normal[44]
Weight scale 1
Learning rate 10−4

Max train epochs 1500
Optimizer Adam

Loss L2

Table III. Hyperparameters for the alternative network.
Parameter Value
Input dimensions 10 × 10 px

Number of layers 12
Neurons per layer 100
Input samples 500 images

Batch size 20 images

Weight initialization He Normal[44]
Weight scale 5 × 10−1

Learning rate 5 × 10−4

Max train epochs 3000
Optimizer S. G. D.

Loss cross-entropy
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