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In this article, we report a phenomenon of collective dynamics on discrete-time complex networks:
random temporal interaction matrix even of zero or/and small average are able to significantly en-
hance synchronization with probability one. According to current knowledge, there is no verifiably
sufficient criterion on what kind of the random temporal interaction matrix of zero or/and small
average to induce any kind of coherence in the discrete-time temporal network with probability one.
We use the standard method of synchronization analytics and the theory of stochastic processes to
establish such a kind of criterion, by which we rigorously and accurately depict how synchronization
occurring with probability one is affected by the statistical characteristics of the random temporal
connections, such as the strength and topology of the connections as well as their probability dis-
tributions. We also illustrate the enhancement phenomenon using physical and biological complex
dynamical networks.

PACS numbers: 05.45.-a,05.45.Gg,05.45.Jn

I. INTRODUCTION

Collective dynamics on complex networks such as syn-
chronization and stability [1–24] are a central theme in
network science and engineering. Most previous studies
concerned mainly static networks, i.e., networks whose
structures are fixed in time. Static networks, however,
represent only an approximate description of the real
world - networks arising in biological, physical, and social
systems are often time varying or temporal [25–35]. Col-
lective dynamics on temporal networks, in spite of their
importance, were far less studied. In this regard, there
was a line of work on synchronization and stability in
temporal networks [10, 32, 36–51]. For example, moving
agent networks were studied [36, 37, 41, 45], where in-
teractions among the agents are switched on when they
are sufficiently close in the physical space. A result was
that, if all agents are moving randomly, there exists an
interval in the agent density in which synchronization
can be achieved and this interval does not depend on the
network size [36, 37]. An alternative setting is a fixed
set of zones: only when agents enter into one of these
zones will interactions be activated [45]. In this case, the
network synchronizability depends on the system size in
that synchronization is more difficult for larger systems,
which can be quantified by an algebraic scaling law [45].
The problem of synchronization and stability in tempo-
ral networks has potential applications in applied fields
such as wireless communication and intelligent robotics.
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A key previous result on synchronization in tempo-
ral networks is that the expectation value of nodal in-
teraction or coupling strength in the network must be
nonzero and even sufficiently negative to achieve global
synchrony [10, 39, 45, 46, 49]. This result agrees with
intuition because, when the nodal interactions are ran-
domly varying with time, a certain amount of average
coupling is required for any coherence behavior to emerge
in the network. However, in this article, we are to ad-
dress questions: “Is there any phenomenon that is dif-
ferent from the previous result?” and “Can synchroniza-
tion be achieved on temporal networks with probabil-
ity one, or equivalently, in a physical sense even when
the expectation value of the coupling in the network is
fairly small or even zero?” Affirmative answers to these
questions will indicate that, comparing with the case of
a static network, interaction matrices that are switched
in a completely random manner, even with zero or/and
small average, are sufficient to induce enhance network
synchronization with probability one.

Although there have been numerous results on the pos-
itive role of additive or multiplicative noise with zero
mean to induce a variety of physical emergences, includ-
ing stochastic resonances [52], state transitions [53], and
stochastic synchronization [54], the systems taken into
account are always set in a continuous-time mode. Com-
paring with the infinitesimal step size or the fast switch
in the continuous-time systems, the constant step size or
the slow iteration character hampers the positive role of
randomness in the discrete-time systems that are broadly
adopted in modeling and in computations. Thus, ana-
lytical and numerical advances on the enhancement of
random temporal networks to collective dynamics in a
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FIG. 1. (Color online) Snapshots of a random temporal
network. The solid and dashed lines indicate connections
of positive and negative strength, respectively. A unimodal
probability distribution p(x) for the random variable ξ is also
shown.

discrete-time mode are rare, only including the recent re-
sult [55] which merely presents necessary conditions for
the enhancement phenomena in a probability moment
sense, requiring further improvement. According to the
theory of probability and stochastic processes, results in
the moment sense do not imply the results emergent with
probability one. In this article, we establish necessary
and sufficient conditions for the emergence of synchro-
nization with probability one through rigorous mathe-
matical analyses and test it by using realistic biological
and physical networks. An implication is that, in dynam-
ical networks from the real world even with discrete-time
modes, randomness not in the traditional sense of addi-
tive noises on the dynamical variables but in the temporal
and multiplicative variations of the network interactions,
can be convincingly beneficial to the emergence and en-
hancement of desired collective dynamics.

II. NETWORK MODELS AND
SYNCHRONIZATION STABILITY CONDITION

We begin by considering a discrete-time dynamical net-
work of N nodes, each represented by the dynamical vari-
able θi (i = 1, 2 · · · , N):

θi(n+ 1) = f(θi(n)) +

N∑
j 6=i

αij
[
f(θj(n))− f(θi(n))

]
+

N∑
j 6=i

gijξn
[
f(θj(n))− f(θi(n))

]
, (1)

where the nonlinear map f(·) describes the individual
nodal dynamics, αij and gij characterize the determinis-
tic (fixed) and randomly time-varying connections in the
network, respectively, with ξn being the temporal realiza-
tions of a random variable ξ following a given probabil-
ity distribution. We assume that ξ can take zero mean:
E(ξ) = 0. A number of examples of temporal realiza-
tions (snapshots) of the network are illustrated in Fig. 1.
The temporal structure described by the third term in
Eq. (1) can be regarded as due to the random environ-
mental fluctuations in biological or physical systems.

We first examine the case where the deterministic con-
nections are absent: αij = 0. For concreteness, we as-
sume that the individual nodal dynamical system is de-
scribed by a one-dimensional map having a global sta-
ble/chaotic attractor and the network matrix G = {gij}
with gii = −

∑N
j 6=i gij is diagonalizable:

G = P−1diag{λ1, · · · , λN}P ,

where P = {pij} is a row-normalized transformation ma-
trix and λi (i < N) are the complex eigenvalues that
are distinct from the trivial eigenvalue λN = 0. In this
setting, the state of system (1) in the synchronization
manifold is

θ(n) =

N∑
j=1

pNjθ
j(n), θ(n+ 1) =

N∑
j=1

pNjf(θj(n)),

where pNj = 1/N for all j if G is symmetric. The syn-

chronization error e(n) = θi(n)− θ(n) is governed by the
linearized dynamical evolution:

ei(n+ 1) = f ′(θ(n))
[
ei(n) +

N∑
j=1

gijξne
i(n)

]
.

Letting [q1(n), · · · , qN (n)]> = P [e1(n), · · · , eN (n)]>, we
obtain a set of variational equations:

qi(n+ 1) = f ′(θ(n))
[
qi(n) + λiξnq

i(n)
]

for i = 1, · · · , N . The theory of master stability func-
tion [56–59] stipulates that the asymptotical stability of
the variational equations associated with the nontrivial
eigenvalues [limn→∞ qi(n) = 0 for all i < N ] guarantees
the emergence of local synchronization. We thus seek
to establish a condition for asymptotical stability of the
generic variational equation:

q(n+ 1) = f ′(θ(n))[q(n) + λξnq(n)],

which governs the evolution of an infinitesimal perturba-
tion q transverse to the synchronization manifold. Taking
logarithm and using inductive calculations, we get

ln |q(n+ 1)| = ln |f ′(θ(n))|+ ln |1 + λξn|+ ln |q(n)|
= ln |q(1)|+

∑n
k=1 ln |1 + λξk|+

∑n
k=1 ln |f ′(θ(k))|.

Thus, the exponential growth rate of q(n), defined as
S(q(n)) = (1/n) ln |q(n)|, is given by

S(q(n)) =
S(q(1))

n+ 1
+

n∑
k=1

ln |1 + λξk|
n+ 1

+

n∑
k=1

ln |f ′(θ(k))|
n+ 1

.

The strong law of large numbers [60] and the ergodic
theory of chaotic dynamical systems [61] give

lim
n→∞

S(q(n)) = E (ln |1 + λξ|) + λL
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almost surely, where “almost surely” refers to “with prob-
ability one” or “in a physical sense”, E(·) is the expec-
tation, and λL is the Lyapunov exponent of f in the
synchronization manifold. The necessary and sufficient
condition for the asymptotical stability with probability
one is thus given by [ASC]:

E (ln |1 + λξ|) < −λL,

which further leads to a condition for local asymptot-
ical synchronization to emerge with probability one in
the networked system (1): E (ln |1 + λiξ|) < −λL for all
i < N [SEC]. In the special case where ξ is determin-
istically set as unity and the Lyapunov exponent λL is
positive, the condition [SEC] can be violated if the trans-
verse spectrum λi has both positive and negative eigen-
values. However, if ξ is random, some appropriate choice
of its distribution is able to make synchronization pos-
sible. More importantly, the above arguments indicate
that, in discrete-time systems, the real strength of the
random interactions cannot be counted directly as the ex-
pectation of the interaction matrix per se, while it should
be interpreted as the expectation of its logarithm forms
that we obtained in the conditions [ASC] and [SEC]. Ob-
serving the influence of the logarithm terms is also con-
sistent with the conventional requirement of the classical
results on the convergence in discrete-time systems.

III. SYNCHRONIZATION STABILITY
CONDITION ANALYTICS: FROM

DISCRETE-VALUED DISTRIBUTION TO
CONTINUOUS-VALUED DISTRIBUTION

We derive the criteria for selecting synchronization-
enabling probability distribution. For simplicity, we drop
the superscript i and focus on the condition [ASC]. Con-
sider the case where the zero-mean random variable ξ
takes on discrete values xj with the corresponding prob-
abilities pj (j = 1, · · · , v). The condition [ASC] becomes

v∑
j=1

pj ln |1 + λxj | < −λL.

To be concrete, we let xj take on values from the set of
finite elements:

{
−1, · · · ,−1 + 2−k,−1 + 21−k, · · · , 1

}
with identical probability pj ≡ p = (2k+1+1)−1 and real-
valued transversal eigenvalue λ. As shown in Fig. 2(a), a
region of twin towers of an infinite height, which fulfills
[ASC], appears in the λ-λL plane for the distribution of
k = 0 [Fig. 2(e)]. The region is above the line λL = 0,
manifesting that just random temporal connections are
sufficient for achieving synchronization. Figures 2(b) and
2(c) show a rapid growth in the number of towers as k
increases to larger values [e.g., k = 2, 3 in Figs. 2(f) and
2(g)]. When p(x) becomes a continuous-valued distribu-
tion, the towers disappear abruptly and small twin towers
appear, as shown in Figs. 2(d) and 2(h), where ξ follows a

FIG. 2. (Color online) Emergence of synchronization in tem-
poral networks with randomly varying connections governed by
discrete/uniform probability distributions. Shown are the sta-
bility regions fulfilling the condition [ASC] in the λ-λL plane
for different probability distributions. In (a-d), the regions
are below the highlighted boundaries [solid (green) curves],
and the colors represent the values of the exponentially con-
vergent or divergent rates. The distributions in (e-g) are with
discrete values with identical probability while the distribu-
tion in (h) takes on an infinite number of continuous values
with a uniform probability.

uniform distribution. We thus see that continuous-valued
random variables lead to bounded and smaller stability
regions in the λ-λL plane, while discrete random variables
yield unbounded stability regions.

Consider the case where ξ follows the Cauchy-Lorentz
distribution [62, 63]:

p(x) = c · 1

π
· 1

c2 + (x− d)2

with c > 0. For this unimodal and continuous-valued
distribution, using the theorem of residues [64] and the
calculations presented in Appendix A makes the condi-
tion [ASC] become:

E(ln |1 + λξ|) =

∫ +∞

−∞
ln |1 + λx| · p(x)dx

= Re
{

ln[1 + λ(d± ic)]
}
< −λL,

(2)

where Re{·} is an operator taking the real part of a given
number. For a real-valued transverse eigenvalue λ, the
condition in (2) becomes

ln
√

(1 + λd)2 + λ2c2 < −λL.

Specifically, for d = 0, which corresponds to a distribu-
tion centered at the origin with zero expectation, we get
ln
√

1 + λ2c2 < −λL. However, this condition fails, re-
gardless of the network topology, when the dynamics in
the synchronization manifold are chaotic (i.e., λL > 0).
The tenability of the condition is guaranteed only for
nonzero values of d (nonzero expectation). For exam-
ple, if d > 0, [ASC] holds for some appropriately-selected
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FIG. 3. (Color online) Emergence of synchronization in tem-
poral networks with randomly varying connections governed by
continuous probability distributions. Shown are the stability
regions in which the condition [ASC] holds in the λ-λL plane
for different bimodal distributions of the random connection
variable ξ. The solid (red) curves in (a-d) and the color bar
have the same meanings as in Fig. 2. The distributions in
(e) and (f) are symmetric but with different peak distances,
and the distributions with c1 < c2 (g) and c1 > c2 (h) are
asymmetric with their higher peaks at different loci.

negative λ and sufficiently small c satisfying the relation
(1 + λd)2 + λ2c2 � 1. For a symmetric network G with
positive elements gij (i 6= j), all transverse eigenvalues λi
are negative, giving rise to the remarkable phenomenon
that random temporal connections lead to the emergence
of local synchronization.

Now consider the case where ξ obeys a bimodal prob-
ability distribution:

h(x) =
1

2π

[
c1

c21 + (x− d)2
+

c2
c22 + (x+ d)2

]
,

where c1,2 with c1 + c2 = 2 are the widths of the two
peaks in h and 2d > 0 is the distance between the two
peaks. This distribution is symmetric with zero mean [65]
for c1,2 = 1. Following the analysis with the unimodal
distribution, we obtain [ASC] as

E(ln |1 + λξ|) =

∫ +∞

−∞
ln |1 + λx| · h(x)dx

=
1

2
Re

{
ln
{

[1 + λ(d± ic1)][1 + λ(−d± ic2)]
}}

< −λL.

(3)
For real-valued λ, condition (3) becomes

ln

[√
(1 + λd)2 + c21λ

2 ·
√

(1− λd)2 + c22λ
2

]
< −λL,

which generates a stability region in the λ-λL plane. As
the peak-to-peak distance 2d is increased, the region con-
tracts horizontally and stretches vertically, as shown in
Figs. 3(a), 3(b), 3(e), and 3(f). We also find that, if the
distribution h is asymmetric, the stability region becomes
asymmetric as well but in the opposite order. Compared
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FIG. 4. (Color online) Stability condition for complex eigen-
values. Shown are the stability regions satisfying the condi-
tion (3) in the complex plane of λ for λL = 0.15: (a) c1,2 = 1
and (b) d = 3. The horizontal dashed line coinciding with
the real axis corresponds to the dashed line λL = 0.15 in
Figs. 3(a)-3(d).

with the symmetric case, we have that the inequality
c1 < c2 (c1 > c2) allows λL to have a larger selec-
tion range for networks whose matrix G has real λ < 0
(λ > 0), as shown in Figs. 3(c), 3(d), 3(g), and 3(h).

To gain further insights, we investigate the condition
[ASC] for complex-valued λ. As shown in Fig. 4, for λL =
0.15, two leaf-like stability regions in λ arise separately
in the complex plane. The two regions are symmetric
only for c1,2 = 1, for which a larger value of d results in
larger areas of the regions with a shorter distance between
them, as shown in Fig. 4(a). Making the distribution h
asymmetric will expand one region but shrink the other,
as shown in Fig. 4(b), implying that a smaller value of
c1 with c1 < c2 enables a diagonalizable network matrix
G with positive elements gij (i 6= j) to have a larger
spectrum gap, i.e., a longer distance between the largest
and the smallest norms of the transverse eigenvalues.

IV. PHYSICAL AND BIOLOGICAL EXAMPLES

We can now address the key question of whether and
how randomly varying connections can induce global syn-
chronization in physical or biological networks whose de-
terministic version does not permit synchronization.

The first example is an experimental liquid-crystal spa-
tial light modulator with a spatially dependent phase
shift [66]. A possible relation between the phase shift
and the captured light, as generated by optical polariza-
tion, is a nonlinear map given, e.g., by

f(θ) =
a

2
(1− cos θ).

Assuming that the deterministic network has a small-
world structure of 1-dimensional lattice, we have in sys-
tem (1) αij = [(1/(2m)]Ksij , gij = [1/(2m)]sij , where
K is the deterministic coupling strength, sij ∈ {0, 1},
and the connection matrix S = {sij} is symmetric with
pr being the reconnecting probability and 2m the num-
ber of nearest neighboring nodes before reconnection [67].
Random fluctuations are described by ξn = ηζn, where
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FIG. 5. (Color online) Random connection induced synchro-
nization in a small-world network of liquid-crystal spatial light
modulators. Shown are the synchronization probability ver-
sus the strength η of randomly varying connections and m for
different values of the reconnection probability pr. The sys-
tem parameters are a = 4.7 and K = 0.1, and the Lyapunov
exponent of the individual nodal dynamics is λL ≈ 0.25. The
probability is calculated using 100 realizations of the small-
world network, each of size N = 100.

η is the fluctuation intensity and all ζn independently
obey a distribution that takes on the values ±0.2 with
equal probability. For η ∼ 0, there is no synchronization,
as shown in Fig. 5. Interestingly, when we turn on the
value of η from zero, synchronization emerges. In par-
ticular, for the values of η and m in an ivory-like region,
the synchronization probability is greater than 50% and
can even reach unity, as shown in Fig. 5. We have ver-
ified the phenomenon directly and analytically through
the condition [ASC] by exploiting the matrix spectrum
S of small-world networks [68]. As shown in Fig. 5, the
synchronization region is also dependent on the recon-
structing probability pr. We find that an optimal value
of pr in (0, 1) can maximize the area of the ivory-like
stability region.

Our second example is a neuronal network for which
the nodal dynamical system is 2-dimensional:

xi(n+ 1) = f(xi(n)) +

N∑
j 6=i

aijn [f(xj(n))− f(xi(n))],

where f(x) =
[
4.9(1 + x2

1)−1 + x2, x2 − 0.001(x1 + 1)
]>

describes the dynamics of an individual neuron [69]. The
network has size N = 100 with connection matrix el-
ements given by aijn = [1/(2m)](K + ξn)sij , where the
matrix S = {sij} defines a small-world network and ξn
is uniformly distributed in [−u, u]. Figure 6(a) shows
that the synchronization error diminishes as the value of
u is increased from zero to about 1.25. The synchronized
spiking dynamics of x̄1(n) are shown in Fig. 6(b), where

x̄(n) = (1/N)
∑N
i=1 x

i(n) is the membrane potential of
the mean field. The variational equations with respect
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FIG. 6. (Color online) Random connection induced emer-
gence of synchronization in a neuronal network. (a) Synchro-
nization error [1/(N − 1)]

∑
i 6=1 ‖x

1(n) − xi(n)‖ in time for

different values of the half fluctuation band u. (b) Synchro-
nized spiking dynamics of the membrane potential variable
of the mean field. (c) Minimization of the quantity ζ corre-
sponding to the value of u in (a).

to the synchronization manifold are

q(n+ 1) = Of(x̄(n))[1 + (K + ξn)λj ]q(n),

where Of is the Jacobian matrix of f and λj is the trans-
verse eigenvalue of the matrix S/(2m). The quantity

ζ = max
j

{
E(ln |1 + λj(K + ξ)|) + λLmax

}
< 0

can be used to characterize the synchronization stability,
where λLmax is the largest Lyapunov exponent of f in
the synchronization manifold M. As shown in Fig. 6(c),
we have ζ < 0 for u ∈ (1.00, 1.47) and it approaches a
minimum for u ≈ 1.25. That is, as the random variations
in the network connections (even of zero expectation) are
tuned up, synchronization emerges.

V. CONCLUDING REMARKS

To summarize, we find that making the interaction ma-
trix within a network randomly varying with discrete-
time iterations, even when the expectation value of its
random variations is fairly small or/and zero, can en-
hance or induce synchronization with probability one
which otherwise would be possible neither in a static set-
ting nor in deterministic temporal setting. Our mathe-
matical analysis and demonstration using physical and
biological networks suggest that the finding holds gen-
erally true for different types of network topologies and
distributions of the interactions. A combination of ran-
domness and temporal variations in the structure of a
network, not in the traditional sense of additive random
noises, thus has the convincing benefit of promoting syn-
chronization, a type of collective dynamics that are rele-
vant to networks in a variety of natural and engineering
systems.
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Moreover, since finding optimal parameters in machine
learning, as well as solving continuous-time systems or
complex networks, usually requires discrete-time itera-
tion algorithms, our findings can be beneficial to promot-
ing the computational performance of these algorithms
when particular forms of randomness are taken into ac-
count. Also, as the iteration step size goes to infinites-
imal, the stability condition derived from the discrete-
time algorithm could become the stability condition for
the continuous-time systems, which provides an alter-
native way to depict how particular forms of random-
ness promote synchronization emergent in continuous-
time complex networks. Additionally, the uncoupled
nodal dynamics are supposed to be all identical in the
above discussions; however, the method developed in the
current article, with standard continuum techniques for
investigating synchronization of Kuramoto’s oscillators
[63], can be further generalized to find synchronization-
enabling randomness for networks with nodal dynamics
of heterogeneous nature. All these become our present
or/and future research topics.
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Appendix A: Evaluation of an integral arising from
synchronization stability analysis

In our mathematical analysis of synchronization sta-
bility of randomly time-varying networks, the following
integral arises:

E(ln |1 + λξ|) =

∫ +∞

−∞
ln |1 + λx| · p(x)dx,

where the singularity of the function ln(1+λz) of complex
variable z is located either on the upper (lower) half of
the complex plane (Case A) or on the real axis (Case B).

For Case A, we calculate the integral inside a semi-
circle, denoted by ΓR = [−R,R] ∪ CR, on the complex
plane:∮

ΓR

ln(1 + λz)p(z)dz =

{∫ R

−R
+

∫
CR

}
ln(1 + λz)p(z)dz,

where the curve CR is set on the lower (upper) half of the
complex plane if the singularity of ln(1 + λz) is on the
upper (lower) half of the plane. According to the theo-
rem of residues, we obtain that the value of the integral

is ln[1 + λ(d ± ic)] for sufficiently large R. The second
integral goes to zero in the limit of large R. Letting
R→ +∞, we have∫ +∞

−∞
ln |1 + λx| · p(x)dx = Re

{
ln[1 + λ(d± ic)]

}
,

where Re{·} is an operator taking the real part of a given
number.

For Case B, assuming that the singularity z =
−1/λ (λ 6= 0) is on the real axis, we analyze the function
ln(1 + λz) of z inside the region

G =

{
z ∈ C : z 6= − 1

λ
and − π

2
< arg

(
z +

1

λ

)
<

3π

2

}
,

where arg(·) is an operator taking the argument of a given
complex number. Since z = −1/λ is on the real axis, λ
is a real number. Suppose we have

z +
1

λ
=

∣∣∣∣z +
1

λ

∣∣∣∣ eiθ

with −π
2
< θ <

3π

2
. We let

ln(1 + λz) = ln(λ) + ln

∣∣∣∣z +
1

λ

∣∣∣∣+ iθ,

where we define ln(λ)
M
= ln |λ| + iπ for λ < 0 and ln(λ)

uses its regular definition for λ > 0.
Denote by ΓR,ε a closed curve in the complex plane, as

shown in Fig. 7. Integration of the function ln(1+λz)p(z)
along this closed curve can be separated into four parts:∮

ΓR,ε

ln(1 + λz) · p(z)dz

=

{∫ R

− 1
λ+ε

+

∫
CR

+

∫ − 1
λ−ε

−R
+

∫
γε

}
ln(1 + λz) · p(z)dz

(A1)
where CR is an anti-clockwise semicircle from R to −R,
and γε is a clockwise semicircle centered at −1/λ from
−1/λ− ε to −1/λ+ ε.

To evaluate the integrals in Eq. (A1), we first have∫
CR

ln(1 + λz)
c

π[c2 + (z − d)2]
dz

=

∫ π

0

ln
(
1 + λReiθ

) c · iθ
π[c2 + (Reiθ − d)2]

Reiθdθ,

where∣∣∣∣ln (1 + λReiθ
) c · iθ
π[c2 + (Reiθ − d)2]

Reiθ

∣∣∣∣
≤ cR[ln(1 +R|λ|) + 2π]

(R− |d|)2 − c2
.

In the limit R→ +∞, the estimate tends to zero, yielding∫
CR

log(1 + λz)
c

π(c2 + (z − d)2)
dz → 0
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FIG. 7. An integral region circumscribed by the directional
and closed curve ΓR,ε =

[
− 1
λ

+ ε,R
]
∪CR∪

[
−R,− 1

λ
− ε
]
∪γε.

for R→ +∞.
Secondly, we evaluate the integral∫
γε

ln(a+ λz) · p(z)dz

=

∫ 0

π

ε ln(λεeiθ)p

(
− 1

λ
+ εeiθ

)
ieiθdθ.

Using the boundedness of the probability distribution
p(z) in the neighborhood of z = −1/λ and the property

of ε ln(λεeiθ)→ 0 for ε→ 0+, we have∫
γε

ln(1 + λz) · p(z)dz → 0

for ε→ 0+.
In the upper half of the complex plane, the function

ln(1 + λz) · p(z) has a unique pole: z = d + ic. The
theorem of residues gives∫

ΓR,ε

ln(1 + λz) · p(z)dz = ln[1 + λ(d+ ic)],

for sufficiently large R and sufficiently small ε. Conse-
quently, letting R → +∞ and ε → 0+ in Eq. (A1), we
get ∫ +∞

−∞
ln(1 + λz) · p(z)dz = ln[1 + λ(d+ ic)]. (A2)

Finally, taking the real parts of both sides of Eq. (A2),
we obtain

E(ln |1 + λξ|) =∫ +∞

−∞
ln |1 + λx| · p(x)dx = ln

√
(1 + λd)2 + λ2c2.

This result agrees with that obtained above for Case A
where the singularity of ln(1 + λz) is not located on the
real axis.
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