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A framework for data assimilation combining aspects of operator-theoretic ergodic theory and
quantum mechanics is developed. This framework adapts the Dirac–von Neumann formalism of
quantum dynamics and measurement to perform sequential data assimilation (filtering) of a partially
observed, measure-preserving dynamical system, using the Koopman operator on the L2 space
associated with the invariant measure as an analog of the Heisenberg evolution operator in quantum
mechanics. In addition, the state of the data assimilation system is represented by a trace-class
operator analogous to the quantum mechanical density operator, and the assimilated observables
by self-adjoint multiplication operators. An averaging approach is also introduced, rendering the
spectrum of the assimilated observables discrete, and thus amenable to numerical approximation. We
present a data-driven formulation of the quantum mechanical data assimilation approach, utilizing
kernel methods from machine learning and delay-coordinate maps of dynamical systems to represent
the evolution and measurement operators via matrices in a data-driven basis. The data-driven
formulation is structurally similar to its infinite-dimensional counterpart, and shown to converge in
a limit of large data under mild assumptions. Applications to periodic oscillators and the Lorenz 63
system demonstrate that the framework is able to naturally handle highly non-Gaussian statistics,
complex state space geometries, and chaotic dynamics.

I. INTRODUCTION

Data assimilation is a framework for state estimation
and prediction for partially observed dynamical systems
[1, 2]. Its sequential formulation, also known as filtering,
is based on a predictor-corrector procedure, whereby a
forward model is employed to evolve the probability dis-
tribution for the system state until a new observation
is acquired, at which time that probability distribution
is updated in an analysis step to a posterior distribu-
tion correcting for model error and/or uncertainty in the
prior distribution. Since the seminal work of Kalman [3]
on filtering (which utilizes Bayes’ theorem for the analy-
sis step, under the assumption that all distributions are
Gaussian), data assimilation has evolved to an indispens-
able tool in virtually every modeling scenario for complex
systems, including object tracking [4], weather forecast-
ing [5], and many other important applications [6].

In certain aspects, the predictor-corrector approach in
data assimilation resembles another extremely successful
branch of modern science, namely, quantum mechanics.
Between measurements, the quantum mechanical state
evolves under unitary dynamics through the Heisenberg
operators, while the measurement process is described
by projective dynamics (the so-called wavefunction col-
lapse). As is well known, a fundamental difference be-
tween quantum and classical physics is that the quantum
mechanical observables are represented by linear opera-
tors on a Hilbert space, as opposed to functions on state
space in classical physics. In particular, quantum me-
chanical observables may be non-commuting, and this
fundamentally affects the evolution of uncertainty in a
quantum system.

Yet, despite these differences with classical physics, the
unitary and projective dynamics underpinning quantum

mechanical systems bear some conceptual similarity with
the forecast and analysis steps in filtering, respectively,
even if the underlying dynamical system is determinis-
tic (i.e., “classical”). The goal of this work is to explore
whether these conceptual similarities can be extended to
the level of a mathematically precise data assimilation
framework. In fact, we will formulate such a framework
by literally transcribing the axioms of quantum mechan-
ics to the setting of a partially observed dynamical system
encountered in data assimilation.

This framework, which we refer to as quantum me-
chanical data assimilation (QMDA), can naturally han-
dle a number of challenges faced by classical data assim-
ilation schemes. In particular, in many real-world ap-
plications, rigorous Bayesian approaches (implemented,
e.g., via particle filters [7]) become intractable, and as
a result ad hoc approximation schemes are commonly
employed in both the forecast and analysis steps [8].
These schemes oftentimes impose various types of Gaus-
sianity assumptions, with difficult to to control conver-
gence properties, particularly in the presence of complex
deterministic dynamics exhibiting features such as frac-
tal attractors and singular probability measures. On the
other hand, QMDA employs finite-rank approximations
of the intrinsic evolution and measurement operators of
such systems, realized through Koopman operator theory
[9, 10] and kernel methods for machine learning [11–14],
with well-established convergence properties.

It should be noted that while connections between
quantum theory and data assimilation have been studied
in the literature [15, 16], these works have generally ap-
proached the problem of performing data assimilation for
an actual physical quantum system. To our knowledge,
the approach presented here, which combines the Koop-
man operator formalism with abstract quantum mechan-
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ical axioms to construct a data assimilation algorithm for
deterministic dynamical systems, as well as its approx-
imation via machine-learning techniques, has not been
studied elsewhere.

The plan of this paper is as follows. In Section II,
we describe the basic mathematical formulation of the
QMDA approach. In Section III, we illustrate the be-
havior of this framework in a simple example involving
a periodic dynamical system observed through a binary
observation function. In Section IV, we consider data
assimilation of observables with potentially continuous
spectrum, and present an averaging approach to render
their spectra discrete. In Section V, we describe the
data-driven formulation of our schemes using kernel al-
gorithms. The data-driven approach is demonstrated in
Section VI in the context of the partially observed Lorenz
63 (L63) system. Section VII discusses some aspects of
QMDA in relation to classical data assimilation method-
ologies, and our primary conclusions are stated in Sec-
tion VIII. A technical result on convergence of the data-
driven formulation of QMDA is included in Appendix A.
Appendix B contains a discussion on numerical imple-
mentation and computational cost, along with formulas
for the QMDA steps expressed in matrix-vector notation.

II. QUANTUM MECHANICAL FORMULATION
OF DATA ASSIMILATION

We begin by reviewing the axioms of quantum me-
chanics according to the canonical Dirac–von Neumann
formulation [17].

QM1) Associated with every quantum system is a sep-
arable Hilbert space (H, 〈·, ·〉H) over the complex num-
bers. The possible states of the system correspond to
the set of non-negative, trace-class operators ρ : H → H,
such that tr ρ = 1. The observables of the system are
self-adjoint linear operators on H. We will denote the
sets of bounded and trace-class operators on a Hilbert
space H by B(H) and B1(H), respectively.

QM2) Between measurements, the state evolves under
the action of a strongly continuous group of unitary op-
erators U t : H → H, t ∈ R, called Heisenberg operators.
Specifically, the state ρt reached at time t starting from
a state ρ0 ∈ B1(H) is given by

ρt = U t∗ρ0U
t.

QM3) Let A : D(A)→ H be an observable, defined on
a dense subspace D(A) ⊆ H. By the spectral theorem for
self-adjoint operators, there exists a unique projection-
valued measure EA : B(R) → B(H) on the Borel σ-
algebra B(R) on R, such that A =

∫
R a dEA(a). The

set of possible values that a measurement of A can take
in a physical experiment is given by the spectrum of A,
σ(A) ⊆ R.

QM4) If the system is in state ρ ∈ B1(H), then the
probability that a measurement of an observable A will
yield a value lying in a Borel set Ω ⊆ R is equal to
tr(EA(Ω)ρ).

QM5) If the system state immediately before a mea-
surement is ρ−, and a measurement of A yields a value
a ∈ σ(A), with EA({a}) 6= 0 (i.e., a is an eigenvalue of
A), then the state ρ+ immediately after the measurement
is given by

ρ+ =
EA({a})ρ−EA({a})

tr(EA({a})ρ−EA({a}))
.

Axioms QM2 and QM5 describe the unitary and pro-
jective parts of quantum dynamics, respectively. Note
that we have stated QM5 only in the case of measure-
ments lying in the point spectrum of A. This will be suf-
ficient for our purposes, since the QMDA framework will
employ an averaging procedure, approximating the mea-
surement operator in data assimilation by a self-adjoint
operator with pure point spectrum.

We now consider how to construct a data assimila-
tion scheme that mimics the quantum mechanical ax-
ioms listed above. In this construction, we will assume
that the dynamics is described through a continuous
measure-preserving flow Φt : M → M , t ∈ R, on a
metric space M , with an ergodic, invariant, compactly
supported Borel probability measure µ. Associated with
the flow Φt is a unitary group of Koopman evolution
operators [9, 10, 18], acting on vectors in L2(µ) by com-
position, U tf = f ◦ Φt. We consider that the system is
observed through a real-valued, bounded measurement
function h ∈ L∞(µ). With these definitions, the data
assimilation analogs of the quantum mechanical axioms
above are as follows.

DA1) Associated with the data assimilation system is
the separable Hilbert space L2(µ), equipped with the
standard inner product, 〈f, g〉µ =

∫
M
f∗g dµ. The state

of the system lies in the set of non-negative, trace-class
operators ρ ∈ B1(L2(µ)), such that tr ρ = 1. The ob-
servables of the data assimilation system are self-adjoint
linear operators on L2(µ). In particular, associated with
the measurement function h is a self-adjoint multiplica-
tion operator Th ∈ B(L2(µ)), such that

Thf = hf.

DA2) Between measurements, the state evolves un-
der the action of the unitary Koopman operators U t :
L2(µ) → L2(µ) induced by the dynamical flow. In par-
ticular, the state reached at time t starting from a state
ρ0 ∈ B1(L2(µ)) is given by

ρt = U t∗ρ0U
t.

DA3) Let A : D(A)→ L2(µ) be an observable with the
corresponding projection-valued measure EA : B(R) →
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B(L2(µ)). The set of values of A that can be observed
with nonzero probability is given by the spectrum σ(A).
In particular, in the case of the multiplication operator
Th, the spectrum σ(Th) coincides with the essential range
of h. We will use the notation Eh ≡ ETh

to represent the
projection-valued measure associated with a real multi-
plication operator Th.

DA4) If the data assimilation system has state ρ ∈
B1(L2(µ)), then the probability that a measurement of
A will yield a value lying in a Borel set Ω ⊆ R is equal
to tr(EA(Ω)ρ).

DA5) If the data assimilation state immediately before
a measurement is ρ− ∈ B1(L2(µ)), and a measurement
of A yields the value a ∈ σ(A), with EA({a}) 6= 0, then
the state ρ+ immediately after the measurement is given
by

ρ+ =
EA({a})ρ−EA({a})

tr(EA({a})ρ−EA({a}))
.

A comparison between the “classical” and “quantum”
formulations of sequential data assimilation is displayed
in Table I. There, it can be seen that QMDA reformu-
lates the forward dynamics and Bayesian analysis steps
in classical data assimilation using the Koopman opera-
tor U t and the spectral projectors Eh({a}), respectively,
both of which are intrinsically linear. We now discuss
some of the general properties of this scheme, which we
will expand upon and demonstrate with numerical exper-
iments in the ensuing sections.

First, it should be noted that, as in our statement of
the quantum mechanical axioms, the state update in DA5
is defined only for measurements lying in the point spec-
trum, denoted σp(A), of the observable A. When A is
a multiplication operator Th associated with a bounded
measurement function h, as would be the case in typical
data assimilation scenarios, the condition that a ∈ σp(A)
is equivalent to the subset h−1({a}) ⊆ M of state space
having positive µ-measure.

An observable A is said to have pure point spectrum if
there exists an orthonormal basis of L2(µ) consisting of
its eigenfunctions. In that case, σp(A) is a dense subset
of σ(A), so that every measurement of A is arbitrarily
close to an eigenvalue. Examples of measurement func-
tions h resulting in A = Th with pure point spectrum
are indicator functions of non-null subsets of M , repre-
senting binary measurements. Indicator functions are in
turn special cases of simple (“quantized”) functions tak-
ing finitely many values, where Th has again pure point
spectrum. Such functions are appropriate for modeling
experimental scenarios with detectors of finite resolution
and dynamic range. In contrast, if there exists a ∈ σ(Th)
such that µ(h−1({a})) vanishes, then Eh({a}) also van-
ishes and a lies in the continuous spectrum of Th. Clearly,
as with quantum mechanical axiom QM5, for such mea-
surements the update formula in DA5 is not applicable.
We will discuss how to address this situation in Sec-
tion IV below. For now, observe that for an arbitrary

self-adjoint multiplication operator Th, the spectral pro-
jection Eh(Ω) associated with a Borel subset Ω ⊆ R is
itself a multiplication operator; specifically,

Eh(Ω) = T1h−1(Ω)
,

where 1S : M → R denotes the characteristic function of
any set S ⊆ M . It follows from the above that Eh(Ω)
vanishes whenever µ(h−1(Ω)) = 0, which includes the
case discussed above with Ω = {a} ⊆ σ(Th) and a lying
in the continuous spectrum of Th.

Next, observe that because every data assimilation
state ρ ∈ B1(L2(µ)) is a non-negative operator with unit
trace, its diagonal elements %j = 〈φj , ρφj〉µ in any or-
thonormal basis {φj}∞j=0 of L2(µ) correspond to the den-
sity of a probability measure % on the non-negative inte-
gers, N0 (i.e., the indexing set of the basis); in particular,
we have %j ≥ 0 and

∑∞
j=0 %j = 1. Adopting quantum me-

chanical terminology, we will say that ρ is a pure state
if there exists f ∈ L2(µ) such that ρ = 〈f, ·〉µf , and will
otherwise refer to it as mixed. If ρ = 〈f, ·〉µf is pure,
then in any orthonormal basis of L2(µ) having f as one
of its elements % becomes a Dirac δ-measure. In step
DA5, if a is a simple eigenvalue of A, then the state ρ+

following a measurement of A yielding the value a will
be pure; otherwise, ρ+ will be generally mixed. On the
other hand, the unitary evolution between measurements
in DA2 always maps pure states to pure states.

Note now that it is a standard result from ergodic the-
ory [10] that, that the Koopman group {U t}t∈R has a
simple eigenvalue equal to 1, with a constant correspond-
ing eigenfunction equal to 1M . It is straightforward to
verify that the corresponding pure state, ρ̄ = 〈1M , ·〉µ1M ,
satisfies

tr(Eh(Ω)ρ̄) =

∫
Ω

dµh

for every measurement function h ∈ L∞(µ) and Borel
set Ω ⊆ R, where µh : B(R) → [0, 1] is the pushforward
probability measure induced on the real line by h and the
invariant measure, satisfying µh(Ω) = µ(h−1(Ω)). As a
result, all probabilities computed via step DA4 for the
state ρ̄ (and thus all statistics such as expectation val-
ues, variances, etc., derived from it) are equivalent to
probabilities/statistics computed with respect to the sta-
tionary distribution µh of h, viewed as a random variable
on M . For this reason, we refer to ρ̄ as the stationary
state of the data assimilation system.

As a final general remark, it is worthwhile noting that
even though the focus of this work is largely on observ-
ables associated with multiplication operators Th, which
have an underlying “classical” observable h, our frame-
work is also applicable to general observables A with
no classical counterparts. In the context of measure-
preserving, ergodic dynamical systems with strongly con-
tinuous unitary Koopman groups, a natural such observ-
able is the generator of the Koopman group. In par-
ticular, it follows by Stone’s theorem for one-parameter
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TABLE I. Comparison between the “classical” and “quantum” formulations of sequential data assimilation for a bounded
measurement function h ∈ L∞(µ). In the classical formulation, P(M) denotes the set of Borel probability measures on M .
Moreover, νa : B(M)→ R, a ∈ R, denotes the Borel measure on M satisfying νa(S) = ν(S∩1h−1({a})). Note that the projective
dynamics step in the classical formulation is the Bayesian update rule. In both the classical and quantum formulations, the
projective dynamics steps are only well-defined if the denominators in the respective formulas are non-vanishing.

Classical Quantum
State Probability measure ν ∈ P(M) Trace-class operator ρ ∈ B1(L2(µ))
Observable h ∈ L∞(µ) Th ∈ B(L2(µ))
Evolutionary dynamics ν 7→ ν ◦ Φ−t ρ 7→ U t∗ρU t

Measurement probability ν(1h−1(Ω)) tr(Eh(Ω)ρ)

Projective dynamics ν 7→ νa
νa(M)

ρ 7→ Eh({a})ρEh({a})
tr(Eh({a})ρEh({a}))

unitary groups [19] that there exists a skew-adjoint op-
erator V : D(V ) → L2(µ), defined on a dense domain
D(V ) ⊂ L2(µ) via

V f = lim
t→0

U tf − f
t

, ∀f ∈ D(V ).

This operator generates the Koopman group, in the sense
that U t = etV , with operator exponentiation computed
through the spectral theorem for skew-adjoint operators.
In particular, after multiplication by the imaginary num-
ber i to render it self-adjoint, V behaves analogously to
the Hamiltonian operator in quantum physics, which gen-
erates the unitary group of Heisenberg operators. In light
of this analogy, V can be viewed as an energy observable
for the data assimilation system, which has no classical
counterpart associated with a multiplication operator.

III. DEMONSTRATION IN A SIMPLE
ERGODIC DYNAMICAL SYSTEM

In this section, we demonstrate the framework de-
scribed in Section II in the context of a simple measure-
preserving, ergodic dynamical system, namely, a rotation
on the circle, M = S1. In this case, the dynamical flow
Φt : M →M is given by

Φt(θ) = θ + ωt mod 2π,

where ω ∈ R is a frequency parameter. This system has
a unique ergodic invariant Borel probability measure µ,
equal to the Haar measure on S1. The corresponding
Koopman operators U t : L2(µ) → L2(µ) have a pure
point spectrum, with an associated orthonormal basis
of L2(µ), {. . . , φ−1, φ0, φ1, . . .}, consisting of Koopman
eigenfunctions,

φj(θ) = eijθ, U tφj = eijωtφj , 〈φj , φk〉µ = δjk.

Note that the Koopman eigenfunctions for this system
coincide with the Fourier functions on the circle.

We consider that we observe the system through a bi-
nary measurement function h : M → R, with

h = 1M1
, M1 = [0, α), α ∈ (0, 2π).

We also define M0 = M c
1 = [α, 2π). For this choice

of observation map, the associated multiplication op-
erator A = Th ∈ B(L2(µ)) has pure point spectrum,
σ(A) = σp(A) = {a0, a1}, where a0 = 0 and a1 = 1.
Moreover, the orthogonal projection operators to the cor-
responding eigenspaces, respectively denoted by H0 and
H1, are given by projHi

= T1Mi
. The spectral measure

Eh : B(R) → B(L2(µ)) associated with A is then given
by

Eh(Ω) = 1Ω(a0) projH0
+1Ω(a1) projH1

= 1Ω(a0)T1M0
+ 1Ω(a1)T1M1

,

and we also have

A =

∫
R
a dEh(a) = a0 projH0

+a1 projH1
= projH1

.

We now examine how (i) the state and measurement
probability evolve between measurements under the uni-
tary Koopman operators; and (ii) how the state is up-
dated when measurements take place under projective
dynamics. Working throughout in the Koopman eigen-
function basis {φj}, we begin by computing the matrix el-
ements of the state ρt = U t∗ρ0U

t reached after dynamical
evolution for time t starting from a state ρ0 ∈ B1(L2(µ)),
in accordance with step DA2, viz.

ρt,jk = 〈φj , ρtφk〉µ = 〈U tφj , ρ0U
tφk〉µ

= ei(k−j)ωt〈φj , ρ0φk〉µ = ei(k−j)ωtρ0,jk, (1)

where ρ0,jk = 〈φj , ρ0φk〉µ. Next, we compute the ma-
trix elements of the spectral projectors Eh({ai}) in the
Koopman eigenfunction basis, i.e.,

Ei,jk := 〈φj , Eh({ai})φk〉µ = 〈φj ,projHi
φk〉µ,

where

E0,jk =

{
1− α

2π , j = k,
−1

(k−j)π e
i(k−j)α/2 sin

(
(k−j)α

2

)
, j 6= k,

E1,jk =

{
α
2π , j = k,

1
(k−j)π e

i(k−j)α/2 sin
(

(k−j)α
2

)
, j 6= k.

Using these formulas, the probability Pi(t) for a measure-
ment of A to take value ai at time t, starting from state
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ρ0, and assuming no intervening measurements, is given
by (DA4),

Pi(t) = tr(Eh({ai})ρt) =

∞∑
j,k=−∞

Ei,jkρt,kj . (2)

Moreover, the state ρ+
i immediately after a measurement

ai of A has been observed, and the system was in state
ρ− right before the measurement, has matrix elements
(DA5)

ρ+
i,jk = 〈φj , ρ+

i φk〉µ =
〈φj , Eh({ai})ρ−Eh({ai})φk〉µ

Zi

=

∞∑
l,m=−∞

Ei,jlρ
−
lmEi,mk
Zi

, (3)

where ρ−lm = 〈φl, ρ−φm〉µ and

Zi = tr(Eh({ai})ρ−Eh({ai})) =

∞∑
j,l,m=−∞

Ei,jlρ
−
lmEi,mj .

To perform data assimilation in practice using the ex-
pressions derived above, we choose a spectral resolution
parameter L ∈ N0, and approximate all operators by
composing them by orthogonal projections ΠL : L2(µ)→
L2(µ), mapping into the (2L + 1)-dimensional subspace
spanned by φ−L, . . . , φL. That is, we approximate ρt in
DA2, Pi(t) in (2), and ρ+

i in (3) by

ρ̂t =
U t∗L ρ0U

t
L

tr(U t∗L ρ0U tL)
,

P̂i(t) = tr(Eh,L({ai})ρ̂t) =

L∑
j,k=−L

Ei,jkρ̂t,kj ,

ρ̂+
i =

Eh,L({ai})ρ−Eh,L({ai})
tr(Eh,L({ai})ρ−Eh,L({ai}))

,

(4)

respectively, where U tL = ΠLU
tΠL, and Eh,L(Ω) =

ΠLEh(Ω)ΠL for any Borel set Ω ⊆ R. In particular,
ρ̂t and ρ̂+

i have matrix elements

ρ̂t,jk = 〈φj , ρ̂tφk〉µ =
ei(k−j)ωtρ0,jk∑L

p,q=−L e
i(q−p)ωtρ0,pq

,

ρ̂+
i,jk = 〈φj , ρ̂+

i φk〉µ =

∑L
l,m=−LEi,jlρ

−
lmEi,mk∑L

p,q,r=−LEi,pqρ
−
qrEi,rp

,

respectively. Note that the division by tr(U t∗L ρ0U
t
L) in

the expression for ρ̂t is due to the fact that, unlike U t,
U tL is not unitary, and thus does not preserve the trace
of ρ0. Since all operators involved are bounded, and thus
continuous, linear operators, the expressions above con-
verge as L→∞.

Figure 1 displays the evolution of the probability P̂1(t)
for a measurement a1 = 1 to occur, computed via this
approach for three different choices of α (controlling the

relative size of the subsets Mi ⊂ M on which h takes
values ai) and the time interval between observations,
denoted ∆t. All experiments start at time t = 0 from
the stationary state ρ̄ (see Section II), which corresponds
to a probability P1(0) = α/2π to observe a1. Moreover,
the initial state θ0 ∈ S1 in state space has phase angle
equal to 0, and we use the spectral resolution parameter
L = 64. In Figs. 1(a, b) and 1(c), we set α = π and
π/6, respectively. In the former two cases, this results in
equal probability to observe 0 and 1 with respect to the
invariant measure, which is manifested by the “true” time
series h(t) = h(Φt(θ0)) exhibiting a regular square wave-
form. On the other hand, in Fig. 1(c), h(t) has an inter-
mittent character, as the probability for h to take value
1 is six times smaller than the probability for it to take
value 0. In all three cases, the observation time interval
∆t is set to an irrational multiple of the rotation pe-
riod, T = 2π/ω; specifically, ∆t = qT/(50

√
2) ≈ 0.014q,

with q = 20 in Fig. 1(a) and 200 in Figs. 1(b, c). Thus,
Figs. 1(a) and 1(b, c) correspond to frequent and infre-
quent observations relative to the rotation period, respec-
tively.

In all three cases, following an initial transient period,
whose length depends strongly on both α and ∆t/T , the

data assimilation system locks in a pattern for P̂1(t),
which tracks the signal h(t) essentially in a determin-

istic manner. That is, P̂1(t) ≈ 0 whenever h(t) = 0,

and P̂1(t) ≈ 1 whenever h(t) = 1. In Fig. 1(a), accurate
tracking of h(t) is seen to take place from approximately
t = 14. In Fig. 1(b), the time to attain accurate tracking
increases to t ' 55 (due to infrequent observations), while
in Fig. 1(c) accurate tracking does not take place until af-
ter t = 300 (due to both infrequent observations and low
probability to observe h(t) = 1). It is worthwhile noting
that in both Figs. 1(b, c) there is a marked increase in
tracking accuracy after the first h(t) = 1 observation is
made; this is particularly evident in Fig. 1(c).

IV. SPECTRAL DISCRETIZATION OF
OBSERVABLES

As indicated in Section II, the state update formula in
step DA5 is only applicable if the measurement a lies in
the point spectrum of the observable A. In this section,
we introduce a modification of that step, which renders it
applicable for arbitrary bounded observables associated
with multiplication operators. Specifically, we consider
the case A = Th with h : M → R a function in L∞(µ).

Recall that a ∈ R lies in the point spectrum of Th if
and only if the corresponding level set h−1({a}) ⊆ M
has positive µ measure. As a result, the problematic
measurement points a in the context of step DA5 are
those with null corresponding level sets with respect to
µ. These facts suggest that a possible remedy for the
ill-definition of DA5 is to approximate h by a function
h̄ : M → R whose level sets have all positive µ measure.
Because µ is a probability measure, h̄ would necessarily
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FIG. 1. Evolution of the measurement probability P̂1(t) for
the binary observable Th of the circle rotation, determined
via QMDA. Three cases are shown, the first two of which (a,
b) have α = π (i.e., equal probability to observe 0 and 1 with
respect to the invariant measure), with frequent (a; ∆t/T ≈
0.28) and infrequent (b; ∆t/T ≈ 2.8) observations relative
to the rotation period T = 2π/ω = 2π. Case (c) has α =
π/6 (i.e., the stationary probability to observe 1 is 1/6 of the
probability to observe 0) and infrequent observations as in (b).
The true signal h(t) and observations are also shown in each
panel for reference. In (c), the first 250 time units of the data
assimilation period are omitted for clarity of visualization,
but have no a1 = 1 measurements. Notice the improvement
of skill after an a1 measurement is made shortly after t = 300.

take countably many values on a full-measure subset of
M . Here, we will in fact construct h̄ so as to take finitely
many values through an averaging procedure applied to
h, which we now describe.

A. Conditional averaging

Let cdfh : R → [0, 1] be the cumulative distribution
function (CDF) of h, defined as

cdfh(a) = µ({x ∈M : h(x) ≤ a}).

Any finite partition {J0, . . . , JS−1} of (0, 1) into intervals
Ji ⊆ [0, 1] of equal length, 1/S, induces partitions Ξ =
{Ξ0, . . . ,ΞS−1} and M = {M0, . . . ,MS−1} of R and M ,
respectively, whose elements Ξi = cdf−1

h (Ji) and Mi =
h−1(Ξi) have equal measure, µh(Ξi) = µ(Mi) = 1/S, by
construction. Here, cdf−1

h : (0, 1) → R is the quantile
function of h, defined as

cdf−1
h (s) = inf{a ∈ R : cdfh(a) ≥ s}.

Let also πh : R → {0, . . . , S − 1} be the affiliation func-
tion (projection map) associated with the partition Ξ,
mapping a ∈ R to the index i of the unique set Ξi ∈ Ξ
in which a lies. Similarly, define the affiliation function
π : M → {0, . . . , S−1} forM, where π = πh ◦h. We ap-
proximate h by its conditional expectation, h̄ : M → R,
conditioned on the affiliation function π, viz.

h̄ = E(h | π) =

S−1∑
i=0

āi1Mi
, āi =

∫
Mi

h dµ.

It then follows that the corresponding multiplication op-
erator Th̄ ∈ B(L2(µ)) has pure point spectrum, and
is characterized by the purely atomic projection-valued
measure Eh̄ : B(R)→ B(L2(µ)) satisfying

Eh̄({āi}) = Eh̄(Ξi) = T1Mi
. (5)

With these definitions, we replace step DA5 with the
following:

DA5′) If the data assimilation state immediately be-
fore a measurement is ρ− ∈ B1(L2(µ)), and a measure-
ment of Th yields the value a ∈ σ(Th), then the state ρ+

immediately after the measurement is given by

ρ+ =
Eh̄({āi})ρ−Eh̄({āi})

tr(Eh̄({āi})ρ−Eh̄({āi}))
, i = πh(a).

Note that despite this modification of DA5, the mea-
surement probabilities Pi(t) in step DA4, evaluated with
respect to Th on the elements Ξi of the partition, are con-
sistent with the measurement probabilities with respect
to the quantized observable Th̄ on the same set, i.e., for
any state ρt ∈ B1(L2(µ)),

Pi(t) := tr(Eh(Ξi)ρt) = tr(Eh̄({āi})ρt). (6)



7

B. Information-theoretic measures of skill

To assess the skill of QMDA, we use relative-entropy
measures associated with the partition Ξ [20]. In partic-
ular, at any given time t, associated with this partition
are three discrete probability measures on R, namely (i)
the equilibrium measure ν̄(Ω) =

∑
i:Ω∩Ξi 6=∅ 1/S induced

by the invariant measure of the dynamics; (ii) the mea-
sure νt(Ω) =

∑
i:Ω∩Ξi 6=∅ Pi(t) associated with the data

assimilation probabilities from (6); and (iii) the measure
ν̃t(Ω) =

∑
i:Ω∩Ξi 6=∅ 1Ξi

(πh(h(t))) = δh(t)(Ω) associated

with the true signal h(t) = h(Φt(θ0)). Here, Ω is an
arbitrary Borel subset of R, and δa the Dirac measure
supported at a ∈ R. Using these probability measures,
we compute the relative entropies

D(t) = DKL(νt || ν) =

S−1∑
i=0

Pi(t) log2(SPi(t)),

E(t) = DKL(ν̃t || νt) = − log2 Pπh(h(t))(t),

where DKL(· || ·) denotes relative entropy (Kullback-
Leibler divergence) between discrete probability distri-
butions.

The quantities D(t) and E(t) are information-theoretic
measures of the precision and ignorance of the distribu-
tion νt. Specifically, Dt measures the information con-
tent of νt beyond the equilibrium measure ν̄ (which can
be thought of as a null hypothesis), while Et measures
the lack of information of νt relative to the truth distri-
bution ν̃t. The fact that we work with relative entropies
associated with base-2 logarithms means that these infor-
mation gain/losses are measured in “bits”. Note that it
follows from standard properties of relative entropy that
D(t) is non-negative, vanishes if and only if ν(t) = ν̄,
and is bounded above by log2 S. The latter, is equal to
DKL(ν̃t || ν̄). E(t) is similarly non-negative, and vanishes
if and only if νt = ν̃t. Thus, a “perfect” data assimilation
scheme would attain D(t) = log2 S and E(t) = 0. Unlike
D(t), E(t) is unbounded, but the value log2 S happens to
also be equal to DKL(ν̄ || ν̃t), so that data assimilation
distributions with E(t) > log2 S have more ignorance rel-
ative to the truth than the equilibrium measure. As a
result, E(t) < log2 S and E(τ) ≥ log2 S are natural crite-
ria to distinguish between useful versus non-useful data
assimilation predictions, respectively.

C. Application to the circle rotation

As a demonstration of the approaches in Sections IV A
and IV B, consider again the periodic dynamical system
from Section III, now observed via the continuous obser-
vation map h : M → R with h(θ) = cos θ. For this choice
of observation map, Th has purely continuous spectrum,
and

cdfh(a) = 1− cos−1(a)

π
, cdf−1

h (b) = cos((1− b)π).

It thus follows that for any interval Ji ∈ {J0, . . . , JS−1}
with endpoints bi < bi+1,

Ξi = [cos((1− bi)π), cos((1− bi+1)π)),

Mi = ((1− bi+1)π, (1− bi)π] ∪ ((bi − 1)π, (bi+1 − 1)π],

āi =
sin((1− bi+1)π)− sin((1− bi)π)

π
.

Using the above, we can compute formulas for the ma-
trix elements Ei,jk = 〈φj , Eh̄({āi})φk〉µ in the Koopman
eigenfunction basis, namely,

Ei,jk =

{
bi+1 − bi, j = k,
sin((k−j)(1−bi)π)−sin((k−j)(1−bi+1)π)

(k−j)π , j 6= k.

These formulas, evaluated for bi = i/S, in conjunction
with the expressions in (1) and (2) for the evolution of
the state and measurement probabilities, are sufficient to
carry out our data assimilation scheme. As in Section III,
in practice we compute with finite-rank approximations
of the state, evolution, and measurement operators de-
rived using the projections ΠL, and denote the resulting
measurement probabilities by P̂i(t).

Figures 2 and 3 show results for the measurement prob-
abilities P̂i(t) and the relative-entropy metrics D(t) and
E(t), obtained for the circle rotation from Section III
with frequency ω = 2π/T = 1 and measurement in-

terval ∆t = 200T/(50
√

2) ≈ 2.8T (i.e., the infrequent-
observations case from Section III and Fig. 1(c)), using
a partition of S = 32 elements and a spectral resolution
of L = 64 for operator approximation. As in Section III,
the experiment starts from the stationary state ρ̄ (setting
again the initial state of the underlying dynamical system
to θ0 = 0). Correspondingly, until the first measurement
is made at t ≈ 2.8T , the measurement probability is uni-
form, P̂i(t) = 1/S ≈ 0.03, the precision metric is zero,
D(t) = 0, and the ignorance metric is equal to the num-
ber of bits in the partition, E(t) = log2 S = 5.

When the first measurement is made, P̂i(t) collapses
to a strongly bimodal distribution, consistent with the
fact that h(θ) = cos(θ) is a two-to-one function on the
circle. Note, in particular, that in Figs. 2(a) and 3(a)
one of the two branches of the measurement probabil-
ity distribution accurately tracks the true signal h(t),
but on the basis of a single measurement, the data as-
similation system assigns nearly equal probability to the
two branches. The increase of skill following the first
measurement is also manifestly visible in the relative-
entropy plots in Fig. 1(c), where D(t) is seen to jump
to ' 3.5 upon occurrence of the first measurement. At
that time, the ignorance metric E(t) exhibits an appre-
ciable decrease from log2 S, but is seen to undergo inter-
mittent excursions to ≥ log2 S values. Closer inspection
(Figs. 2(b) and 3(a, b)) indicates that these excursions

are likely due to phase alignment errors between P̂i(t)
and h(t).

Next, as soon as the second measurement arrives, the
measurement probability collapses to a unimodal distri-
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bution that accurately tracks the true signal. This con-
trasts the behavior seen in Figs. 1(b,c), where, due to
the lower discriminating power of the binary observable
employed there, multiple measurements are required be-
fore the data assimilation system accurately tracks h(t).
With successive measurements, the phase alignment error
seen at early times gradually diminishes, and by t ' 500,
the measurement probabilities P̂i(t) track the true signal
with persistently high precision and low ignorance (see
Figs. 2(d) and 3(c)).

V. DATA-DRIVEN APPROXIMATION

The data assimilation framework presented thus far
operates under the assumptions that (i) an orthonormal
basis {φj} for the Hilbert space L2(µ) associated with
the invariant measure is available; and (ii) the action
of the Koopman operators U t and spectral projectors
Eh̄(Ξi) on the basis elements can be computed so as
to construct matrix representations of these operators.
Arguably, this information will seldom be available in
real-world applications, not least because µ is generally
an unknown measure, supported on a non-smooth subset
of state space M (e.g., a fractal attractor). Moreover,
the equations of motion, allowing one in principle to act
with the Koopman operator, may be unknown, or par-
tially known. In response, in this section we establish
a data-driven formulation of QMDA, which employs a
finite, time-ordered dataset consisting of observations of
the system to (i) build an orthonormal basis for an appro-
priate Hilbert space approximating L2(µ); and (ii) con-
struct matrix representations of operators approximating
the Koopman operator and spectral projectors on that
space. Convergence of the data-driven approximation
scheme to its infinite-dimensional counterpart then fol-
lows in the limit of large data under natural assumptions
such as ergodicity (see Appendix A).

Our approach follows closely Refs. [21–26], who employ
kernel algorithms for statistical learning [11, 12, 14] to
build the basis through eigenfunctions of kernel integral
operators obtained from the data. In what follows, we
describe the main elements of this procedure, referring
the reader to Refs. [21–26] for some of the mathematical
details. Hereafter, X ⊆ M will denote the (compact)
support of the invariant measure µ.

A. Data-driven modeling scenario

We consider that available to us is a time-ordered
sequence F (x0), F (x1), . . . , F (xN−1) of N data points,
sampled along a dynamical trajectory xn = Φn∆t(x0),
x0 ∈M , through a continuous, injective observation map
F : M → Y , taking values in a metric space Y (the data
space). Here, ∆t is a positive sampling interval such that
the discrete-time map Φ∆t : M → M is ergodic for the
probability measure µ. In applications, the data space is

FIG. 2. Results of QMDA applied to observable h(θ) = cos θ
of the periodic dynamical system on the circle for an obser-
vation interval ∆t ≈ 2.8T and initial state ρ̄ as in Fig. 1(c).

(a) Logarithm of the measurement probability P̂i(t) for h to
take values in a partition Ξ of R, consisting of S = 32 ele-
ments of equal probability mass with respect to the invariant
measure µ. The time interval shown contains the first two
observations, indicated by red asterisks. The true signal h(t)
is shown in a red line for reference. (b) Measurement prob-

ability P̂i(t) for element Ξ17 ≈ [0.00, 0.10) of the partition
(blue line). The thin shaded grid regions indicate time in-
tervals where h(t) takes values in Ξ17, and vertical red lines
indicate observation time instances. (c, d) Precision and igno-
rance metrics, D(t) and E(t), for (c) the time interval shown
in (a, b) and (d) a later time interval. Red vertical and ma-
genta horizontal lines indicate observation time instances and
the maximal number of bits, log2 S = 5, associated with the
partition, respectively. Observe the gradual decrease of E(t)
caused by misassignment of the occupancy times of the ele-
ments of Ξ at early times. This effect is visible upon close
inspection of the P̂i(t) plot in (b), and better visualized in
the contour plots in Fig. 3.
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FIG. 3. (a, b) Detailed views of the evolution of the mea-

surement probability P̂i(t) in Fig. 2(a) for time intervals con-
taining the first (a) and second (b) measurements. Observe
the collapse of the uniform distribution to a bimodal distri-
bution in (a) and the subsequent collapse of the latter to a
unimodal distribution in (b). (c) Detailed view of the mea-
surement probability for a later time interval. Notice the
improved alignment of the maximal P̂i(t) with the true signal
h(t) compared to (a, b).

typically linear and finite-dimensional, Y = Rm, but our
methods also apply for nonlinear data spaces (e.g., direc-
tional data with Y = S2), or infinite-dimensional linear
spaces (e.g., scalar-field, “snapshot” data). We will addi-
tionally assume that the observation function h : M → R
is continuous, and its values h(x0), . . . , h(xN−1) on the
sampled dynamical states are known.

The observations F (xn) will be used below to construct
the data-driven basis employed for operation approxima-
tion. In that context, the injectivity of F will be im-
portant to ensure completeness of the basis. In practical
applications, the joint values (F (xn), h(xn)) could be ac-
quired in an offline training phase where one has access
to the full dynamical system on M . If access to an ex-
plicit injective map F is not available, but the values
h(xn) are still known, it is possible to employ an alterna-
tive approach, which involves building an injective map
from h through the use of delay-coordinate maps of dy-
namical systems [27–29]. Specifically, given a nonzero

integer parameter Q (the number of delays), we define
hQ : M → RQ with

hQ(x) =
(
h(x), h(Φ−∆t(x)), . . . , h(Φ−(Q−1) ∆t(x))

)
.

(7)
It is known that under mild assumptions on Φt, h, and
∆t, if M is a finite-dimensional differentiable manifold,
then for any compact set U ⊆ M there exists Q∗ ∈ N
such that, for all Q > Q∗, hQ is injective on U [27, 28].
Moreover, an analogous result holds if M is a (poten-
tially infinite-dimensional) Hilbert space, and U ⊂ M is
a compact subset of finite upper box-counting dimension,
forward-invariant under Φt [29].

Together, the results in [27–29] hold for many of the
dynamical systems encountered in physical applications,
including a broad range of ordinary differential equation
and partial differential equation models. Noting, in par-
ticular, that hQ(xn) can be evaluated for Q − 1 ≤ n ≤
N − 1 given the time series h(x0), . . . , h(xN−1), without
knowledge of the dynamical flow Φt, delay-coordinate
maps provide a practical tool for constructing injec-
tive observation maps from partial (non-injective), time-
ordered observations. As a result, in the absence of an
explicit injective observation map F , our approach will
be to set F = hQ with Q sufficiently large.

B. Sampling measures and the associated L2 spaces

Associated with the dynamical trajectory x0, . . . , xN−1

is a sampling probability measure µN =
∑N−1
n=0 δxn

/N ,
consisting of equally weighted Dirac measures δxn

sup-
ported at the sampled states. Note that integration of
a measurable function f : M → C with respect to µN
corresponds to a time average of its values at the sam-

pled points, i.e.,
∫
M
f dµN =

∑N−1
n=0 f(xn)/N . In partic-

ular,
∫
M
f dµN can be evaluated given the values f(xn)

without explicit knowledge of the underlying dynamical
states. A sequence of sampling measures µN starting
from a fixed state x0 ∈ M is said to converge to the in-
variant measure µ weakly if for every bounded continuous
function f : M → C,

∫
M
f dµN converges to

∫
M
f dµ as

N → ∞ (i.e., in the limit of large data). The set of all
starting points x0 ∈ M for which this property holds is
said to be the basin of µ, and will be denoted by Bµ. By
ergodicity, µ-almost every point in the support X of µ lies
in Bµ; that is, Bµ is a full-measure set with µ(Bµ) = 1. In
fact, for many systems encountered in applications, Bµ is
a significantly “larger” set than X. For example, for sys-
tems that possess physical measures [30], Bµ has positive
measure with respect to a reference ambient measure in
state space (e.g., a Riemannian measure if M is a Rie-
mannian manifold). This means that the method will
converge from a sufficiently large, experimentally acces-
sible, set of initial conditions.

Hereafter, we will always assume that µN is a sam-
pling measure associated with a dynamical trajectory
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starting in Bµ. By the assumptions stated above and
time-continuity of the flow Φt, apart from the trivial case
where µ is a Dirac measure supported at a fixed point of
the dynamics (which we will exclude by assumption), all
states x0, x1, . . . are distinct. Besides these assumptions,
an additional requirement we will make is that the dy-
namics has an absorbing ball property. Specifically, we
require that the trajectory starting from any x0 ∈ Bµ is
contained within some compact, forward-invariant sub-
set X ⊆ M (i.e., Φt(X ) ⊆ X for all t ∈ R), contain-
ing X. This assumption endows the space of continuous
functions on X , C(X ), with the structure of a Banach
space, equipped with the uniform norm, which will be
important for the convergence of the data-driven basis in
Section V C.

Next, as a data-driven analog of L2(µ), we consider
the Hilbert space L2(µN ) associated with the sampling
measure µN . This space consists of equivalence classes
[f ]µN

of measurable functions f : M → C having com-
mon values at the sampled states x0, . . . , xN−1, and is
equipped with the inner product 〈f, g〉µN

=
∫
M
f∗g dµN .

Because x0, . . . , xN−1 are all distinct points, L2(µN ) is
an N -dimensional space isomorphic as a Hilbert space
to CN , the latter equipped with a normalized Hermitian

dot product, ~f†~g/N . As a result, we can represent the
L2(µN ) equivalence class [f ]µN

in which f : M → C lies

by a column vector ~f = (f(x0), . . . , f(xN−1))> ∈ CN ,
whose elements contain the values of f at the sampled
points. Moreover, we can represent every linear opera-
tor T : L2(µN ) → L2(µN ) by a unique N × N matrix

T such that ~g = T ~f is the column-vector representation
of T [f ]µN

. All of our data-driven techniques will utilize
vectors and operators on L2(µN ), so that they are read-
ily implementable via the tools of matrix algebra; see
Appendix B for further details.

C. Kernels and their associated eigenfunction bases

We now describe how to build an orthonormal basis
of L2(µN ) from the observed data F (xn) using kernel
integral operators, and discuss the convergence of this
basis to an orthonormal basis of L2(µ) in the limit of
large data. For the purposes of this work, a kernel will
be a continuous, symmetric, positive-definite function k :
M × M → R; that is, a continuous function with the
properties that (i) k(x, x′) = k(x′, x) for all x, x′ ∈ M ;
and (ii) for any finite sequence x0, . . . , xN−1 of points
in M , the N × N matrix K = [k(xm, xn)] is positive-
semidefinite. Given any Borel probability measure ν on
M with compact support Xν , the kernel k induces a self-
adjoint, trace-class (thus compact) integral operator Gν :
L2(ν)→ L2(ν), defined as

Gνf =

∫
M

k(·, x)f(x) dν(x).

In particular, there exists an orthonormal basis
{φ0, φ1, . . .} of L2(ν) consisting of eigenfunctions of Gν

corresponding to non-negative eigenvalues λ0, λ1, . . .. By
continuity of k and compactness of Xν , every eigenfunc-
tion φj with nonzero corresponding eigenvalue has a con-
tinuous representative ϕj ∈ C(M), such that

ϕj(x) =
1

λj

∫
M

k(x, x′)f(x′) dν(x′).

The kernel k will be said to be L2(ν)-strictly-positive
if Gν is a positive operator, i.e., all eigenvalues λj are
strictly positive. In that case, all eigenfunctions φj have
continuous representatives. Moreover k will be called
L2(ν)-Markov if Gν is a Markov operator; i.e., Gf ≥ 0 if
f ≥ 0, and Gf = f if f is constant. L2(ν)-Markovianity
implies, in particular, that the maximal eigenvalue λ0 of
Gν is equal to 1, and there is a constant corresponding
eigenfunction φ0, also equal to 1. An L2(ν)-Markov ker-
nel will be said to be ergodic if λ0 is a simple eigenvalue.
We will use the symbol p : M ×M → R to distinguish a
Markov kernel from a general kernel.

Intuitively, the eigenbases {φj} associated with L2(ν)-
strictly positive and Markov ergodic kernels can be
thought of as generalizations of the Laplace-Beltrami
eigenfunction bases associated with heat operators on
Riemannian manifolds. In particular, ifXν had the struc-
ture of a smooth, closed Riemannian manifold, and p
was set to the heat kernel, the φj would become Laplace-
Beltrami eigenfunctions, which are well known to provide
a smooth orthonormal basis for the L2 space associated
with the Riemannian measure [31].

Given a dynamical trajectory x0, x1, . . . starting at
x0 ∈ Bµ, with an associated forward-invariant compact
set X and the corresponding sampling measures µN ,
N ∈ N, we will be interested in a family of kernels
pN : M ×M → R with the following properties:

1. pN is a pullback kernel from data space; that is,
there is a kernel p̃N : Y × Y 7→ R such that

pN (x, x′) = p̃N (F (x), F (x′)), ∀x, x′ ∈M.

2. pN is L2(µN )-strictly-positive and Markov ergodic.

3. As N → ∞, the restriction of pN to X × X
converges uniformly to an L2(µ)-strictly-positive,
Markov ergodic kernel p : X × X → R.

Property 1 above implies that the kernels pN are data-
driven, i.e., they can be evaluated at arbitrary states
x ∈ M from the corresponding observations F (x) ∈
Y alone. Property 2 implies that associated with
the pN is a Laplace-Beltrami-like, orthonormal basis
{φN,0, . . . , φN,N−1} of L2(µN ) consisting of eigenfunc-
tions φj,N of GµN

with continuous representatives ϕj,N ∈
C(M). In particular, this basis can be obtained from

the eigenvectors ~φj of a known N × N kernel matrix

G = [pN (xm, xn)], where ~φj and G represent φj,N and
GµN

, respectively, as described in Section V B. Under the
assumptions stated in Sections V A and V B, Property 3
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implies that for every j ∈ N0, in the limit of large data,
N → ∞, ϕj,N converges uniformly on X to the contin-
uous representative ϕj associated with an orthonormal
basis {φ0, φ1, . . .} of L2(µ), consisting of eigenfunctions
of Gµ. See Refs. [25, 26] for proofs of these results, which
make use of spectral convergence results for kernel inte-
gral operators [13].

Following Ref. [25], we construct the kernels p̃N start-

ing from an unnormalized kernel k̃N : M × M → R,
and applying to that kernel a normalization procedure
to render it Markovian. Specifically, we set kN to the
variable-bandwidth Gaussian kernel introduced in [14],

k̃N (y, y′) = exp

(
− d2(y, y′)

εσN (y)σN (y′)

)
, (8)

and apply the symmetric (bistochastic) normalization
proposed in [32] to obtain p̃N . In (8), d : Y × Y → R,
is a distance function, which we will nominally set to
Euclidean distance (2-norm) for data in Y = Rm. More-
over, ε is a positive parameter, tuned via an automatic
procedure [21, Appendix A], and σN : Y → R+ a contin-
uous, positive-valued function whose role is to adaptively
modify the localization of the kernel with respect to the
sampling measure µN . In particular, it can be shown
[23] that if the support X has the structure of a smooth
closed manifold, the corresponding φj,N basis functions
converge to Laplace-Beltrami eigenfunctions with respect
to a Riemannian metric whose volume form has constant
density relative to the invariant measure µ of the dynam-
ics. While here we do not assume that X has manifold
structure (and thus cannot, in general, interpret the φj
as Laplace-Beltrami eigenfunctions), the balancing of the
kernel localization due to σN plays an important role in
enhancing the robustness of the data-driven basis to sam-
pling errors. We refer the reader to Ref. [25, Algorithm 1]
for further details on the procedure to construct p̃N and
select the bandwidth parameter ε.

In what follows, we will employ the φj,N basis of
L2(µN ) obtained via this approach to formulate data-
driven analogs of the QMDA framework described in Sec-
tions II and IV. Representative eigenfunctions φj,N ob-
tained from data generated by the L63 system (to be
studied in Section VI) are displayed in Fig. 4.

D. Operator approximation and convergence

We now have the necessary ingredients to formulate
a data-driven analog of the data-assimilation scheme
presented in Sections II and IV. Structurally, the
data-driven formulation resembles closely its infinite-
dimensional counterpart, with the Hilbert space L2(µ)
replaced by L2(µN ) as described in Section V B, and the
dynamical and measurement operators on L2(µ) replaced
by finite-rank operators on L2(µN ), as follows.

1. The state ρ ∈ B1(L2(µ)) is replaced by a non-
negative operator ρN ∈ B(L2(µN )) with tr ρN = 1.

In particular, the analog of the stationary state ρ̄ ∈
B1(L2(µ)) is ρ̄N = 〈φN,0, ·〉µN

φN,0.

2. The Koopman operator U t ∈ B(L2(µ)) for t = q∆t,
q ∈ Z, is replaced by the q-step shift operator U (q) ∈
B(L2(µN )), defined by

U
(q)
N f(xn) =

{
f(xn+q), 0 ≤ n ≤ N − q − 1,

0, N − q ≤ n ≤ N − 1.

3. The CDF function cdfh employed in the construc-
tion of the partition M in Section IV A is replaced by
the empirical CDF, cdfh,N : R→ [0, 1], where

cdfh,N (a) = µN ({x ∈M : h(x) ≤ a})

=
∑

0≤n≤N−1 : h(xn)≤a

1/N.

Given a uniform partition {J0, . . . , JS−1} of
(0, 1), the empirical CDF induces partitions ΞN =
{Ξ0,N , . . . ,ΞN−1,N} and MN = {M0,N , . . . ,MS−1,N}
of R and M , analogously to Ξ and M, with affiliation
functions πh,N : R → {0, . . . , S − 1} and πN = πh,N ◦ h,
respectively, leading to the empirical quantized observa-
tion function

h̄N = EµN
(h | πN ) =

S−1∑
i=0

āi,N1Mi,N
,

where āi,N =
∫
Mi,N

h dµN .

4. The multiplication operator Th̄ ∈ B(L2(µ)) is re-
placed by the multiplication operator Th̄N

∈ B(L2(µN )).
Note that the spectral measure measure Eh̄N

of the latter
satisfies (cf. (5))

Eh̄N
({āi,N}) = Eh̄N

(Ξi,N ) = T1Mi,N
.

With these definitions, the data-driven formulation of
QMDA proceeds entirely analogously to its counterpart
from Sections II and IV. Specifically, selecting a spectral
resolution parameter L ≤ N − 1, and introducing the or-
thogonal projections ΠL,N : L2(µN )→ L2(µN ) mapping
into span{φ0,N , . . . , φL−1,N}, the state ρt,N reached at
time t = q∆t between measurements of h, starting from
ρ0,N ∈ B(L2(µN )) is given by (cf. (4)),

ρ̂t,N =
U

(q)∗
L,N ρ0,NU

(q)
L,N

tr(U
(q)∗
L,N ρ0,NU

(q)
L,N )

, U
(q)
L,N = ΠL,NU

(q)
N ΠL,N .

Moreover, the probability for h to lie in interval Ξi,N ∈
ΞN at a time t between measurements is determined from
(cf. (6)),

P̂i,N (t) = tr(Eh̄N
({āi,N})ρ̂t,N ),
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FIG. 4. Representative data-driven eigenfunctions φj,N and their corresponding eigenvalues λj,N , computed from the fully
observed L63 dataset in Section VI. Top: Scatterplots of the eigenfunction values φj,N (xn) on the training dataset, with
yellow (blue) colors corresponding to positive (negative) values. Bottom: Eigenfunction time series tn 7→ φj,N (xn) over a
portion of the training dataset spanning 10 natural time units. Notice that, despite the fact that the L63 attractor is not a
Riemannian manifold, the eigenfunctions qualitatively resemble a Laplace-Beltrami eigenfunction basis with the corresponding
heat-operator eigenvalues. That is, as λj,N decreases, φj,N exhibits increasingly small-scale oscillatory behavior, allowing one
to represent functions of increasingly fine structure through eigenfunction expansions.

while the update from a state ρ−N ∈ B(L2(µN )) following
a measurement a ∈ R becomes (cf. (4))

ρ̂+
i,N =

Eh̄N ,L({āi,N})ρ−NEh̄N ,L({āi,N})
tr(Eh̄N ,L({āi,N})ρ−NEh̄N ,L({āi,N}))

,

with Eh̄N ,L(Ω) = ΠL,NEh̄N ,L(Ω)ΠL,N , ∀Ω ∈ B(R), and
i = πh,N (a).

The formulas stated above are sufficient to sequen-
tially perform data assimilation starting from some ini-
tial state, which we will set by default to the state ρ̄N ;
see Appendix B for additional details. Then, under the
assumptions stated in Sections V A and V B, and an ad-
ditional mild assumption on the partition Ξ, the data-
driven scheme can be shown to converge in the limit of
large data, N →∞, in the sense that for a fixed spectral
resolution L and bounded time interval for data assimila-
tion, the matrix elements of all operators involved, as well
as the partition intervals Ξi,N and assignments πN (a),
converge to their counterparts from Sections II and IV.
This implies, in particular, that all measurement proba-
bilities Pi,N (t) produced by the data-driven assimilation
scheme converge. A precise statement of this convergence
is made in Theorem 1. It is important to note that the
result holds for fixed L. Thus, in order to obtain conver-
gence of the data-driven assimilation scheme in a limit of
N → ∞ (training data size) and L → ∞ (spectral reso-
lution), the latter limit must be taken after the former,
or, a sequence N(L) with N � L must be employed.
Effectively, this is because while every matrix element of

the form 〈φj,N , TNφk,N 〉µN
converges as N → ∞, where

TN stands here for the shift operator U
(q)
N or any of the

spectral projectors Eh̄N
({āi,N}), the convergence is not

uniform with respect to j, k.

VI. APPLICATION TO THE LORENZ 63
SYSTEM

In this section, we apply the data-driven QMDA frame-
work described in Section V to data assimilation of the
L63 system [33] on M = R3. The L63 system is gen-

erated by the smooth vector field ~V : R3 → R3 with
components (V 1, V 2, V 3) at x = (x1, x2, x3) ∈ M given
by V 1 = σ(x2 − x1), V 2 = x1(ρ − x3) − x2, and
V 3 = x1x2 − βx3. Here, β, ρ, and σ are real parameters
set to the standard values β = 8/3, ρ = 28, and σ = 10.
For this choice of parameters, the L63 system is rigor-
ously known to have a compact attractor X ⊂ M [34]
with fractal dimension ≈ 2.06 [35], supporting a physical
invariant measure µ with a single positive Lyapunov ex-
ponent Λ ≈ 0.91 [36]. Due to dissipative dynamics, the
attractor is contained within absorbing balls [37], play-
ing here the role of the forward-invariant compact set
X ⊂M . In light of these facts, all of the assumptions on
the dynamical system made in Sections V A and V A rig-
orously hold. The L63 system is also known to be mixing
[38], which implies that its associated Koopman unitary
group on L2(µ) has no nonconstant eigenfunctions.
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In the experiments that follow, we perform data assimi-
lation for the continuous observation function h : M → R
projecting onto the first component of the state vector,
h(x) = x1. We consider two training scenarios, namely
one where the observation map F is the identity map
on R3 (i.e., the full state vector is observed), and an-
other where only h is observed and an injective map F
is built using delays. In both cases, we sample F at
N = 64,000 points xn, taken along a numerically gen-
erated dynamical trajectory at times tn = n∆t for a
sampling interval ∆t = 0.01. The first point x0 in the
trajectory is obtained by numerically integrating the L63
system from an arbitrary initial condition in R3 for N ∆t
natural time units, and setting x0 to the state reached
at the end of that interval. In the experiment with fully
observed training data, we have F (xn) = xn; the exper-
iments with partial observations use F (xn) = hQ(xN )
with Q = 24 delays. Using the data F (x0), . . . , F (xN−1),
we compute orthonormal basis functions φj,N of L2(µN )
as described in Section V C. Then, using the values
h(x0), . . . , h(xN−1) of the observation function, we build
a partition ΞN with S = 32 elements and the correspond-
ing projection operators Eh̄N ,L(āi) as described in Sec-
tion V D. Additional details on numerical implementa-
tion can be found in Appendix B.

The experiments with fully observed and partially ob-
served training data use L = 1000 and 800 basis func-
tions, respectively. In both cases, the time interval be-
tween observations during data assimilation is equal to
100 ∆t = 1, which is comparable to the characteristic
Lyapunov timescale 1/Λ ≈ 1.1 of the system. In the
data assimilation phase, we employ an underlying true
signal h(t) = h(Φt(x̃0)) starting from a state x̃0 sampled
on a trajectory independent of the training data. Re-
sults from these experiments for the fully and partially
observed training data are shown in Figs. 5 and 6, re-
spectively.

Starting from the example with the fully observed
training data, in Fig. 5(a), the initially uniform measure-

ment probability distribution P̂i,N (t) associated with the
stationary state ρ̄N is seen to collapse to a highly sharp
probability distribution following a large negative value
h(t) measured at time t = 1. After that initial mea-

surement, P̂i,N (t) tracks the evolution of h(t) fairly well,
though with increasing uncertainty and development of
some bimodality for t & 1.2. The second measurement
at t = 2 produces a value h(t) significantly closer to the
origin—this is presumably less informative than the t = 1
measurement since h(t) ' 0 corresponds to the mixing
region between the two lobes of the L63 attractor. The
lack of information in the t = 2 measurement is mani-
fested in the ensuing evolution of P̂i,N (t), which exhibits
significant bimodality and erroneously places the highest
probability on positive values of h, whereas the true sig-
nal takes negative values. This error is clearly visible in
the E(t) metric in Fig. 5(d), which exhibits a pronounced
increase to greater than log2 S = 5 values over the time
interval (2, 3). In spite of the poor data assimilation per-

FIG. 5. Results of QMDA applied to observable h(x) = x1

of the L63 system using the full system state in the training
phase (i.e., the eigenfunctions depicted in Fig. 4). (a, b) Log-

arithm of the measurement probability P̂i,N (t) for h to take
values in a partition ΞN of R, containing S = 32 elements of
equal probability mass with respect to the sampling measure
µN . (c) Time series P̂i(t) of the probability to obtain a mea-
surement in element ΞN,18 ≈ [0.20, 0.84) of the partition. (d)
Information-theoretic precision and ignorance metrics, D(t)
and E(t), respectively. Colored lines and regions in (c, d) are
as in Fig. 2(b, c), respectively.

formance for t ∈ (2, 3), when the next measurement h(t)
is made at t = 3, the ensuing measurement probability
P̂i,N (t) tracks the true signal with significantly higher
accuracy, despite the fact that h(t3) is comparably close
to zero as h(t2). This improvement of skill demonstrates
that the data assimilation state ρ̂t,N can progressively
become more informative from a succession of uninfor-
mative measurements. Indeed, as shown in Fig. 5(d),
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FIG. 6. As in Fig. 5, but for partial observations in the train-
ing phase, usingQ = 24 delays to compute the basis functions.

following a spike in E(t) for t ∈ (7, 8), the data assim-
ilation system appears to settle in a regime where E(t)
is either significantly smaller than 5, or slightly exceeds
that threshold (e.g., the interval t ∈ (19, 20)). In gen-
eral, these periods of larger error E(t) appear to corre-
late with observations h(t) close to zero. For instance,
see the measurement at t = 19 in Fig. 5(b), which is

followed by probability distributions P̂i,N (t) of compara-
tively large uncertainty. It is also worthwhile noting that
the precision metric D(t) in Fig. 5(d) exhibits markedly
more appreciable drops between measurements than in
the case of the circle rotation in Fig. 2(c, d), as expected
from the mixing nature of the L63 dynamics.

Turning now to the example with partial observations
in the training phase, a comparison of Figs. 5 and 6
shows a broadly consistent behavior with the experiment

trained with full observations. That is, following an ini-
tial period t ∈ [0, 8) which exhibits similar errors to the
fully observed case, the data assimilation system reaches
a regime of smaller E(t) metric, characterized by mod-
erate and infrequent crossings of the E(t) = 5 threshold
when h(t) takes values close to zero (e.g., t = 16 and
19). Overall, this behavior demonstrates that the delay-
coordinate mapping was able to successively recover lost
information due to partial observations in the training
phase, enabling the construction of a purely data-driven
data assimilation scheme for this chaotic dynamical sys-
tem.

VII. DISCUSSION

To place the QMDA approach proposed in this paper
in context, we now discuss some of its advantages and
shortcomings compared to classical sequential data as-
similation schemes. Here, by “classical” we mean data
assimilation approaches whose ultimate goal is to per-
form Bayesian inference; that is, compute the Bayesian
posterior distribution of a quantity of interest (which may
be the full system state), given a history of observations
made on the system [8]. In practical applications involv-
ing complex systems, rigorous Bayesian inference is not
feasible for a variety of reasons, including imperfect or
computationally intractable equations of motion for the
system dynamics, unknown observational modalities, and
singular probability measures (particularly in the setting
of deterministic dynamics studied in this paper). As a
result, starting from the original work of Kalman [3], a
vast array of approximation techniques has been devel-
oped and currently deployed in operational environments
[1, 2, 4–6]. An attractive feature of QMDA is that it nat-
urally circumvents a number of the challenges in classical
data assimilation, and thus avoids the need for ad hoc ap-
proximations, by employing intrinsic linear operators to
represent the state, dynamics, and observables.

First, the density operator ρ representing the state of
the data assimilation system (i.e., the analog of the prob-
ability measure in Bayesian data assimilation; see Ta-
ble I) is a well-behaved linear operator on the L2 space
associated with an invariant measure µ of the system,
even if the support of µ is a null set with respect to an
ambient measure on state space (e.g., Lebesgue measure),
and/or does not have a smooth structure. This situation
clearly occurs in the L63 example of Section VI, where
µ is supported on the fractal Lorenz attractor, but also
occurs in systems with considerably simpler dynamics.
For instance, the circle, S1, employed as the state space
of the periodic dynamical system in Section III, can be
thought of as the support of an invariant measure of the
simple harmonic oscillator on R2 corresponding to con-
stant energy, and treating R2 as the ambient state space
equipped with the Lebesgue (area) measure, makes S1

a zero-measure set. In a Bayesian data assimilation set-
ting, this means that it is not possible to represent the
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posterior measure by a density function, necessitating in
practice some form of approximation, such as addition of
stochastic noise to regularize the support of the invariant
measure.

Particle filters [7] perform this approximation by rep-
resenting the posterior through a weighted ensemble of
Dirac measures (the particles), and can theoretically con-
verge to the true posterior in a large-ensemble limit.
In practice, however, these methods suffer from well-
known issues of ensemble collapse [39], particularly in
high-dimensions and/or in the presence of dissipation.
As a result, one must resort to some type of ensemble re-
generation procedure, with generally difficult to control
convergence guarantees. Methods which are not based
on sampling frequently invoke Gaussianity assumptions,
leading to popular schemes such as the 3DVAR filter, the
extended Kalman filter, and the ensemble Kalman filter
[1, 2, 5]. Despite their popularity, theoretical studies on
the behavior of these methods have been limited to par-
ticular cases, and have mainly focused on filter accuracy,
as opposed to convergence to the full Bayesian posterior
distribution. See, e.g., Ref. [37] for an analysis of the
3DVAR filter applied to linear observations of the L63
system. In contrast, the consistency of the data-driven
formulation of QMDA in the large data limit, i.e., its abil-
ity to converge to the “true” quantum mechanical state
update (Step DA5 in Section II), is essentially a direct
consequence of the approximability of trace-class oper-
ators by finite-rank operators (e.g., Theorem 1). While
filter accuracy results analogous to those in Ref. [37] lie
outside the scope of this work, it is expected that the
framework of linear operator theory on Hilbert spaces
could be used to address such questions in a unified man-
ner for broad classes of systems.

Next, with regards to the representation of the for-
ward dynamics, the Koopman operator formalism em-
ployed by QMDA is again intrinsically linear. Moreover,
as discussed in Section V, it is amenable to data-driven
approximation through the use of kernel and delay-
coordinate techniques without requiring prior knowledge
of the equations of motion and/or diffusion regular-
ization, while obeying rigorous convergence guarantees.
Previously, delay-coordinate maps and kernel methods
have been employed in data-driven filtering algorithms to
reconstruct unknown dynamics [40], and correct for ob-
servational biases [41], respectively. These methods are,
however, closer to classical data assimilation approaches
since their focus is on approximating the Bayesian poste-
rior distribution as consistently as possible. Other data-
driven approaches to filtering have employed neural net-
work architectures in either of the forecast [42] or anal-
ysis steps [43]. In recent years, data analysis techniques
for dynamical systems based on spectral decomposition
of Koopman and the related transfer operators have re-
ceived significant attention [22–25, 44–51], and QMDA
may provide a useful framework for applying these tech-
niques to data assimilation problems.

Of course, it should be kept in mind that an operator-

theoretic, fully empirical approximation of the dynam-
ics does not come without its disadvantages. In par-
ticular, in many applications of interest one does have
access to a first-principles parametric model (e.g., a nu-
merical weather model), which even if imperfect, may be
indispensable in intrinsically high-dimensional applica-
tions. At present, we do not have a technique allowing us
to seamlessly combine a data-driven Koopman operator
model with a first-principles state space model, although
recent techniques on semiparametric modeling [52] and
the Mori-Zwanzig formalism [53] could pave the way for
such developments. That being said, it should be noted
that in a number of phenomena of interest (e.g., large-
scale coherent patterns in climate dynamics [54], such as
the El Niño Southern Oscillation and the Madden-Julian
Oscillation) there are no known “exact” first-principles
models, while the effective dimension of the dynamics is
moderate. In such scenarios, fully data-driven filtering
approaches such as QMDA may be competitive, or even
exceed the performance of large-scale parametric data
assimilation systems.

As a final remark, we note that the quantum mechan-
ical representation of observables through intrinsically
linear multiplication operators, in conjunction with the
spectral discretization approach described in Section IV,
allows QMDA to naturally handle nonlinear observation
functions h, as well observational noise. In particular,
even though we did not study this topic explicitly here,
the number of elements S in the partition Ξ employed
for spectral discretization could be selected according to
a desired tolerance to noise. That is, in general, the
smaller S is, the more noise-robust the state update step
DA5′ becomes (see Section IV A), at the expense of a loss
of resolution afforded by the measurements. Moreover,
if prior knowledge about the noise statistics is available,
the elements of Ξ could be chosen non-uniformly so as
to ensure high robustness in subsets of the range of h
where the noise has high strength, and high resolution in
subsets where the noise is weaker. It is also worthwhile
noting that the prediction output of QMDA for observ-
ables is intrinsically probabilistic; that is, according to
step DA4, the density operator and spectral measure of
an observable provide the probability for it to take val-
ues in arbitrary Borel sets. This output can be further
post-processed to yield the mean, variance, skewness, and
other statistical quantities of interest. In contrast, clas-
sical data assimilation techniques utilizing Gaussian ap-
proximations only dynamically evolve the mean and co-
variance.

VIII. CONCLUSIONS

In this work, we have developed a framework for se-
quential data assimilation in measure-preserving, ergodic
dynamical systems, combining elements of operator-
theoretic ergodic theory and quantum mechanics. A key
aspect of this approach has been to transcribe the Dirac–
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von Neumann axioms of quantum dynamics and mea-
surement to the setting of measure-preserving ergodic dy-
namics by choosing as the quantum mechanical Hilbert
space the L2(µ) space associated with an invariant mea-
sure µ of the dynamics, and as the Heisenberg evolu-
tion operators the unitary Koopman operators acting on
L2(µ). Also in direct analogy with quantum mechanics,
we represent the time-dependent state of the data assim-
ilation system by a density operator on L2(µ) and the
system observation function h by its corresponding self-
adjoint multiplication operator Th. With these identifica-
tions, a quantum mechanical data assimilation (QMDA)
scheme follows naturally by allowing the state to evolve
under unitary dynamics induced by Koopman operators
between measurements, and projective dynamics under
the spectral projectors of the observation operator dur-
ing measurements.

One issue that such a scheme must confront is that the
multiplication operators associated with typical observa-
tion functions have continuous spectrum. Here, we ad-
dressed this issue via a spectral discretization approach,
whereby h is replaced by a discrete variable h̄ such that
the corresponding multiplication operator Th̄ has pure
point spectrum. In particular, h̄ was constructed by bin-
ning h into bins of equal probability mass with respect to
µ, but one could employ different averaging approaches,
e.g., to take into account observational noise. We also
studied the problem of constructing a data-driven for-
mulation from a finite collection of time-ordered obser-
vations of the system state or h, assuming no prior knowl-
edge of the equations of motion. This formulation em-
ploys operator approximation techniques in a basis of
L2(µ) learned from the observed data [21, 23, 25], lead-
ing to representations of the density, Koopman, and mea-
surement operators via matrices that provably converge
in an asymptotic limit of large data (Theorem 1 in Ap-
pendix A).

An attractive feature of QMDA is that it requires no
ad hoc approximations of the dynamics and/or observa-
tion modality, which are frequently necessary in order to
apply classical data assimilation techniques to measure-
preserving deterministic systems. Indeed, as we demon-
strated here with examples, whether the underlying dy-
namics is a periodic rotation on a circle (Section IV), or
a mixing system with a fractal attractor (Section VI),
makes little difference from a methodological standpoint
in the context of QMDA. In both cases, we saw that
the method can successfully capture highly non-Gaussian
features of the measurement distribution that accurately
track the evolution of the assimilated observable.

Another advantageous aspect of QMDA is that it out-
puts full probability distributions, as opposed to point
forecasts such as mean or maximum likelihood estimates.
This output can be post-processed in a variety of ways to
enable uncertainty quantification, as well as probabilistic
decision-making in an operational environment. We also
saw that the probability distribution outputs of QMDA
lead to natural information-theoretic metrics for quantifi-

cation of the precision and ignorance of data assimilation.
Such metrics have been shown to provide more informa-
tive model assessment and validation than conventional
root mean square error and pattern correlation scores in
a different context [55].

Before closing, we outline a few aspects of QMDA that
warrant future study and potential improvement, some of
which have already been alluded to in Section VII. First,
while in this paper we have shown that the method con-
verges in a limit of large data, one aspect of convergence
that has not been addressed is convergence under refine-
ment of the partition employed for spectral discretization
of Th. It is possible that a general treatment of this prob-
lem in the case of observables with continuous spectrum
would employ a rigged Hilbert space structure, allowing
ρ to be extended to an operator on distributions. Sec-
ond, we have restricted ourselves to the case of scalar-
valued observation maps. An interesting question would
be how to carry out an analogous QMDA construction
for vector-valued functions, possibly taking values in an
infinite-dimensional Banach space. Such a construction
may have connections with the framework of quantum
field theory. Algorithmically, it could be implemented by
replacing the scalar-valued kernels employed here in the
construction of the data-driven basis by operator-valued
kernels appropriate for spaces of vector-valued functions
[26]. Finally, an important task would be to devise ways
of effectively coupling an observable-centric scheme such
as QMDA, which employs linear operators on function
spaces at its core, with dynamical models based on dis-
cretizations of the dynamics in state space (e.g., a partial
differential equation governing fluid flow). With the ad-
vent of quantum information processing technologies, it is
possible that schemes such as QMDA could provide guid-
ance to the design of next-generation models of complex
dynamical systems.
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Appendix A: Convergence in the limit of large data

In this appendix, we state and prove the following
theorem establishing asymptotic consistency of the data-
driven QMDA scheme from Section V in the limit of large
data. In what follows, we will say that a sequence of S-
element partitions ΞN of R converges as N → ∞ to an
S-element partition Ξ if all boundary points of the el-
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ements of ΞN (ordered in increasing order at each N)
converge to the corresponding boundary points of Ξ.

Theorem 1. Consider data assimilation with a bounded
observation function h ∈ L∞(µ) via the scheme of Sec-
tion V, using a partition ΞN = {Ξ0,N , . . . ,ΞS−1,N} of
R determined through the empirical quantile function
cdf−1

h,N , and starting from the stationary state ρ̄N . As-

sume that the partition Ξ = {Ξ0, . . . ,ΞS−1} of R asso-
ciated with the true quantile function cdf−1

h is such that
µh({ξk}) = 0 for all boundary points ξk of the Ξj ∈ Ξ.
Then, under the assumptions of Sections VA and VB,
for any time tn = n∆t, n ∈ N0, and any spectral resolu-
tion parameter L, as N →∞, the partitions ΞN and cor-
responding measurement probabilities P̂i,N (tn) converge

to Ξ and the probabilities P̂i(tn) obtained via the scheme
of Section IV, respectively.

Proof. It suffices to show that, as N → ∞, (i) the ele-
ments of all L × L matrices representing the operators
employed in the data-driven scheme converge to their
counterparts from Section IV; and (ii) ΞN converges to
Ξ. Note, in particular, that the latter convergence im-
plies that the affiliation functions πh,N converge to πN
pointwise, and thus that the finitely many evaluations of
πh,N during the time interval [0, tn] also converge.

Starting from (ii), recall that the boundary points ξk
and ξk,N of the intervals in Ξ and ΞN , respectively,
are obtained by evaluating the corresponding quantile
and empirical quantile functions at the same quantile
points bk ∈ (0, 1); that is, ξk = cdf−1

h (bk) and ξk,N =

cdf−1
h,N (bk). Because µh({ξk}) = 0, ξk and bk are con-

tinuity points of cdfh and cdf−1
h , respectively. As a re-

sult, by the assumed weak convergence of the sampling
measures µN to µ (which implies weak convergence of
the corresponding pushforward measures µh,N under h

to µh), the values cdf−1
h,N (bk) of the empirical quantile

functions converge, as N → ∞, to cdf−1
h (bk) [56]. This

shows that ΞN converges to Ξ.

Turning to (i), the operators that we need to consider

are (a) the initial state ρ̄N ; (b) the shift operator U
(q)
N ;

and (c) the projection operators Eh̄N
({āi,N}) = T1Mi,N

.

Indeed:

(a) The matrix elements 〈φj,N , ρ̄Nφk,N 〉µN
= δj0δk0

are trivially equal to 〈φj , ρ̄φk〉µ = δj0δk0.

(b) Because the basis functions ϕj,N converge uni-
formly to ϕj on X (see Section V C), the matrix elements

of the shift operator U
(q)
N converge to those of the Koop-

man operator U t at t = q∆t, viz.

lim
N→∞

〈φj,N , U (q)
N φk〉µN

= lim
N→∞

1

N

N−1∑
n=0

φj,N (xn)φk,N (xn+q)

= lim
N→∞

1

N

N−1∑
n=0

ϕj,N (xn)ϕk,N (xn+q)

= lim
N→∞

1

N

N−1∑
n=0

ϕj,N (xn)(ϕk,N ◦ Φt)(xn)

=

∫
M

ϕj(x)(ϕk ◦ Φt)(x) dµ(x)

=

∫
M

φj(x)U tφk(x) dµ(x)

= 〈φj , U tφk〉µ.

(c) Let Ξi,N and Ξi be the i-th elements of ΞN and
Ξ, respectively, where i ∈ {0, . . . , S − 1} is arbitrary.
We must show that, as N → ∞, 〈φj,N , T1Mi,N

φk,N 〉µN

converges to 〈φj , T1Mi
φk〉µ. To that end, observe that

〈φj,N , T1Mi,N
φk,N 〉µN

= µ̃N (Mi,N ) and 〈φj , T1Mi
φk〉µ =

µ̃(Mi), where µ̃N and µ̃ are finite, signed Borel measures
on M such that µ̃N (Ω) =

∫
S
ϕj,Nϕk,N dµN and µ̃(Ω) =∫

Ω
ϕjϕk dµ. As a result, the claim will follow if it can be

shown that

|µ̃N (Mi,N )− µ̃(Mi)| ≤ |µ̃N (Mi,N )− µ̃N (Mi)|
+ |µ̃N (Mi)− µ̃(Mi)| (A1)

vanishes as N → ∞. Now, it is straightforward to ver-
ify that, by uniform convergence of ϕj,N to ϕj , µ̃N con-
verges weakly to µ̃. As a result, because Mi is a con-
tinuity set of µ̃ (i.e., µ̃(∂Mi) = 0, which follows from
the fact that µh({ξk}) = 0 for all boundary points ξk),
µ̃N (Mi) converges to µ̃(Mi), and the second term in the
right-hand side of (A1) vanishes. Similarly, it follows by
uniform convergence of ϕj,N to ϕj that there exists a con-
stant C such that |µ̃N (Mi,N )−µ̃N (Mi)| ≤ C|µN (Mi,N )−
µN (Mi)|. Therefore, because µN (Mi,N ) = 1/S by con-
struction, we can conclude that the first-term in the
right-hand side of (A1) will also converge to zero if it
can be shown that µN (Mi) converges to 1/S. The latter
follows immediately from the weak convergence of µN to
µ and the fact that Mi is a continuity set of µ.

This completes the proof of Claim (i) and of the theorem.

It should be noted that the assumption in Theorem 1
that the boundary points have vanishing µh measure is
mild, in the sense that if not satisfied, the condition can
be met by shifting the problematic ξk by arbitrarily small
amounts.
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Appendix B: Computational considerations

In this appendix, we outline aspects of the numeri-
cal implementation and computational cost of the data-
driven implementation of the QMDA framework de-
scribed in Section V, and employed in the numerical
experiments of Section VI. Algorithmically, the main
steps of the procedure are (i) computation of the eigen-

vectors ~φj,N representing the data-driven basis elements
φj,N from the training data; (ii) representation of the
Koopman operator (approximated by the shift operator)
and spectral projectors in this basis by matrices; and (iii)
execution of the prediction-correction data assimilation
cycle from sequential observations of the system. A key
element of this procedure is that following an expensive,
offline calculation step to compute the φj,N , the cost of
operator representation is controlled by the spectral res-
olution parameter L, which is independent of the dimen-
sion of the ambient data space and number of training
samples. This feature aids the scalability of the frame-
work to large training datasets. The numerical exper-
iments in Section VI were carried out using a Matlab
code for QMDA running on a desktop-class workstation
of modest specifications at the time of writing of this pa-
per (Intel Core i7-3770 CPU at 3.40 GHz, with 32GB of
memory).

1. Data-driven basis

The computation of the ~φj,N proceeds via well-
established kernel algorithms for machine learning. In
this step, a major component of the computational cost,
both in terms of CPU time and memory, is associated
with the computation of the N × N kernel matrix G
associated with the observations F (xn) ∈ Rm. Here,
we compute this matrix in brute force, resulting in an
O(mN2) time cost, but the calculation is trivially paral-
lelizable. As is customary, to address the memory cost for
G, which is nominally O(N2), we take advantage of the
exponential decay of the kernel in (8), and approximate

G by a sparse, symmetric N × N matrix Ĝ, such that
Ĝmn = Gmn if data point F (xm) is in the r-th nearest
neighborhood of F (xn), or F (xn) is in the r-th nearest
neighborhood of F (xm) for some neighborhood parame-

ter r � N , and Ĝmn = 0 otherwise. In the experiments
of Section VI we use r = 5000, corresponding to ' 8% of
the N = 64,000 training data points.

We compute the leading L eigenvectors ~φ0, . . . , ~φL−1

of Ĝ using Matlab’s eigs solver, which is based on im-
plicitly restarted Arnoldi methods in the ARPACK li-

brary [57]. The eigenvectors ~φj then provide represen-
tations of the basis elements φj,N (see Section V C).
Elsewhere, we have demonstrated the feasibility of
this implementation for computing eigenfunctions from
high-dimensional datasets of moderate sample number,
(d,N) = O(106, 104) [58], or datasets of moderate di-

mension and high sample number, (d,N) = O(102, 106)
[26]. In the latter case, it should be possible to speed up
the kernel matrix calculation using tree-based [59] or ran-
domized [60] approximate nearest-neighbor algorithms,
though we have not explored such options in the present
work.

2. Operator representation

Having obtained the data-driven basis functions φj,N ,
we proceed to construct the L × L matrices represent-
ing the Koopman operators and spectral projectors from
Section V D.

In the case of the Koopman operators we represent

U
(q)
L,N for each time step q ∈ N0 of interest by a matrix

U (q) with elements

U
(q)
jk = 〈φj,N , U (q)

L,Nφk,N 〉µN
=

1

N

N−1−q∑
n=0

~φj,n~φk,n+q,

where 0 ≤ j, k ≤ L−1, and ~φj,n denotes the n-th compo-

nent of ~φj . The computation cost to form this matrix is
O(NL2). In order to carry out the forward evolution of
the density operator between measurements (step DA2 in
Section II) one requires the formation of U (q) at least for
q equal to number of timesteps ∆t in each data assimila-
tion interval (e.g., in Section VI, q = 100). The matrices
U (q) can be computed for other values of q if forecast out-
put at other times is desired. In particular, to obtain the
results in Figs. 5 and 6 we employ U (0), . . . ,U (100). Al-
ternatively, one can compute the 1-step matrix U (1), and
use the matrix power (U (1))q instead of U (q). This ap-
proach avoids the storage cost for U (q) (at an additional
computation cost for on-the-fly computation of (U (1))q),
without affecting the asymptotic convergence properties
of the method in the large data limit, but introduces a
risk of numerical instability at large q (e.g., if U (1) has
eigenvalues with positive real part).

Next, for each of the S elements Ξi,N of the averaging
partition for the assimilated observable h, we compute
an L× L matrix Ei representing the spectral projection
Eh̄N ,L({āi,N}). For a given Ξi,N , this is done by first
identifying the timestamps in the training data for which
h takes values in this set, viz.

Ni = {n ∈ [0, N − 1] : h(xn) ∈ Ξi,N},

and then computing the matrix elements

Ei,jk = 〈φj,N , Eh̄N
({āi,N})φk,N 〉µN

=
1

N

∑
n∈Ni

~φj,n~φk,n,

where 0 ≤ i, j ≤ L − 1. As with the Koopman matri-
ces U (q), the computational cost of forming the Ei is
O(NL2).
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3. Sequential data assimilation

The necessary ingredients to perform QMDA given
discrete-time observations of h are the L × L matrices
U (q) and Ei, representing the Koopman operator and
spectral projectors, respectively, as well as L × L ma-
trices ρ and ρ+, containing the matrix elements of the
density operators ρ̂t,N and ρ̂+

i,N between observations and

immediately after observations of h, respectively (see Sec-
tion V D). In particular, suppose that observations of h
are made every q∆t time units, with q a positive inte-
ger, and right after a measurement h(tn) ∈ Ξi,N at time
tn = n∆t, n ∈ N0, the density matrix is equal to ρ̂+,
where ρ+

jk = 〈φj,N , ρ̂+
i,Nφk,N 〉µN

, 0 ≤ j, k ≤ L− 1. Then,
the density matrix immediately before the measurement
at time tn+1 is given by

ρ =
U (q)∗ρ+U (q)

tr(U (q)∗ρ+U (q))
,

where ρjk = 〈φj,N , ρ̂t,Nφk,N 〉µN
and 0 ≤ j, k ≤ L − 1.

Moreover, the measurement probability for h to lie in
interval Ξi,N is determined via

P̂i,N (tn+1) = tr(Eiρ).

When the measurement of h at time tn+1 is made, and
found to lie, say, in interval Ξi,N ∈ ΞN , the density ma-

trix ρ is updated to obtain a new density matrix ρ+,
given by

ρ+ =
EiρEi

tr(EiρEi)
.

The data assimilation cycle described above is then re-
peated using the updated density matrix ρ+.

The computational cost to compute ρ from ρ+ by for-
ward evolution with the Koopman operators, and to up-
date ρ+ to ρ by spectral projection, is dominated by
matrix-matrix multiplication of L × L matrices, and is
thus O(L3). The cost to compute the measurement prob-

abilities P̂i,N (t) for all S elements of Ξ is O(SL). As
previously stated, a key aspect of this procedure is that
following the offline computations of the basis and opera-
tor representations in Sections B 1 and B 2, respectively,
the computation cost becomes decoupled from the di-
mension m of the ambient data space and the number
N of training samples, depending only on the spectral
resolution parameter L and the size of the partition S.
This is particularly advantageous in real-time applica-
tions (e.g., short-term weather forecasting), where com-
putational wall-clock time must be significantly smaller
than physical time between observations in order for data
assimilation to provide useful information.
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