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Abstract	
This paper presents a multiple-scales analysis approach capable of capturing internally-resonant wave 
interactions in weakly nonlinear lattices and metamaterials. Example systems considered include a diatomic 
chain and a locally-resonant metamaterial-type lattice. At a number of regions in the band structure, both 
the frequency and wavenumber of one nonlinear plane wave may relate to another in a near-commensurate 
manner [such as in a 2:1 or 3:1 ratio] resulting in an internal resonance mechanism. As shown herein, 
nonlinear interactions in the lattice couple these waves and enable energy exchange. Near such internal 
resonances, previously-derived higher-order dispersion corrections for single plane wave propagation may 
break down, leading to singularities in the predicted nonlinear dispersion relationships. Using the presented 
multiple-scales approach and the two example systems, this paper examines internal resonance occurring 
(i) within the same branch and (ii) between different branches of the band structure, resolving the 
aforementioned singularity issue while capturing energy exchange. The multiple-scales evolution 
equations, together with a local stability analysis, uncover multiple stable fixed points associated with 
periodic energy exchange between internally-resonant propagating modes. Response results generated 
using direct numerical simulation verify the perturbation-based predictions for amplitude-dependent 
dispersion corrections and slow-scale energy exchange; importantly, these comparisons verify the new 
exchange frequency predicted by the multiple scales approach.  

Keywords:  Multiple scales, periodic structures, nonlinear wave propagation, internal resonance, stability 

1. Introduction	
Nonlinear periodic structures has been an area of increasing focus due to their ability to filter and guide 
waves as a function of their amplitude [1-6]. Key to analyzing wave propagation in these materials is their 
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dispersion relationships, which quantify passbands in which temporal and spatial frequencies are related in 
a nontrivial manner, as well as frequency bandgaps in which propagation is forbidden.  

Several studies have derived expressions governing the amplitude-dependent shifting of band diagrams due 
to hardening and softening-type nonlinearities in phononic and photonic systems. Vakakis and King 
developed an approach to studying both the propagation and attenuation zones of plane waves in nonlinear 
mono-coupled lattices [7]. Propagating waves were assessed through a multiple scales analysis in both 
space and time whereas attenuating waves in stop bands were investigated by studying the synchronous 
motion of unit cells and seeking the associated nonlinear normal modes. Chakraborty and Malik employed 
small perturbations of a plane wave’s complex propagation constant to develop amplitude-dependent 
bounds on the passband of an infinite monatomic lattice [8]. They analyzed the finite counterpart of the 
system through a phase closure principle. Other techniques for deriving band structures in nonlinear 
periodic media include invariant manifold [9], mapping [10], and hybrid multiple scales and harmonic 
balance [11] approaches. Analogously, the optics community has examined self and cross Kerr shifts of 
plasma resonances in weakly nonlinear Josephson junction chains [12, 13]. Recently, a multiple time scales 
analysis has studied the self-interaction [14] and wave-wave [15] interaction of plane waves in weakly 
nonlinear lattices, developing closed-form, amplitude-dependent corrections to the underlying linear 
dispersion curves. When extended to higher orders, such corrections have been shown to become singular 
at frequencies associated with internal resonance, which causes uncertainty in the actual size of the 
dispersion shifting as well as the findings of stability and waveform invariance at these frequencies [16, 
17]. Nonlinearities in the constitutive equations governing phonon thermal transport has also received 
attention, notably alterations to their phase speed [18] and stability [19]. The internal-resonance analysis 
reported in this work may inform the design of thermal systems that induce periodic heat exchange between 
modes at commensurate frequencies, or the proposed invariant plane waves may inspire technology capable 
of scattering-free phonon heat transfer. 

Little attention has been given to internally-resonant wave interactions in nonlinear media. Considering  
commensurate wave-wave interaction of bulk waves in continuous solids with cubic nonlinearities, 
Rushchitsky et al. employed the method of slowly varying amplitude to derive spatial evolution equations 
for the amplitude exchange and energy conservation laws for the interacting waves [20, 21]. Manktelow et 
al. investigated wave-wave interactions in a nonlinear monatomic lattice, with the aim of controlling the 
frequency shift of a primary wave in the presence of a secondary wave, each occupying a unique space on 
the lattice’s band structure [22]. A special case in which the two waves possess commensurate frequency 
content (in the long wavelength limit) was examined, and their slow-scale energy exchange was remarked 
upon but was not of primary interest for their dispersion analysis. In [23, 24], a series of studies focused-
on the harmonic excitation of a pre-compressed granular chain in the regime of weak quadratic stiffness  
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with an extension to continuous layered systems in [25]. Using a perturbation expansion, the spatiotemporal 
higher-harmonic generation was derived, notably possessing a periodic amplitude exchange between the 
fundamental and second harmonic for the case of propagative driving frequencies. By contrast, this study 
introduces two waves at the 0th-order anticipating internal resonance between them, seeking periodic plane 
wave solutions rather than the generation of higher-harmonics from forcing, which appeared at higher-order 
spectral content in [23-25]. Additionally, this work considers the stability of the wave interactions and 
amplitude-dependent dispersion shifting at internally-resonant frequencies. Frandsen and Jensen derived 
perturbation-based expressions for higher-harmonic amplitude generation from self-interacting waves in a 
diatomic lattice with weak cubic stiffness nonlinearities [26]. While they documented close agreement 
between analytical predictions and numerical simulations of higher-harmonic generation, they reported an 
inability to predict the large energy transfer for waves in the long wavelength limit that experience internal 
resonance. Panigrahi et al. explored internal resonances in the long wavelength limit of monatomic lattices 
with quadratic stiffness nonlinearities [27]. Their multiple scales approach yielded evolution equations 
governing the amplitudes and phases of the interacting waves. A phase portrait, aided by a local stability 
analysis, revealed transitions from oscillatory to emergent evolution of the interacting wave amplitudes 
which was validated qualitatively in numerical simulations. The study in [27] does not discuss the effect of 
internal resonance on dispersion relationships, which is explicitly addressed herein.  

This work presents a multiple scales analysis of internally-resonant wave energy exchange in weakly 
nonlinear lattices, with the specific aim of capturing the energy exchange between propagating modes. This 
represents the first time a multiple scales analysis approach has predicted the temporal modulation for 
internally-resonant plane waves in discrete lattices with multiple degrees of freedom per unit cell, for both 
2:1 and 3:1 internal resonance. Also for the first time, a dispersion analysis is carried-out for internally-
resonance plane waves in nonlinear lattices, developing expressions that are valid for frequencies in which 
previous higher-order perturbation analyses for a single plane wave break down.  The analysis is carried-
out for example nonlinear systems, to include periodic layered systems and periodic locally-resonant 
systems (i.e., metamaterials). For these two classes of systems, using comparisons to direct numerical 
simulation, very good agreement is documented in (i) the perturbation-predicted exchange frequency and 
(ii) wave envelope amplitudes predicted by the presented approach.  

2. System	Description	
Figure 1 displays a prototypical, weakly nonlinear layered system whose governing equations may admit 
internally-resonant waves. Such a system can model wave propagation in three-dimensional NaCl crystals 
along the (100) direction [28], for example, and discretized bi-material rods [29, 30]. The corresponding 
unit cell contains alternating masses (𝑚" and 𝑚#) coupled with linear (𝑘%), quadratic (𝑘&), and cubic (𝑘') 
stiffness.   
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Figure 1. Nonlinear diatomic chain considered in this work. Bi-material rod that this system may 
model (a.) and its mass-spring representation (b.) 

A locally-resonant lattice is also considered in which a network of primary masses contain embedded 
resonators, as illustrated in Fig. 2. Coupling between the primary mass and its internal resonator, as well as 
between different primary masses, contains linear, quadratic, and cubic stiffness terms. Such a system is 
used for the analysis of elastic metamaterials with negative effective properties and enhanced attenuation 
capabilities [31-33].  

 

Figure 2. Nonlinear locally-resonant lattice. Plane wave propagation may occur perpendicular to 
the faces of the box-shaped unit cells containing spherical inclusions (a.). Spring-mass 

representation for plane wave propagation along a single direction (b.). 

 

For both lattices, the equation of motion governing the 𝑗)*	unit cell can be compactly represented in matrix 
form 

  𝐌�̈�/ + ∑ 2𝐊(5)𝐱/7587%
59:% + 𝜀𝐟𝐍𝐋?𝐱/, 𝐱/:%, 𝐱/7%A = 𝟎,				𝑗 = −∞…∞ (1) 



5 
 

where 𝐱/ = G
𝑥"(𝑗, 𝑡)
𝑥#(𝑗, 𝑡)

J represents the displacement from equilibrium of each degree of freedom and ? ̇ A 

denotes time differentiation. For both cases in Figs. 1-2, the mass matrices simplify to  

  𝐌 = G𝑚" 0
0 𝑚#

J (2) 

Stiffness matrices for the lattice in Fig. 1 are given by 

  𝐊(M) = G2𝑘% −𝑘%
−𝑘% 2𝑘%

J (3) 

  𝐊(:%) = O0 −𝑘%
0 0 P (4) 

  𝐊(%) = G 0 0
−𝑘% 0J (5) 

The associated stiffness matrices for the lattices with resonators in Fig. 2 are given by 

  𝐊(M) = G2𝑘%Q −𝑘%R
−𝑘%R 𝑘%R

J (6) 

  𝐊(:%) = 𝐊(%) = O0 −𝑘%"
0 0 P (7) 

All interactions from nonlinear stiffness terms combine in the 𝐟𝐍𝐋 vector, which is ordered to be small with 
the book-keeping device 𝜀. For the diatomic lattice, the nonlinear terms are 

  𝐟𝐍𝐋 =

S
−𝑘&?𝑥#(𝑗) − 𝑥"(𝑗)A

& + 𝑘&?𝑥#(𝑗 − 1) − 𝑥"(𝑗)A
& − 𝑘'?𝑥#(𝑗) − 𝑥"(𝑗)A

' − 𝑘'(𝑥#(𝑗 − 1) − 𝑥"(𝑗))'

−𝑘&?𝑥"(𝑗 + 1) − 𝑥#(𝑗)A
&
+ 𝑘&?𝑥"(𝑗) − 𝑥#(𝑗)A

&
− 𝑘'?𝑥"(𝑗 + 1) − 𝑥#(𝑗)A

'
− 𝑘'(𝑥"(𝑗) − 𝑥#(𝑗))'

U (8) 

The locally-resonant lattice possesses the following nonlinear terms 

  𝐟𝐍𝐋 =

S
−𝑘&Q?𝑥"(𝑗 + 1) − 𝑥"(𝑗)A

&
+ 𝑘&Q?𝑥"(𝑗 − 1) − 𝑥"(𝑗)A

&
− 𝑘'Q?𝑥"(𝑗 + 1) − 𝑥"(𝑗)A

'
− 𝑘'Q?𝑥"(𝑗 − 1) − 𝑥"(𝑗)A

'
− 𝑘&#?𝑥#(𝑗) − 𝑥"(𝑗)A

&
− 𝑘'#(𝑥#(𝑗) − 𝑥"(𝑗))'

𝑘&#?𝑥#(𝑗) − 𝑥"(𝑗)A
& + 𝑘'#(𝑥#(𝑗) − 𝑥"(𝑗))'

U

 (9) 

In general, quadratic (i.e., 𝑘& or 𝑘&", 𝑘&#) and cubic (i.e., 𝑘' or 𝑘'", 𝑘'#) stiffness may arise from a Taylor 
series expansion of an arbitrary nonlinear interaction.  

3. Analysis	Approach	
A Multiple Scales technique is next proposed for investigating internal resonances appearing in Eq. (1). 
Time scales of successively slower progression are introduced 

  𝑡 = 𝑇M + 𝜀𝑇% +⋯𝜀X𝑇X (10) 

with their associated time derivatives  
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  ? ̇ A = DM( ) + 𝜀D%( ) + ⋯+ 𝜀XDX( ) (11) 

where DX( ) denotes differentiation with respect to 𝑇X. Additionally, the solution is expanded in a power 

series 

  𝐱/ = 𝐱/
(M) + 𝜀𝐱/

(%) + ⋯+ 𝜀X𝐱/
(X) (12) 

Using the expansions in Eqs. (11) and (12), Eq. (1) can be separated into a series of cascading differential 

equations by collecting matching orders of 𝜀. The first two equations are  

  𝜀M:	𝐌�̈�/
(M) + ∑ O𝐊(5)𝐱/75

(M) P7%
59:% = 𝟎 (13) 

  𝜀%:	𝐌�̈�/
(%) + ∑ O𝐊(5)𝐱/75

(%) P7%
59:% = −2DMD%𝐌𝐱/

(M) − 𝐟𝐍𝐋 [𝐱/
(M), 𝐱/:%

(M) , 𝐱/7%
(M) \ (14) 

In general, Eq. (13) admits a linear combination of Bloch waves, each of the form 

  𝐱/
(M) = %

&
𝛟(𝜔M)𝐴eabcdce:ae/ + c. c. (15) 

where 𝐴 denotes the complex amplitude and c. c. denotes the complex conjugate of all preceding terms. The 

temporal frequency (𝜔M) and non-dimensional wavenumber (𝜇) are related by the lattice’s dispersion curve, 

which is found by substituting Eq. (15) into (13) and then solving the resulting eigenvalue problem [16].  

  𝜔M = ijk(lm7ln)
lnlm

∓ jk
&
pqlm

r7qln
r7slnlm tuve
ln
rlm

r  (16) 

  𝜔M =
%
&
[ &
lnlm

((−2𝑘%"𝑚# cos 𝜇 + 2𝑘%"𝑚# + 𝑘%#𝑚" + 𝑘%#𝑚#) 

  ∓?4𝑘%"& 𝑚#
& cos& 𝜇 − 8𝑘%"& 𝑚#

& cos 𝜇 + 4𝑚"𝑚#𝑘%"𝑘%# cos 𝜇 − 4𝑚#
&𝑘%"𝑘%# cos 𝜇 + 4𝑘%"& 𝑚#

& −

																																			4𝑘%"𝑘%#𝑚"𝑚# + 4𝑘%"𝑘%#𝑚#
& + 𝑘%#& 𝑚"

& + 2𝑘%#& 𝑚"𝑚# + 𝑘%#& 𝑚#
&A

k
r)]

k
r	 (17) 

Eqs. (16) and (17) provide the 0th-order dispersion relationships for the diatomic and locally-resonant 
chains, respectively. Additionally, displacements within each unit cell take on synchronous motion 
associated with the wave propagation mode shape 𝛟 

  𝛟 = S
1

:bcrln7&jk
jk?%7}~�A

U (18) 

  𝛟 = �
1

:lnbcr7&jkn(%:tuve)7jkm
jkm

� (19) 

which correspond to Eqs. (16) and (17), respectively. Figure 3 displays the 0th-order dispersion relationships 
for the example systems. Since two degrees of freedom exist per unit cell, two distinct branches form their 
band structures: a lower, or acoustic branch and an upper, or optical branch, separated by a bandgap. 
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Figure 3. 0th-order dispersion curves for the diatomic (a,b) and locally-resonant (c,d) lattices. 

Internal resonance can occur within the same branch or between different branches and commonly 
takes the form of 2:1 or 3:1.  

 
In prior work, the authors noted that higher-order analysis of single-frequency nonlinear plane waves break 
down for frequencies associated with internal resonance [16, 17]. This phenomenon occurs when the 

considered wave, represented by A, is in a nearly-commensurate relationship with another wave, 

represented by B. This may occur whenever 𝜇� ≈
Xr
Xk
𝜇�	and 𝜔M,� ≈

Xr
Xk
𝜔M,�, where 𝑛% and 𝑛& are integers.  

As established herein, it can occur within the same branch or between different branches. Common forms 
of internal resonance are 2:1 and 3:1, which are enabled by quadratic and cubic stiffness interactions, 
respectively, and such forms are principally studied in this work. Figure 3 depicts these internal resonances 
as they appear in relation to band structure.  
In the long wavelength limit, the near-linear slope of the dispersion curve technically produces many 
internal resonances. However, higher-order internal resonances, e.g. 5:3:1, can be expected to exhibit 
weaker interactions amongst the multiple wave propagation modes. Spectral content from weak stiffness 

nonlinearities naturally decreases at increasingly higher-harmonics. Thus, the interaction exclusively 
between two waves will be considered herein as their amplitudes will be dominant.  
Anticipating internal resonance amongst two waves, an A and B wave are introduced at the 0th-order  

  𝐱/
(M) = %

&
𝛟?𝜔M,�A𝐴eabc,�dce:ae�/ +

%
&
𝛟?𝜔M,�A𝐵eabc,�dce:ae�/ + c. c. (20) 



8 
 

For 𝑛: 1 internal resonance, the frequencies of the A-wave and B-wave are related by 

  𝜔M,� = 𝑛𝜔M,� + 𝜀𝜎b (21) 

  𝜇� = 𝑛𝜇� + 𝜀𝜎e (22) 

where small detuning parameters 𝜎b and 𝜎e are introduced to also capture wave interactions in close 

proximity to the 𝑛: 1 relationship. Since both ?𝜇�, 𝜔M,�A and ?𝜇�, 𝜔M,�A must satisfy the lattice’s linear 

dispersion relationship, the detuning parameters cannot be set independently of each other. For example, if 

the A wave frequency and wavenumber are known and 𝜎e is prescribed, then 𝜇� can be determined from 

Eq. (22). The B wave frequency 𝜔M,� can then be readily identified such that Eq. (16) or (17) is satisfied 

and the associated  𝜎b can be found from Eq. (21).  

The complex wave amplitudes 𝐴 and 𝐵 can be decomposed into polar form 

  𝐴 = 𝛼�ea�� (23) 

  𝐵 = 𝛼�ea�� (24) 

By virtue of satisfying Eq. (13), the real quantities 𝛼�, 𝛼�, 𝛽�, and 𝛽� are functions of only the slower time 

scales: 𝑇%, 𝑇&, etc. Once 𝐱/
(M) is defined, the right-hand side of Eq. (14) can be updated  

DM&𝐌𝐱/
(%) + ∑ O𝐊(5)𝐱/

(%)P7%
59:% = −𝐌D%?iωM,�𝛟?ωM,�A𝐴eabc,�dce:ae�/ +

iωM,�𝛟?𝜔M,�A𝐵eabc,�dce:ae�/A + ∑ ∑ 𝐚𝐮,𝐰e�a?bc,�dc:e�/Ae�a?bc,�dc:e�/A'
�9:'

'
�9M + c. c. (25) 

where 𝐚𝐮,𝐰 denotes the amplitude at each of the multi-harmonic inhomogeneities and can be expected to 

be functions of the lattice parameters in addition to the 𝐴 and 𝐵 wave frequencies and amplitudes. All 

possible 1st-order frequency combinations that occur after inserting Eq. (16) into 𝐟𝐍𝐋 are included in the 

double-summation. Quadratic nonlinearities result in even-integer higher harmonics whereas those from 
cubic nonlinearities result in odd-integer higher harmonics. Additionally, cubic nonlinearities produce 

secular terms at  eabc,�dce:ae�/ and eabc,�dce:ae�/.  

Due to the 𝑛: 1 internal resonance, terms at eXabc,�dce:Xae�/ can be expressed in terms of eabc,�dce:ae�/ 
(and vice versa). This result is clear after manipulation of the relationships in Eqs. (21) and (22) 

  𝑛?𝜔M,�𝑇M − 𝜇�𝑗A = 𝜔M,�𝑇M − 𝜇�𝑗 − 𝜀𝜎b𝑇M + 𝜀𝜎e𝑗 ≡ 𝜔M,�𝑇M − 𝜇�𝑗 − 𝜎b𝑇% + 𝜎e𝐽% (26) 

Note that a slow spatial scale, 𝐽% ≡ 𝜀𝑗, has been introduced analogous to the first slow time scale 𝑇% ≡ 𝜀𝑡, 
both of which appear with detuning parameters as phase shifts at a slower spatio-temporal scale.    

Next, secular terms are removed from Eq. (21) in order to assure convergence of the imposed ordering 

approach. First, terms containing eabc,�dce:ae�/ (as well as their complex conjugates) are addressed. To 

identify all of these terms, the relationships in Eq. (26) must be invoked since, for example, 𝜔M,� − 𝜔M,� ≈

𝜔M,� when 𝑛 = 2. After pre-multiplying all terms with eabc,�dce:ae�/ dependence by 𝛟𝐇?𝜔M,�A and 
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separating real and imaginary parts, expressions for the slow-time amplitude and phase evolution for the A 

wave, D%(𝛼�) and D%(𝛽�), result. Considering 2:1 internal resonance from solely quadratic stiffness, these 

evolution equations can be written as 

  D%(𝛼�) = 𝛼�𝛼�Re?	𝐺ea�A (27) 

  D%(𝛽�) = 𝛼�Im?	𝐺ea�A (28) 

where 𝐺 is a function of frequency and lattice parameters provided in the Appendix for both material 

systems.  Additionally, a variable representing the relative phase between the A and B waves has been 
introduced 

  𝛾 ≡ 𝛽� + 𝜎b𝑇% − 𝜎e𝐽% − 𝑛𝛽� (29) 

which results in a set of autonomous evolution equations. The autonomous evolution equations associated 
with 3:1 internal resonance and solely cubic stiffness are similar to Eqs. (23)-(24) 

  D%(𝛼�) = Re?𝛼�𝛼�&𝐼e̅a� + 𝛼�&𝛼�𝐿 + 𝛼�'𝑁§A (30) 

  D%(𝛽�) = Im?𝛼�𝛼�𝐼e̅a� + 𝛼�&𝐿 + 𝛼�&𝑁§A (31) 

where the Appendix provides expressions for 𝐼,̅ 𝐿, and 𝑁§ for both material systems. Note that the presence 
of cubic stiffness will result in the appearance of additional terms in the evolution equations for 2:1 internal 
resonance, while the presence of quadratic stiffness will not result in additional terms in the evolution 
equations governing 3:1 internal resonance. The additional terms in the 2:1 evolution equations complicate 
the procedure (introduced next) for reducing the state space from (𝛼�, 𝛽�, 𝛼�, 𝛽�) to (𝛼�, 𝛾). However, 
numerical integration of the four-dimensional state space illustrates that cubic stiffness has a negligible 
effect on 2:1 energy exchange.   

Likewise, terms appearing with eabc,�dce:ae�/ are also secular. To collect all terms at these frequencies 
requires application of Eq. (26) followed by premultiplying with 𝛟𝐇?𝜔M,�A. Expressions for the slow-time 

amplitude and phase evolution for the B wave, D%(𝛼�) and D%(𝛽�), result. For a 2:1 internal resonance, the 
evolution equations are given by 

  D%(𝛼�) = 𝛼�&Re?𝐻e:a�A (32) 

  D%(𝛽�) =
©�
r

©�
Im?𝐻e:a�A (33) 

and for the 3:1 internal resonance by  

  D%(𝛼�) = Re?𝛼�&𝛼�𝑃« + 𝛼�'𝑄« + 𝛼�'𝑅«e:a�A (34) 

  D%(𝛽�) = Im [𝛼�&𝑃« + 𝛼�&𝑄« +
©�
®

©�
𝑅«e:a�\ (35) 
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where the Appendix again provides expressions for 𝐻, 𝑃«, 𝑄, and 𝑅« for each material system. At this point 
in the development, the state space of response quantities is either governed by Eqs. (27)-(28) and (32)-(33) 
in the case of a 2:1 internal resonance, or Eqs. (30)-(31) and (34)-(35) in the case of a 3:1 internal resonance.  

The dimension of the state space can be reduced from four quantities (𝛼�, 𝛼�, 𝛽�, 𝛽�) to three (𝛼�, 𝛼�, 𝛾) 
by differentiating Eq. (29) with respect to 𝑇% and substituting-in the known expressions for D%(𝛽�) and 
D%(𝛽�) 

  D%(𝛾) = D%(𝛽�) + 𝜎b − 𝑛D%(𝛽�) (36) 

Applying this procedure to the case of 2:1 internal resonance yields the following reduced set of evolution 
equations quadratic in the wave amplitudes 

  D%(𝛼�) = 𝛼�𝛼�𝐺 cos(𝜓° + 𝛾) (37) 

  D%(𝛼�) = 𝛼�&𝐻 cos(𝜓± + 𝛾) (38) 

  D%(𝛾) = 𝜎b − 2𝛼�𝐺 sin(𝜓° + 𝛾) −
©�
r

©�
𝐻 sin(𝜓± + 𝛾) (39) 

where 𝐺 = 𝐺ea³´ and 𝐻 = 𝐻𝑒:a³¶. The case of 3:1 internal resonance gives rise to a reduced set evolution 

equations cubic in the wave amplitudes 

  D%(𝛼�) = 𝛼�𝛼�&𝐼 cos(𝜓· + 𝛾) (40) 

  D%(𝛼�) = 𝛼�'𝑅 cos(𝜓¸ + 𝛾) (41) 

  D%(𝛾) = 𝛼�&𝑃 + 𝛼�&𝑄 −
©�
®

©�
R sin(𝜓¸ + 𝛾) + 𝜎b − 3(𝛼�𝛼�𝐼 sin(𝜓· + 𝛾) + 𝛼�&𝐿 + 𝛼�&𝑁) (42) 

where 𝐼 = 𝐼ea³º,	𝐿 = 𝐿ea³», 𝑁 = 𝑁ea³¼, 𝑃 = 𝑃ea³½, 𝑄 = 𝑄ea³¾ and 𝑅 = 𝑅e:a³¿.  

Using the approach outlined in [27], solutions are sought on a hyperplane, reducing the phase space from 

(𝛼�, 𝛼�, 𝛾) to (𝛼�, 𝛾). Key to this step is to seek out-of-phase evolution of the A and B wave amplitudes. 

For energy exchange which conserves total mechanical energy, it can be expected that the D%(𝛼�) 

and D%(𝛼�) are out of phase. The first step is to recognize a relationship between the phase terms from the 

secular term removal 

   𝜓° − 𝜓± = 𝜋  (43) 

  𝜓· − 𝜓¸ = 𝜋 (44) 

Although difficult to prove analytically due to the complexity of the expressions, numerical evaluation 
using multiple parameter sets has confirmed Eqs. (43)-(44) to machine precision. The relationships in Eqs. 
(43) and (44) do not define out-of-phase amplitude evolution but instead enable a reduction of the dimension 
of the state space. Accordingly,  

  Ák©�
Ák©�

= − %
Â
©�
©�

 (45) 

Eq. (45) simplifies to  

  𝑟𝛼�& + 𝛼�& = 𝐸 (46) 
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where 𝑟 = ±
°

  for 2:1 internal resonance and 𝑟 = ¸
·
 for 3:1 internal resonance. While Eq. (46) is not a 

statement of conservation of energy, the solutions on such a hyperplane must conserve the energy-like 
integration constant  𝐸. Thus, since the A and B waves are the only wave propagation modes present, each 
mode grows and decays at the expense of exchanging energy with the other when considering solutions on 
the ellipse in Eq. (46). Substituting Eq. (46) into the 2:1 expressions in Eqs. (37)-(39) gives  

  D%(𝛼�) = (𝐸 − 𝛼�&)𝐺 cos(𝜓± + 𝛾) (47) 

  D%(𝛾) = 𝜎b + 2𝛼�𝐺 sin(𝜓± + 𝛾) −
?Å:©�

rA
©�

𝐺 sin(𝜓± + 𝛾) (48) 

For 3:1 internal resonance, the energy-reduced phase space in Eqs. (40)-(42) simplifies to  

  D%𝛼� = Æ%Â (𝐸 − 𝛼�
&)Ç

®
r
𝑅 cos(𝜓¸ + 𝛾) (49) 

  	D%(𝛾) = Æ%Â (𝐸 − 𝛼�
&)Ç 𝑃 + 𝛼�&𝑄 −

%
©�
Æ%Â (𝐸 − 𝛼�

&)Ç
®
r
𝑅 sin(𝜓¸ + 𝛾) + 𝜎b   

  −3È𝛼� Æ
%
Â
(𝐸 − 𝛼�&)Ç

k
r
𝐼 sin(𝜓· + 𝛾) + 𝛼�&𝐿 + Æ

%
Â
(𝐸 − 𝛼�&)Ç𝑁É (50) 

3.1. Local	Stability	Analysis	
The evolution of the amplitudes and phases of the A and B waves defines the interaction of the internally-
resonant plane waves. The stability of their evolution must be assessed to predict if a given distribution of 
initial amplitudes and phases will persist for long spatial and temporal measures. To investigate stability, 
the temporal evolution of the two-dimensional reduced phase space is reconstituted to the original time 
scale 

  �̇�� = 𝜀D%(𝛼�) (51) 

  �̇� = 𝜀D%(𝛾) (52) 

The associated fixed points (𝛼�∗ , 𝛾∗) satisfy �̇��|(©�∗ ,�∗) = 0 and �̇�|(©�∗ ,�∗) = 0. Stability can then be 

determined local to each fixed point by examining their associated 𝜆 value 

  𝜆 = det 𝐽 (53) 

where 

  𝐽 = Ï

Ð
Ð©�

?D%(𝛼�)A
Ð
Ð�
?D%(𝛼�)A

Ð
Ð©�

?D%(𝛾)A
Ð
Ð�
?D%(𝛾)A

Ñ

(©�
∗ ,�∗)

 (54) 

When 𝜆 is purely real, 𝜆 > 0 denotes instability, 𝜆 < 0 stability, and 𝜆 = 0 denotes neutral stability. When 

𝜆 is purely imaginary (i.e., 𝜆 = ±i𝜔Õ), the evolution of 𝛼�, 𝛼�, and 𝛾 are oscillatory with frequency 𝜔Õ. The 
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fixed point equations arising from 2:1 resonance are quadratic with respect to 𝛼� and consequently the 

fixed point solutions can readily be determined in closed form. Table I summarizes the results. Note the 
existence of two fixed points associated with periodic orbits and two unstable fixed points. 
Table I. Fixed Points for 2:1 internal resonance valid for both lattices considered. The A-wave fixed 
point is not a direct component of the two-dimensional phase space of (𝜶𝑩, 𝜸) but rather determined 

by the energy ellipse relationship. 

Fixed 
Point 

𝜶𝑩∗  𝜶𝑨∗  𝜸∗ 𝝀 

FP 1 
& 2 

−𝜎b ∓ Û𝜎b& + 12𝐸𝐺&

6𝐺 sin(𝜓± + 𝛾∗)
 
Ý
1
𝑟
Ï𝐸 − È

−𝜎b ∓ Û𝜎b& + 12𝐸𝐺&

6𝐺 sin(𝜓± + 𝛾∗)
É
&

Ñ 

cos(𝛾∗ + 𝜓±)
= 0 

𝜆 = ±i𝜔Õ 
(Periodic 

orbit) 

FP 3 
& 4 

√𝐸 0 sin(𝛾∗ + 𝜓±)
= −

𝜎b
2√𝐸𝐺

 
𝜆 > 0 

(Unstable) 

 
Thus, Fixed Points 1 and 2 are centers, and initial amplitudes and phases in their vicinity should evolve 

periodically over time with frequency 𝜔Õ. Applying Eq. (53), an expression can be derived that gives the 

frequency of the energy exchange for waves undergoing stable 2:1 internal resonance 

  𝜔Õ =
°
©�
∗ p?𝐸& + 2𝐸𝛼�∗

& − 3𝛼�∗
qA (55) 

where 𝛼�∗  must be associated with Fixed Points 1 and 2 in Table I. For 3:1 internal resonance, no closed 

form solutions were found for the fixed points and their associated 𝜆 values based on the cubic-dependence 

of their fixed point equations. However, for a given parameter set, numerical root-finding techniques can 
be employed to compute the fixed point solutions and their associated stability. It is important to note that 
periodic orbits similar to those observed for 2:1 internal resonance also arise for the case of 3:1 internal 
resonance.  

4. Energy	Exchange	Results	
To numerically validate the periodic energy exchange predicted by the presented multiple scales approach, 
direct numerical simulation of the equations of motion in Eq. (1) is carried-out. Plane waves of the form in 
Eq. (20) with internally-resonant frequency/wavenumber combinations are injected into the lattice as initial 
conditions. Initial amplitudes and phases of the A and B waves are selected to be sufficiently near centers.  
To replicate plane waves in infinite media, long chains are simulated (e.g., approximately 800-1000 
wavelengths of the A-wave). Viscous dampers are added near the chain’s boundaries with coefficients 
increasing towards the ends of the structure to absorb reflections during the simulation. Such damping 
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profile also dissipates initial displacements and velocities near the lattice’s boundaries at the start of the 
simulation.  Analysis is then restricted to the central region of the chain (e.g., the middle 100-200 
wavelengths of the A-wave). To track the energy exchange of the injected waves, spatial Fast Fourier 
Transforms (FFT’s) are taken of the 𝑚# masses in this central region. Thus, the magnitudes of the frequency 
content at 𝜇� and 𝜇� can be interpreted as 𝛼� and 𝛼�, respectively, which can in-turn be compared to the 
predictions of the multiple scales evolution equations in Eqs. (47)-(48) or (49)-(50) for 2:1 and 3:1 internal 
resonances, respectively.  For a given value of 𝐸, fixed points associated with periodic orbits can be 
determined, either analytically, for the case of 2:1 internal resonance, or computationally, for the case of 
3:1 internal resonance. The initial amplitudes and phases of the simulated A and B waves can then be 
selected to be sufficiently close to these fixed point predictions such that the simulated waves will expected 
to exchange energy over time. Values of 𝐸 are sufficiently small so as to eliminate or minimize the 
generation of still higher-harmonics out of the A and B waves. Lastly, it is important to note that this study 
focuses-on validating the orbits around lower fixed values as they are more likely to satisfy the weak 
nonlinearity criterion required for multiple scales validity.  

4.1. Diatomic	System	
 

Figure 4 depicts the relationships between the frequency of the energy exchange, 𝜔Õ, and energy level, 𝐸, 

for an example diatomic lattice (parameters provided in the caption), considering 2:1 internal resonance 
within the acoustic branch and between the acoustic and optical branches. For both cases, a higher energy 
level produces a higher frequency energy exchange. Additionally, the strength of the quadratic nonlinearity 
at each fixed point, as measured by the dimensionless parameter Π& ≡

jr©∗	
jk

, is evaluated as a function of 

𝐸. To satisfy a conservative weak nonlinearity criterion, Π& should be roughly ≤ 0.1. Note that as 𝐸 
transitions beyond 0.1 for interactions within the acoustic branch, a bifurcation occurs in Fixed Point 2 such 
that 𝛼�∗  becomes real and nonzero. This result can be physically understood to be the minimum energy 
barrier needed to activate a periodic energy exchange for 2:1 internal resonance within the acoustic branch.  
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Figure 4. Frequency of energy exchange and strength of the nonlinearity associated with the centers 
Fixed Points 1 and 2 for 2:1 internal resonance within the acoustic branch (a,b) and between the 
acoustic and optical branches (c,d) of the diatomic lattice: (a,b) 𝒎𝒂 = 𝟏,𝒎𝒃 = 𝟏. 𝟓, 𝒌𝟏 = 𝟏, 𝒌𝟐 =
𝟏, 𝒌𝟑 = 𝟎, 𝜺 = 𝟎. 𝟏, 𝝁𝑨 = 𝟎. 𝟓, 	𝝈𝝁 = 𝟎, 𝑱𝟏 = 𝟎; (c,d) 𝒎𝒂 = 𝟏,𝒎𝒃 = 𝟏. 𝟓, 𝒌𝟏 = 𝟏, 𝒌𝟐 = 𝟏, 𝒌𝟑 = 𝟎, 𝜺 =

𝟎. 𝟏, 𝝁𝑨 =
𝝅

𝟏.𝟗𝟏
, 	𝝈𝝁 = 𝟎, 𝑱𝟏 = 𝟎 

Long wavelengths are considered for investigating internal resonance within the acoustic branch of the 
diatomic lattice. Figure 5 displays a sample phase portrait for 2:1 internal resonance within the acoustic 
branch. As documented in Table I, there are two centers and two unstable fixed points. Validation of the 
lower amplitude center is of primary importance as it satisfies the weak nonlinearity criterion.   
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Figure 5. Phase portrait for 2:1 internal resonance within the acoustic branch of the diatomic 
lattice. Centers are plotted in red. 𝒎𝒂 = 𝟏,𝒎𝒃 = 𝟏. 𝟓, 𝒌𝟏 = 𝟏, 𝒌𝟐 = 𝟏, 𝒌𝟑 = 𝟎, 𝜺 = 𝟎. 𝟏, 𝝁𝑨 =

𝟎. 𝟓, 	𝝈𝝁 = 𝟎, 𝑱𝟏 = 𝟎, 𝑬 = 𝟎. 𝟓 

Figure 6 presents the results of simulating waves with 2:1 internally-resonant frequency combinations 
within the acoustic branch of the diatomic lattice. Note the close agreement between the multiple scales 
predictions and results from direct numerical simulation when viewing the energy exchange in the time 
domain. As expected, the A and B wave amplitudes oscillate out of phase. This energy exchange occurs at 
a single frequency and amplitude that matches well with the multiple scales prediction. Their agreement is 
especially evident after taking an FFT of the time histories of the energy exchange signals and filtering-out 
each of their zero frequency (DC) terms. The DC terms can be expected to be similar in magnitude to the 
fixed points, especially for the nearly-circular trajectories close to the centers in the phase plane. 

 



16 
 

Figure 6. Direct numerical simulation of the lattice equations of motion compared to the multiple 
scales predictions of the periodic energy exchange in the diatomic lattice. 2:1 internal resonance 
within the acoustic branch is considered. (a,b) Time histories of the amplitude modulation. (c,d) 
Dominant, slow scale frequency content of the energy exchange, filtering-out the DC component 
𝒎𝒂 = 𝟏,𝒎𝒃 = 𝟏. 𝟓, 𝒌𝟏 = 𝟏, 𝒌𝟐 = 𝟏, 𝒌𝟑 = 𝟎, 𝜺 = 𝟎. 𝟏, 𝝁𝑨 = 𝟎. 𝟓, 𝝈𝝁 = 𝟎, 𝑱𝟏 = 𝟎, 𝑬 = 𝟎. 𝟎𝟏𝟎𝟔 

Next, wave interactions associated with internal resonance between the acoustic and optical branches are 
simulated. Figure 7 presents a sample phase portrait for 3:1 interactions between the two branches. Note 
that there are three fixed points: two associated with periodic orbits and one associated with instability. It 

is desired to validate periodic orbits about sufficiently low amplitude fixed points.  

 

Figure 7. Phase portrait for 3:1 internal resonance between the acoustic and optical branches of the 
diatomic lattice. Centers are plotted in red. 𝒎𝒂 = 𝟏,𝒎𝒃 = 𝟏. 𝟏, 𝒌𝟏 = 𝟏, 𝒌𝟐 = 𝟎, 𝒌𝟑 = 𝟏, 𝜺 =

𝟎. 𝟏, 𝝁𝑨 =
𝝅

𝟑.𝟏𝟔
, 	𝝈𝝁 = 𝟎, 𝑱𝟏 = 𝟎, 𝑬 = 𝟏 

Figure 8 compares the results from direct numerical simulation of the diatomic lattice to the 
multiple scales predictions for 3:1 interactions between the acoustic and optical branches. An FFT of the 
time histories of 𝛼� and 𝛼� reveal that multiple scales again accurately predicts the dominant frequency of 
the energy exchange. Their mean values are subtracted so as to determine the frequency content of the 
oscillations. High frequencies in the results from direct numerical simulation suggest that there is at least 
one additional wave with which the A and B waves may be exchanging energy. Clearly, the slow time scales 
introduced in Eq. (10) cannot be expected to predict amplitude modulation faster than the A wave’s 
fundamental frequency. Re-formulating the multiple scales analysis to include both fast and slow time 
scales poses challenges that are left for future work. However, as evidenced in the figures, the dominant 
frequency of exchange and the exchange amplitudes are accurately predicted by the presented multiple 
scales approach. 
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Figure 8. Direct numerical simulation of the lattice equations of motion compared to the multiple 
scales predictions of the periodic energy exchange in the diatomic lattice. 3:1 internal resonance 
between the acoustic and optical branches is considered. (a,b) Time histories of the amplitude 

modulation. (c,d) Dominant, slow scale frequency content of the energy exchange, filtering-out the 
DC component (e,f) Frequency content of the energy exchange, presenting the small high frequency 

components identified in numerical simulations   𝒎𝒂 = 𝟏,𝒎𝒃 = 𝟏. 𝟏, 𝒌𝟏 = 𝟏, 𝒌𝟐 = 𝟎, 𝒌𝟑 = 𝟏, 𝜺 =
𝟎. 𝟏, 𝝁𝑨 =

𝝅
𝟑.𝟏𝟔

, 𝝈𝝁 = 𝟎, 𝑱𝟏 = 𝟎, 𝑬 = 𝟎. 𝟎𝟓 

4.2. Locally-Resonant	Metamaterial	System	
The expressions governing internal resonance in the locally-resonant metamaterial-type lattice are 
considered next. Figure 9 documents the frequency of energy exchange and strength of the quadratic 
nonlinearity for 2:1 internal resonance within the acoustic branch, and between the acoustic and optical 
branches. For Π&, the primary chain’s quadratic stiffness is referenced: Π&" ≡

jrn©∗

jk
.  Informed by the 

relationships in Fig. 9, lattice parameters and initial conditions are selected such that a slow energy 
exchange (i.e., 𝜀𝜔Õ 𝜔M�ñ ≤ 0.1) with weak nonlinearities (i.e., Π&" ≤ 0.1) are numerically simulated.  
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Figure 9. Frequency of energy exchange and strength of the nonlinearity associated with the centers 
Fixed Points 1 and 2 for 2:1 internal resonance within the acoustic branch (a,b) and between the 
acoustic and optical branches (c,d) of the locally-resonant lattice: (a,b) 𝒎𝒂 = 𝟏,𝒎𝒃 = 𝟎. 𝟏, 𝒌𝟏𝒂 =
𝟏𝟎, 𝒌𝟏𝒃 = 𝟐, 𝒌𝟐𝒂 = 𝟏, 𝒌𝟐𝒃 = 𝟏, 𝒌𝟑𝒂 = 𝟎, 𝒌𝟑𝒃 = 𝟎, 	𝜺 = 𝟎. 𝟏, 𝝁𝑨 = 𝟎. 𝟏, 𝝈𝝁 = 𝟎; (c,d) 𝒎𝒂 = 𝟏,𝒎𝒃 =

𝟎. 𝟏, 𝒌𝟏𝒂 = 𝟏𝟎, 𝒌𝟏𝒃 = 𝟐, 𝒌𝟐𝒂 = 𝟏, 𝒌𝟐𝒃 = 𝟏, 𝒌𝟑𝒂 = 𝟎, 𝒌𝟑𝒃 = 𝟎, 	𝜺 = 𝟎. 𝟏, 𝝁𝑨 =
𝝅

𝟐.𝟗𝟑
, 𝝈𝝁 = 𝟎 

Considering large wavelengths, Fig. 10 illustrates a sample phase portrait for 3:1 internal resonance 
between two waves within the acoustic branch. Both periodic orbits and unstable trajectories can be 
observed as well as a high degree of symmetry between positive and negative 𝛾 values.  
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Figure 10. Phase portrait for 3:1 internal resonance within the acoustic branch of the locally-
resonant lattice. Centers are plotted in red. 𝒎𝒂 = 𝟏,𝒎𝒃 = 𝟎. 𝟒, 𝒌𝟏𝒂 = 𝟏, 𝒌𝟏𝒃 = 𝟏, 𝒌𝟐𝒂 = 𝟎, 𝒌𝟐𝒃 =

𝟎, 𝒌𝟑𝒂 = 𝟏, 𝒌𝟑𝒃 = 𝟏, 	𝜺 = 𝟎. 𝟏, 𝝁𝑨 =
𝝅
𝟏𝟐
, 𝝈𝝁 = 𝟎, 𝑬 = 𝟓 

Comparing the results from direct numerical simulation to the perturbation-based evolution equations for a 
locally-resonant lattice with 3:1 internal resonance within the acoustic branch, Fig. 11 illustrates close 
agreement between theory and simulation for the dominant frequency and amplitude of the energy 
exchange. Additionally, the energy exchange of the waves consists of high frequency components, which 
can be expected to take place with waves not considered in the 0th-order solution of the perturbation 
framework. Nonetheless, as with the diatomic system, multiple scales accurately predicts the dominant 
frequency of the energy exchange, and overall exchange behavior, between the A and B waves.  
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Figure 11. Direct numerical simulation of the lattice equations of motion compared to the multiple 
scales predictions of the periodic energy exchange in the locally-resonant lattice. 3:1 internal 

resonance within the acoustic branch is considered. (a,b) Time histories of the amplitude 
modulation. (c,d) Dominant, slow scale frequency content of the energy exchange, filtering-out the 

DC component (e,f) Frequency content of the energy exchange, presenting the small high frequency 
components identified in numerical simulations 𝒎𝒂 = 𝟏,𝒎𝒃 = 𝟎. 𝟒, 𝒌𝟏𝒂 = 𝟏, 𝒌𝟏𝒃 = 𝟏, 𝒌𝟐𝒂 =

𝟎, 𝒌𝟐𝒃 = 𝟎, 𝒌𝟑𝒂 = 𝟏, 𝒌𝟑𝒃 = 𝟏, 	𝜺 = 𝟎. 𝟏, 𝝁𝑨 =
𝝅
𝟏𝟐
, 𝝈𝝁 = 𝟎, 𝑬 = 𝟎. 𝟓 

Lastly, internal resonance between the acoustic and optical branches in the locally-resonant lattice is 
investigated. Figure 12 displays a sample phase portrait and Figure 13 summarizes the results comparing 
simulations to analytical predictions for 2:1 internal resonance, again showing good agreement in the 
primary exchange frequency and amplitudes.  
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Figure 12. Phase portrait for 2:1 internal resonance between the acoustic and optical branches of 
the locally-resonant lattice. Centers are plotted in red. 𝒎𝒂 = 𝟏,𝒎𝒃 = 𝟎. 𝟏, 𝒌𝟏𝒂 = 𝟏𝟎, 𝒌𝟏𝒃 = 𝟐, 𝒌𝟐𝒂 =

𝟏, 𝒌𝟐𝒃 = 𝟏, 𝒌𝟑𝒂 = 𝟎, 𝒌𝟑𝒃 = 𝟎, 𝒄 = 𝟎, 𝜺 = 𝟎. 𝟏, 𝝁𝑨 =
𝝅

𝟐.𝟗𝟑
, 𝝈𝝁 = 𝟎, 𝑬 = 𝟎. 𝟏 

 

 

Figure 13. Direct numerical simulation of the lattice equations of motion compared to the multiple 
scales predictions of the periodic energy exchange in the locally-resonant lattice. 2:1 internal 
resonance between the acoustic and optical branches is considered. (a,b) Time histories of the 
amplitude modulation. (c,d) Dominant, slow scale frequency content of the energy exchange, 
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filtering-out the DC component (e,f) Frequency content of the energy exchange, presenting the 
small high frequency components identified in numerical simulations. 𝒎𝒂 = 𝟏,𝒎𝒃 = 𝟎. 𝟒, 𝒌𝟏𝒂 =
𝟏, 𝒌𝟏𝒃 = 𝟏, 𝒌𝟐𝒂 = 𝟏, 𝒌𝟐𝒃 = 𝟏, 𝒌𝟑𝒂 = 𝟎, 𝒌𝟑𝒃 = 𝟎, 𝜺 = 𝟎. 𝟏, 𝝈𝝁 = 𝟎, 𝑱𝟏 = 𝟎, 𝝁𝑨 =

𝝅
𝟏.𝟔𝟖

, 𝑬 = 𝟎. 𝟏. 

5. Dispersion	Analysis	
As documented in [16, 17], higher-order multiple scales analysis of a single-frequency plane wave does not 
provide valid dispersion shifts for frequencies near internal resonances. This stems from unaccounted-for 
secular terms arising from ?𝑛𝜇, 𝑛𝜔M(𝜇)A, that are instead treated as non-secular with associated particular 

solutions. These 1st-order particular solutions become unbounded at frequencies associated with internal 
resonance, and consequently violate the asymptotic series expansion. Thus, singularities in dispersion 
corrections due to internal resonance for self-interacting cannot be seen until advancing to the 2nd-order. 
Note that first-order dispersion corrections do not exhibit singularities, and the natural question arises as to 
whether these lower-order approximations can be satisfactorily used near internal resonance.   

Since quadratic stiffness interactions do not cause dispersion shifting until higher-orders (i.e., 𝑂(𝜀&)), cubic 
stiffness interactions are considered for this dispersion study. Additionally, internal resonance between the 
acoustic and optical branches is explored since there are negligible dispersion shifts at the long wavelengths 
at which internal resonance takes place solely within the acoustic branch. Recalling from [16, 17, 22] that 
evolution equations for phases directly provide the amplitude-dependent corrections to the band structure, 
Eqs. (31) and (35) are evaluated at the fixed points  

  𝜔%,� = 𝐼𝛼�∗𝛼�∗ sin(𝜓· + 𝛾∗) + 𝐿𝛼�∗
& + 𝑁𝛼�∗

& (56) 

  𝜔%,� = 𝑃𝛼�∗
& + 𝑄𝛼�∗

& − 𝑅 ©�
∗ ®

©�
∗ sin(𝜓¸ + 𝛾∗) (57) 

where 𝜔%,� and 𝜔%,� denote the amplitude-dependent dispersion shifts for the A and B waves, respectively, 

for 3:1 internal resonance. The corrections in Eqs. (56) and (57) can be evaluated at any fixed point 
(𝛼�∗, 𝛼�∗ , 𝛾). To determine whether these expressions from internally-resonant interactions are comparable 
to the 1st-order predictions from a single plane wave analysis, Eq. (56) is evaluated with 𝐸 = 𝑟𝛼&, where 𝛼 
is the amplitude of the single-frequency plane wave to which results are compared.  

Figure 14 compares the results for the internally-resonant dispersion predictions to those from the 1st-order 
perturbation predictions for a single plane wave in the diatomic chain. The frequency 𝜔 and wavenumber 
𝜇 correspond to those of the single frequency plane wave. The A-wave frequency and wavenumber are used 
for the comparison. When evaluated at Fixed Point 6, the internally-resonant analysis gives results that 
would arise should the single-plane wave analysis be interpolated through its singularities. Fixed Point 5 
converges to the single plane wave corrections as the wavenumber increases to values well above the 
frequency at which the singularity occurs. Fixed Point 7 exists for a narrow range of frequencies about the 
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singularity and slowly approaches the single plane wave results. The results evaluated at Fixed Point 6 gives 
confidence that higher-order singularities can be avoided when studying a single plane wave by instead 
employing the first-order expressions.  

 

Figure 14. Comparison of multiple scales expressions for dispersion shifts in the diatomic chain. A 
single plane wave has singularities in its higher-order dispersion corrections at frequencies 

associated with internal resonance between branches (a.). Dispersion corrections based on 3:1 
energy exchange (b-d) exist at specific ranges of frequencies and the results evaluated at Fixed 

Point 6 passes through the singularity found in the single plane wave results. 𝒎𝒂 = 𝟏,𝒎𝒃 =
𝟏. 𝟑, 𝒌𝟏 = 𝟏, 𝒌𝟐 = 𝟎, 𝒌𝟑 = 𝟏, 𝜺 = 𝟎. 𝟏, 𝝈𝝁 = 𝟎, 𝑱𝟏 = 𝟎, 𝜶 = 𝟎. 𝟕 

Using the framework detailed in Sec. 3.1, the stability of Fixed Points 5-7 in Fig. 14 is analyzed as the 
wavenumber 𝜇 is varied to ensure the stability of the solutions. Figure 15 presents the results. Since Fixed 
Point 6 is a center, it provides justification for employing its value to interpolate through single plane wave 
singularities. Fixed Point 5 is also a center, which also can be used to approximate the dispersion shifts of 
a single plane wave at frequencies beyond the 3:1 singularity. Note that 𝛼�∗  for Fixed Points 6 and 7 coalesce 
and subsequently vanish as the control parameter 𝜇 is varied just above the value giving a singularity. This 
behavior is indicative of a saddle-node bifurcation.  
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Figure 15. Bifurcation analysis of the multiple scales fixed point expressions in the vicinity of the 
singularity due to 3:1 internal resonance in the diatomic chain. The wavenumber of the A wave 
𝝁𝑨	serves as the control parameter and the fixed points 𝜶𝑩∗  (a.) and 𝜸∗ (b.) are evaluated. Fixed 

Points 5 and 6 are both centers giving confidence they can be used to interpolate through or 
approximate the singularity in the higher-order single plane wave dispersion correction. The 

vertical line represents the location of the singularity in the single plane wave dispersion correction. 

6. Conclusions	
A multiple scales approach has been presented to analyze internally-resonant energy exchange in weakly 
nonlinear lattices with multiple degrees of freedom per unit cell. Both 2:1 and 3:1 internal resonances within 
the same branch, and between different branches, is considered for diatomic and locally-resonant example 
systems. A local stability analysis reveals distributions of amplitudes and phases associated with a slow 
periodic exchange of energy between the internally-resonant plane waves. These predictions are validated 
by direct numerical simulation of the lattices’ equations of motion. A dispersion study reveals that 1st-order 
corrections from perturbation analysis of internally-resonant interactions accurately characterizes regions 
of the band structure at which dispersion corrections of a single-frequency plane wave break down. The 
results presented herein may inform technology capable of long-range coherent signal transmission and 
detection in nonlinear periodic media.  
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