
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Emergent self-similarity and scaling properties of fractal
intra-urban heat islets for diverse global cities

Anamika Shreevastava, P. Suresh C. Rao, and Gavan S. McGrath
Phys. Rev. E 100, 032142 — Published 27 September 2019

DOI: 10.1103/PhysRevE.100.032142

http://dx.doi.org/10.1103/PhysRevE.100.032142


APS/123-QED

Emergent self-similarity and scaling properties of fractal1

intra-urban heat islets for diverse global cities2

Anamika Shreevastava and P. Suresh C. Rao3

Lyles School of Civil Engineering4

Purdue University, IN, USA5

Email:ashreeva@purdue.edu6

Gavan S. McGrath7

School of Earth and Environment,8

The University of Western Australia, Perth, Australia9

(Dated: August 30, 2019)10

Abstract11

Urban areas experience elevated temperatures due to the Urban Heat Island (UHI) effect. However,12

temperatures within cities vary considerably and their spatial heterogeneity is not well characterized. Here,13

we use Land Surface Temperature (LST) of 78 global cities to show that the Surface UHI (SUHI) is fractal.14

We use percentile-based thermal thresholds to identify heat clusters emerging within SUHI and refer to them15

collectively as intra-urban heat islets. The islets display properties analogous to that of a percolating system16

as we vary the thermal thresholds. At percolation threshold, the size distribution of these islets in all cities17

follows a power-law, with a scaling exponent (β) of 1.88 (±0.23, 95%CI) and an aggregated Perimeter18

Fractal Dimension (D) of 1.33 (±0.064, 95%CI). This commonality indicates that despite the diversity in19

urban form and function across the world, the urban temperature patterns are different realizations with the20

same aggregated statistical properties. Furthermore, we observe the convergence of these scaling exponents21

as the city sizes increase. Therefore, while the effect of diverse urban morphologies is evident in smaller22

cities, in the mean, the larger cities are alike. Lastly, we calculate the mean islet intensities, i.e. the difference23

between mean islet temperature and thermal threshold, and show that it follows an exponential distribution,24

with rate parameter, λ, for all cities. λ varied widely across the cities and can be used to quantify the spatial25

heterogeneity within SUHIs. In conclusion, we present a basis for a unified characterization of urban heat26

from the spatial scales of an urban block to a megalopolis.27
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I. INTRODUCTION28

Cities are the apex examples of complex, coupled, socio-technological systems, which are pro-29

jected to account for more than 70% of the global population by 2050 [1]. Rapid urbanization30

presents multiple challenges, among them the Urban Heat Island (UHI) effects. Urban heat stress31

is predicted to be more frequent and persistent in the coming century due to a synergistic effect32

of mesoscale heat waves and the UHI [2–4]. Metrics such as UHI Intensity, that quantify the33

difference between a representative (often the mean) urban and neighboring non-urban air tem-34

perature, fail to characterize intra-urban spatial variability [5, 6]. Furthermore, critical hot regions35

can emerge within the heat island itself. Therefore, for optimizing mitigation efforts and targeting36

scarce resources where they are most warranted, it is critical to characterize the spatial heterogene-37

ity that arises within a city [7].38

Cities tend to be warmer because of an increase in heat sources, such as excessive built-up area,39

industries, and air-conditioning exhausts, and a scarcity of heat sinks (e.g., vegetation and water40

bodies) [8]. Spatial organization of physical assets, i.e., the urban form (e.g., impervious areas;41

buildings), as well as mobile assets such as automobile govern the distribution of heat sources in42

a city and modify the cooling effect of heat sinks. Prior research has shown that urban form has43

numerous fractal properties related to land use [9], urban infrastructure networks [10, 11], and44

impervious area [12, 13]. Similarly, the metabolic functions of cities [8] display scaling in the45

spatial patterns of population distribution, traffic, and energy use among others [14–16]. While46

similar scaling laws and fractal metrics have also been developed in atmospheric sciences [17],47

their application in UHI studies remains limited [5, 18]. Comprehensive scaling laws that describe48

spatio-temporal variability of intra-urban high heat clusters have not been explored yet.49

Based on the established correlation of surface temperatures and urban morphology [19–21],50

we hypothesize that SUHI patterns should exhibit a fractal spatial structure. We analyze Landsat 851

derived LST data for 78 diverse cities across the world and use percentile-based thermal thresholds52

and clustering techniques from percolation theory to identify clusters of high heat within cities.53

Here, we refer to the collection of heat clusters as intra-urban heat islets, which combine to form54

the UHI as a whole. First, we demonstrate the statistical self-similarity of heat islets. We then55

identify the scaling laws that quantify their size and intensity distributions, thereby, developing56

new metrics for spatial characterization of SUHIs.57

2



FIG. 1. Map of the selected 78 cities chosen for this study. The size of marker in an indicator of the area of

cities measured using the Urban land use class of MODIS Land Cover Type dataset.

II. METHODOLOGY58

A. Data59

We initially sampled a wide variety of global cities, including but not limited to the C-4060

(http://www.c40.org/cities), that are representative of diverse climate types [22] as well as cultural61

backgrounds. Since the focus of this study is intra-urban heat islets, only the cities that exhibited62

elevated temperatures within the urban boundaries were selected. Cities which showed inversion of63

the heat island effect [23] or contained significant topographic relief dominating the LST patterns64

were removed from the sample. The resulting sample set consists of 78 cities with populations65

ranging from 200k to 30M. It includes densely packed urban areas, such as Seoul and Beijing,66

agglomerated cities such as Mexico City, highly heterogeneous cities like Mumbai, and highly67

structured, grid-like cities such as Los Angeles and Houston. It should be noted that the selected68

list is not exhaustive in any way but a representative subset of diverse global cities. Complete list69

of cities studied and their Landsat image used is attached as Dataset S1 of Supplementary Material.70

For obtaining spatially rich datasets for intra-urban studies, satellite-based observations have71

proven increasingly useful. Remotely sensed Land Surface Temperature (LST) is used as an indi-72

cator to characterize the Surface Urban Heat Island (SUHI) [24]. Furthermore, uniformity in data73
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FIG. 2. Maps for Boston (top) and Kolkata (bottom) are shown here as examples. (a, e) Land use map

derived from MODIS - Land Cover Type dataset for the year 2016. (b, f) Land Surface Temperature (in ◦C)

map derived from Landsat 8. (c, g) Clusters of high heat (Islets) above the statistical mode of temperatures,

i.e. the most frequently encountered temperature (19◦C for Boston and 32◦C for Kolkata) obtained using

Moore neighborhood clustering algorithm are indicated as red. (d,h) Extreme high heat islets obtained at

the 95th percentile temperature of each city. Note the irregularity in the islets’ perimeters and the disparity

in their sizes.

quality of remotely sensed observations enables multi-city comparisons [25–27]. The geospatial74

analysis was implemented using Google Earth Engine (GEE) [28] to filter out cloud-free sum-75

mertime days with an incident solar angle of at least 60 degrees for the selected cities. Figure 276

serves to visualize the geospatial format of data collected using the example of Boston, USA, and77

Kolkata, India. Land Surface Temperature (LST) was derived by a Single Channel Algorithm as78

detailed in [29] using data from Landsat 8 (Bands 4, 5, 10, and 11) daytime images at a resolution79

of 90m (Figs 2b, and 2f). See Appendix A for algorithm and Dataset S1 further information on80

Landsat scenes used. For each city, the urban area was estimated using Land Cover Type dataset81

of Moderate-resolution Imaging Spectroradiometer (MODIS) - MCD12Q1 (Figs 2a, and 2e). The82

exact definition of urban boundaries and city area plays a significant role in urban scaling laws83

where different urban extents can produce different scaling exponents [30], therefore, a buffer of84
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5 km in the rural regions was taken to account for the peri-urban settlements. However, as the heat85

islets occur well within the city boundaries, the scaling exponents were found to be independent of86

the buffer width. Lastly, in case of coastal cities, the Large Scale International Boundary (LSIB)87

dataset provided by United States Office of the Geographer was used to crop out the oceans and88

delineate coastal boundaries within the GEE environment.89

B. Heat Islets clustering and fractal analysis90

We conceptualize the thermal map as a Digital Elevation Model (DEM) where temperatures91

substitute for elevation (See figure 7 in Appendix B). For each city, we select regions with temper-92

atures above specified percentile thresholds (Tthr) and group the connected regions together using93

a Moore neighborhood to define clusters, thereby identifying islets of higher heat for each incre-94

mental threshold [31]. In figure 2, we use the example of Boston and Kolkata to demonstrate the95

collection of islets appear at two different thermal thresholds, one corresponding to the percolation96

threshold, and another corresponding to the 95th percentile. At higher temperature thresholds we97

can delineate areas within cities that experience extreme temperatures. The use of thermal per-98

centiles enables comparison between cities which differ in their background climates as apparent99

in figures 2b and 2f where the range of temperatures vary significantly between the two cities. We100

utilize two metrics to characterize the spatial complexity of these islets, as described below.101

As a primary test of fractal structure, the aggregated Area-Perimeter fractal dimension [32] of102

the collection of islets is estimated at each Tthr using the following equation:103

ΣP = k · ΣA
D
2 (1)104

where D is the fractal dimension, k = 2 ∗
√
π = 3.545, that is determined for the limiting case105

of a circle, and the summation of perimeters (P ) and areas (A) goes over the set of islets [9]. Note106

that we are referring to the fractal dimension of the ensemble iso-thermal contour lines here. In107

the limiting case of a circle, P ∝
√
A and D = 1. For more irregular and convoluted shapes, the108

perimeter becomes increasingly plane-filling or elongated, resulting in the limit in linear shapes109

where P = A and D = 2 (Figure 4a and 4b). For statistically self-similar surfaces, not only is D a110

fractional value between 1 and 2, but it is also the same for all thresholds used for clustering [33].111

Second, we examine the size distribution of islets. As Tthr is decreased, the total number of112

clusters increase as more regions with T > Tthr are selected. However, at the percolation thresh-113
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old, the number of clusters start declining as they coalesce to form a giant connected component.114

This is illustrated in figure 3 using the example of Boston, USA. For fractal landscapes, clusters115

are statistically self-similar at the percolation threshold over certain ranges of sizes, with the clus-116

ter areas following a probability distribution with a power-law tail [33]. This was first presented117

as an empirical rule by physicist and geographer Korcak [34], who suggested a general scaling118

law, now referred to as the Korcak’s law or the number-area rule, describing the size-distribution119

of various geographical objects, including lakes and islands [32, 35]. This is expressed as the120

relative number of islands with an area equal to a is given by the power-law: N(a) ∝ a−β . As an121

exceedance probability distribution function, the size distribution can be written as the following122

P (A ≥ a) ∝ a1−β, ∀a ≥ amin (2)123

Above the percolation threshold, deviations from the power-law result in some form of temper-124

ing. We used a conservative approach to test for and fit the power-law distributions using a combi-125

nation of maximum-likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov126

Smirnov (KS) statistic and likelihood ratios [36] (See Appendix C for detailed methodology).127

128

FIG. 3. (a) Plot of largest cluster size as a function of thermal threshold for the case of Boston city (b)129

Total number of clusters shown for each thermal threshold. The first dashed red line shows the percolation130

threshold (75th percentile in this case) identified as the threshold where the total number of clusters is the131

maximum and below which the largest connected component emerges. Lighter red lines towards its right132

mark the subsequent percentiles of threshold which were considered for the analysis.133
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III. RESULTS AND DISCUSSIONS134

A. Fractal Dimension135

The aggregated area-perimeter Fractal Dimension (D) of the heat islets was calculated for136

multiple values of Tthr (50th, 60th, · · · , 90th percentiles). For each city, D is consistent for all137

values of Tthr as shown by the same log(Area):log(Perimeter) ratio (Figure 4a and 4b). This is138

a key finding, demonstrating the statistical self-similarity within SUHIs, empirically establishing139

fractal geometry of urban thermal landscape. Furthermore, the calculated values of D across all140

cities were approximately normally distributed with a mean D = 1.33 and standard deviation141

(s.d.) of 0.033. (see Figures 4c and 4d, see Dataset S3 of Supplementary Material for a complete142

list). Makse et al., (1998)[13] reported 1.2 < D < 1.4 for clusters of urban impervious areas,143

with a mean value of 1.33 as well. Another study reported 1.22± 0.08 for 68 Chinese cities [12].144

Therefore, the fractal dimensions of SUHI are in agreement with that of urban impervious area.145

D scaled weakly with city size as D = 0.0695 · logAcity + 1.15 (R2 = 0.7) (Figure 4d). The146

tendency for D to be smaller for small cities is reflective the varying urban morphology of cities147

as they grow. Smaller cities are often mono-centric (more circle-like) with fewer heat islets, as a148

result, we would expect D to tend toward a value of 1. While megalopolises, on the other hand,149

formed from agglomeration of multiple peri-urban settlements are expected to have higher number150

of heat islets scattered throughout the city, thereby, increasing D (Figure 4d). This is also reflected151

in the total number of islets for each city that scales linearly as N = 0.038 ∗Acity + 40 (R2 = 0.8)152

(See figure 8 in Appendix B). However, for self-affine surfaces, the total perimeter is dominated153

by the smallest islets, and the total area is dominated by the largest island [33]. To examine the154

average shape of an islet within a city, area-weighted mean fractal dimension (AWMFD) of the155

islets is a useful alternative [5]. It is calculated using the following equation:156

AWMFD =
n∑
i=1

[(
2 ln

(
pi
k

)
ln ai

)(
ai∑n
i=1 ai

)]
(3)157

The AWMFD for cities were found to be approximately normally distributed as well with a mean158

AWMFD = 1.227 (s.d. = 0.025; See figure 9 in Appendix B).159

7



FIG. 4. (a) Aggregated perimeters versus aggregated areas at 60, 70, 80, and 90 percentiles thresholds are

shown here for two cities, Bern (in red) and Atlanta (in blue), demonstrating the same ratio of log(Area) and

log(Perimeter) and hence the same Fractal Dimension (D) of iso-thermal contour lines as indicated by the

grey, dashed lines show examples of two cities with D = 1.38 for Atlanta and D = 1.26 for Bern. D of the

perimeter of a circle (D = 1) and a space-filling plane (D = 2) are plotted to show the physical bounds for

D. (b) The same plot for all cities shown with a single colour attributed to each city that corresponds to its

area. (c) Histogram of D for all cities at their respective percolation thresholds with mean = 1.33 ± 0.007

(95 % CI). (d) D as a function of the city area. This plot serves to illustrate that D increases with city area

as per D = 0.0695 logAcity + 1.15 (R2 = 0.7).
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B. Islet Size distribution160

At the percolation threshold, the area-exceedance probability distribution was found to scale161

consistently with a power-law tail for all cities, with the scaling exponent normally distributed162

with mean β = 1.88 and s.d. = 0.12 (Figures 5a and 5b). Alternative distributions, such as163

log-normal, exponential and Weibull, were tested as potential candidates; however, they were all164

rejected (at p > 0.1), while the same tests suggested that the distributions could not be rejected as165

having power-law tails (See Appendix C and Dataset S2 of Supplementary Material).166

The power-law size distribution is another key finding that further supports the observed fractal167

structure of heat islets. The percolation threshold was found to be closely associated with the168

statistical mode of temperature distribution, i.e. the most frequently encountered temperature in169

the city (R2 = 0.93, see figure 10 in Appendix B). For the case uncorrelated percolation, β is170

estimated to be 187/91 (∼ 2.05) [37, 38]. Moreover, empirical distributions of land classified as171

urban and cities modeled with correlated percolation as well have found similar size distributions172

with β ∼ 2 [13, 39, 40]. A slightly smaller exponent of 1.88, in this case, indicates a greater173

probability of occurrence of heat islets than what would be expected from impervious area alone.174

Here, the power-law tails are curtailed on the higher end by limits of the study domain i.e. the175

total city size, in this case, [41], and on the lower end, by spatial resolution. Numerous smaller176

heat clusters are either not captured or are rounded off to integer multiples of the lowest available177

resolution. Interestingly, in this case, the lower bound (amin at which the power-law tail starts) is178

∼ 0.25 km2, which corresponds to the size of a couple of urban blocks. This suggests that below179

this, the heat islets may indeed scale differently as the individual building level features become180

evident. There is potential to extend this analysis beyond these spatial scales, however, this was181

not the objective of this study. A relationship between D and β can be derived for Gaussian182

surfaces as β − 1 = D/2 [33]. However, this was not found to be true for heat islets indicating a183

departure from random Gaussian topography. Lastly, fractal landscapes are expected to yield the184

same scaling exponents irrespective of the resolution. To test their sensitivity to input resolution,185

LST maps were aggregated at a range of resolutions from 90 m to 720 m. Scaling exponents were186

found to be the same, adding further support to the self-similar topography of SUHI.187

At temperatures above the percolation threshold, the size distribution shows a deviation from188

power-law in the form of exponential tempering [36] suggesting a model more consistent with:189
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FIG. 5. (a) Area Exceedance Probability Distributions for all cities at their respective percolation threshold

are shown here in grey. Overlaid as a dashed black line is the line demonstrating the mean scaling exponent,

β = 1.88. (b) A histogram of β of all cities. (c) Scatter plot of β and city area for each city. Yellow dashed

lines serve to highlight this convergence of β to mean with an increase in the city area. (d) Scatter plot of

mean exponential tempering coefficient, c, calculated as an average of tempering coefficients (c) obtained

at temperatures above the percolation threshold. It is shown to rapidly decreasing to c = 0 with increasing

city area. Each black dot represents a single city.
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P (A ≥ a) ∝ a1−β · e−c(Tthr)·a, ∀ a ≥ amin (4)190

where c is a tempering coefficient that depends on the thermal threshold. As the Tthr moves191

further away from the percolation threshold, more tempering is observed. In figure 5d, we show192

the average value of c obtained for each city at thresholds above the percolation threshold, which193

we will refer to as c. Note that the c is observed to be larger and more variable for small cities194

(A < 1, 000 km2), decreasing steadily for larger cities (Figure 5d). As a result, larger cities show195

consistent power-law area distributions even at higher thermal thresholds. Exponential tempering196

suggests a reduced probability of occurrence of large hot islets for smaller cities and conversely197

a higher likelihood of encountering them as cities grow even for higher thresholds. Other factors198

such as urban geometry and disaggregation of heat islets could influence c as well but further199

research will be needed to test that.200

C. Islet intensity distribution201

For UHIs, the UHI Intensity is defined as the difference between the mean urban temperature202

and the mean background temperature of surrounding non-rural regions. An analogous metric for203

the intra-urban heat islets is defined here as the islet intensity, ∆T , as the difference between the204

mean temperature of each islet and Tthr. This captures the question: How much hotter are the205

islets than the threshold used to define them? The mean and standard deviation of ∆T over each206

islet within a city were found to be equal which, along with the shape of its distribution, were207

indicative that ∆T for each city is exponentially distributed, i.e:208

p(∆T ) ∝ e−λ∆T (5)209

As a result, we model the islet intensity distribution with a single parameter, λ (Figure 6c and210

S6). Calculated at the percolation threshold, the values of λ across cities display a log-normal211

distribution with a mean = 2.25 K-1 and s.d. = 1.47 K-1 (Figure 6d; see Dataset S3 for a complete212

list). Furthermore, it shows convergence to the mean with increasing city size as well (Figure 6e).213

At a thermal threshold corresponding to the rural background temperature, this corresponds to the214

conventional metric of mean Urban Heat Island Intensity [8]. The scaling observed in the islet size215

and intensity distributions are analogous to the scaling laws known for areas and mean stages of216

lakes and wetlands [35, 42] and can be used to build the empirical basis for an investigation into217
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the scaling theory of intra-urban heat islets.218

219

220

FIG. 6. (a) Land Surface Temperature map of Boston (b) Map of heat islets obtained at mode temperature221

(19◦C, in this case) with colour representing the islet intensity (∆T ) above the mode. (c) Examples of222

empirical pdf of ∆T for 5 selected cities shown on a semi-log graph at their respective mode temperatures223

to illustrate the disparity in exponential pdfs of ∆T . Similar plot with all cities can be found as Figure S6.224

(d) Histogram of rate parameter λ (Eqn. 5) with mean = 2.25K−1. (e) Scatter plot of λ and area of all cities.225

Yellow dashed lines show the converging behaviour of λ with increasing area.226

D. Convergence in exponents as cities grow227

The area scaling exponent, β, varies between 1.6 and 2.2 for small cities (acity < 1000 km2),228

but for the larger cities it converges to the mean (see Figure 5c). One explanation for this is229

statistical, wherein for small cities there are not enough islets obtained at 90 m resolution which230

results higher statistical fluctuations about the mean are observed (Figure 8 in Appendix B). As the231
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number of islets increases with city size, steady averaging is achieved that results in convergence232

towards the mean. However, from an urban growth perspective, this behavior is consistent with233

several other complex systems that operate within cities [43, 44]. For smaller cities, the variability234

reveals the influence of factors unrelated to city size [30]. Land-use and urban infrastructures235

grow through parallel processes of expansion and densification [45]. Dense city centers beget236

more in-fill construction as it becomes a prime spot for economic development. At the same time,237

sprawling suburbs keep pushing the city boundaries due to the high costs of the inner city. As a238

result, despite the diversity that smaller cities possess, as the cities grow, they self-organize along a239

common trajectory [46]. Similar convergence is also observed in the islet intensity distribution, λ240

(Figure 6e). On the other hand, the exponential tempering coefficient, c, converges to 0 (Figure 5d),241

which means the mega-agglomerations approach a consistent power law even at higher thresholds.242

This suggests an increase in the proportion of city area that is exposed to higher temperatures [47].243

This is also in agreement with the observed scaling of aggregated UHI Intensity with the log of244

city size [48].245

E. Application for assessments246

The narrow distributions of scaling parameters and their convergence are also relevant to the247

field of urban climate research, for instance, to model the heat exchange between hot areas and248

their colder surroundings [8]. Current numerical weather prediction models, such as Weather249

Research Forecast (WRF) [49], use gridded data formats and, as a result, the perimeter of any heat250

islet is resolved to the minimum resolution (about∼ 1−9 km2). This results in an under-estimation251

of urban perimeter boundary which is important for modeling heat exchange across the urban-rural252

transect. A fractal perimeter of iso-thermal contour lines indicates a larger perimeter of contact253

with cooler regions, which in turn enables a larger heat flux to dissipate from the heat islets. The254

inclusion of a correction factor to simulate a rough and convoluted perimeter (withD ∼ 1.33) may255

improve the modeling of such processes. Furthermore, as the scaling metrics are rather narrowly256

distributed across diverse cities, we expect such a correction factor to be extendable across all257

urban areas.258

For extreme heat exposure assessment of urban communities, however, analysis of SUHI alone259

is not enough. Heat-stress assessment requires the joint consideration of air temperature and hu-260

midity [50]. Despite the difference in absolute values of UHI and SUHI, similarities between261
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spatial patterns of the surface and air temperatures have been reported [51, 52]. Therefore, tech-262

niques of scaling based on SUHI patterns can be extended to spatial clusters of UHI as well. The263

additional challenge is to better understand the superimposition of intra-urban heat islets with the264

spatial distribution of vulnerable communities [53], such as the poor in mega-cities, the elderly, or265

critical urban infrastructure such as roads, power grids, and communication networks [54, 55].266

IV. SUMMARY267

We show that the spatial structure of Surface Urban Heat Island (SUHI) is strongly fractal for 78268

diverse global cities. As a result, it can be conceptualized as a collection of intra-urban heat islets269

that occur as local heat clusters within the cities. The heat islets have remarkably similar spatial270

structure as characterized by the fractal dimension (D), as well as a power-law size distribution271

with exponent, β at the percolation threshold. This finding is rather surprising given the diversity of272

geographic, and socioeconomic constraints in the population of cities studied. At higher thermal273

thresholds, deviation from power law is observed in the form of an exponential tempering (c),274

which indicates reduced clustering of extreme heat. Further research into the relationship between275

urban morphology and exponential tempering can provide some useful insights on urban design276

solutions for intra-urban heat mitigation.277

The selection of a temperature threshold that defines extreme heat varies from region to region278

depending on their climate. For instance, the National Oceanic and Atmospheric Administration279

(NOAA) issues a heat stress warning above 33◦C for some regions in the US, whereas in the tropi-280

cal regions of India, up to 40◦C does not warrant a warning (https://www.weather.gov/safety/heat-281

index). In the absence of a standard definition, use of percentile thermal threshold based on his-282

torical records have been recommended [56]. Similarly, instead of setting rural temperature as a283

benchmark, we present a more flexible characterization of local thermal maxima in the form of284

islet intensity, ∆T (Equation 5), from a percentile-based threshold. Furthermore, as the pdf de-285

scribing their distribution follows an exponential distribution, the intensity parameter (λ) can be286

used to characterize the heterogeneity of thermal extremes and compare across cities. The pro-287

posed framework of identifying extreme heat clusters by using incremental thresholds can be used288

to describe the patterns of extreme heat clusters in any thermal landscape.289

While overarching metric such as the ones derived here do not help in answering specific ques-290

tions pertaining to a particular city, the convergence of the metrics with increasing size does sug-291
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gest a common attractor for all cities. Both λ and c were observed to decrease as the cities grow in292

size indicating an increased likelihood of occurrence larger and hotter heat islets for mega-cities293

indicating that their residents are at greater risk of extreme heat stress impacts. This begs the294

question if this is an inevitable or a desirable trajectory for growing cities? Such questions are of295

critical importance now, as billions of people add to the urban populations, especially in the devel-296

oping countries of Africa and Asia. Identifying the common statistical properties of the heat islets297

across diverse cities provides a means to escape from the geographical malaise of the uniqueness298

of place, and provides a step towards the improved characterization of the complex urban thermal299

landscape.300
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APPENDIX A: ESTIMATION OF LAND SURFACE TEMPERATURE310

The algorithm used to calculate the Land Surface Temperature is outlined below.311

Step 1: TOA radiance312

Lλ = ML ·Qcal + AL (6)313

where,314

Lλ = TOA spectral radiance (W/m2 ∗ srad ∗ µm)315

ML = Band-specific multiplicative rescaling factor from the metadata (RADIANCE MULT BAND x,316

where x is the band number)317

AL = Band-specific additive rescaling factor from the metadata (RADIANCE ADD BAND x)318
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Qcal = Quantized and calibrated standard product pixel values (DN)319

Step 2: TOA Brightness Temperature320

T =
K2

ln(K1

Lλ
+ 1)

(7)321

where,322

T = At-satellite brightness temperature (K)323

Lλ = TOA spectral radiance (W/m2 ∗ srad ∗ µm)324

K1 = Band-specific thermal conversion constant from the metadata (K1 CONSTANT BAND x)325

K2 = Band-specific thermal conversion constant from the metadata (K2 CONSTANT BAND x)326

The band-specific values were obtained from the metadata file. These equations are used for327

both band 10 and 11, to obtain the temperatures. However, to obtain the actual ground surface328

temperature, the emissivity needs to be calculated. The codes implemented in R here were derived329

and modified from ArcGIS toolbox[29].330

Now, Proportion of vegetation (Pv) and Emmissivity (e) is estimated from NDVI to estimate331

actual LST:332

Pv =
NDV I −NDV Imin

(NDV Imax −NDV Imin)2
(8)333

e = 0.004 ∗ Pv + 0.986 (9)334

LST =
T

1 + w ∗ T
ρ
∗ ln(e)

(10)335

where,336

T = At satellite brightness temperature (K) as per equation 9337

w = Wavelength of emitted radiation (11.5 µm)338

ρ = h× c
σ

= 14380 µmK339

(σ = Boltzmann constant = 1.38× 1023 J
K

, h = Plancks constant = 6.626× 1034 Js, c = velocity of340

light = 2.998× 108 m
s

)341

e = emissivity as per equation 9342
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APPENDIX B: ADDITIONAL FIGURES343

344

FIG. 7. Illustrated above in an example of thresholding by percentile. The thermal maps are represented as345

3-d elevation maps where height, as well as color, corresponds to a higher temperature. For each percentile346

of the thermal threshold, the areas above that are selected, and connected pixels (by Moore neighborhood)347

are grouped into a cluster. Figures (a-i) show the clusters that emerge above 9 incremental percentiles348

(shown as p, here).349
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FIG. 8. Scatter plot showing the correlation between number of islets and city size that scales linearly as

N = 0.038 ∗Acity + 40 (R2 = 0.8) as indicated by the red line.

FIG. 9. Histogram of Area Weighted Mean Fractal Dimension (AWMFD) for 78 cities.

FIG. 10. Scatter plot showing the correlation between mode temperature and the percolation threshold

(R2 = 0.93)
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APPENDIX C: FITTING PROBABILITY DISTRIBUTION FUNCTIONS350

For fitting probability distributions to the cluster size distribution, a combination of maximum-351

likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov-Smirnov (KS)352

statistic and likelihood ratios were used [36]. A step-by-step methodology as summarized in353

Box 1 of [36] and outlined below was followed with the help of R-code provided by Lau-354

rent Dubroca and Cosma Shalizi on Clauset’s website: http://tuvalu.santafe.edu/355

˜aaronc/powerlaws/.356

1. Estimate the parameters xmin and of the power-law model.357

2. Calculate the goodness-of-fit between the data and the power law. If the resulting p-value is358

greater than 0.1, the power law is a plausible hypothesis for the data, otherwise, it is rejected.359

3. Compare the power law with alternative hypotheses via a likelihood ratio test. For each360

alternative, if the calculated likelihood ratio is significantly different from zero, then its sign361

indicates whether or not the alternative is favored over the power-law model.362

The data were tested for a power-law tail fit and compared against 4 other competing dis-363

tributions - Exponential, Lognormal, Stretched Exponential (Weibull), and Power-law with an364

exponential rate of tempering. The basic idea behind the likelihood ratio test is to compute the365

likelihood of the data under two competing distributions. The one with the higher likelihood is366

then the better fit. Alternatively, one can calculate the ratio of the two likelihoods, or equivalently367

the logarithm R of the ratio, which is positive or negative depending on which distribution is better368

or zero in the event of a tie. Furthermore, the p-value for the Log-likelihood Ratio is checked and369

an outcome is selected only if the p-value is less than 0.1 (For a 90% confidence).370

The cluster size distributions for all cities were tested at the percolation temperature, and all371

of the distributions were found to qualify as a power-law tail (with a p-value of 0.1, i.e. 90%372

confidence). The lower cut-off for power law was found to be under 500 m for most cities (95%373

CI one-sided), this roughly corresponds to the size of an urban block implying that the scaling374

doesn’t extend to the length scales smaller than an urban block. On comparing against the other375

distribution, we find that 9 of the 78 cities (11.54%) can also be described as a power-law with376

exponential tempering: P (A > a) ∝ a(−(β−1))e(−c·a) with low exponential rates (c < 0.05).377

However, none of them have likelihoods suggesting a Weibull, exponential, or lognormal describe378
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the data better. The table with each city’s results is attached as separate excel sheet (Table S2:379

Tests of fitting exceedance probability distributions).380
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[39] T. Fluschnik, S. Kriewald, A. Garcı́a Cantú Ros, B. Zhou, D. E. Reusser, J. P. Kropp, and D. Rybski,431

ISPRS International Journal of Geo-Information 5, 110 (2016).432

[40] K. Gangopadhyay and B. Basu, Physica A: Statistical Mechanics and its Applications 388, 2682433

(2009).434

[41] M. E. Newman, Contemporary Physics 46, 323 (2005).435

[42] L. E. Bertassello, P. S. C. Rao, J. W. Jawitz, G. Botter, P. V. Le, P. Kumar, and A. F. Aubeneau,436

Geophysical Research Letters 45, 6983 (2018).437

[43] C. Klinkhamer, E. Krueger, X. Zhan, F. Blumensaat, S. Ukkusuri, and P. S. C. Rao, arXiv preprint438

21



arXiv:1712.03883 (2017).439

[44] M. Barthelemy, The structure and dynamics of cities (Cambridge University Press, 2016).440

[45] N. Mohajeri, A. Gudmundsson, and J.-L. Scartezzini, in International Conference on Future Buildings441

& Districts Sustainability from Nano to Urban Scale, Lausanne, Switzerland (2015) pp. 9–11.442

[46] M. Batty, The new science of cities (Mit Press, 2013).443

[47] B. Zhou, D. Rybski, and J. P. Kropp, Scientific Reports 7, 4791 (2017).444

[48] T. R. Oke, Atmospheric Environment (1967) 7, 769 (1973).445

[49] F. Chen, H. Kusaka, R. Bornstein, J. Ching, C. Grimmond, S. Grossman-Clarke, T. Loridan, K. W.446

Manning, A. Martilli, S. Miao, et al., International Journal of Climatology 31, 273 (2011).447

[50] K. Oleson, A. Monaghan, O. Wilhelmi, M. Barlage, N. Brunsell, J. Feddema, L. Hu, and D. Steinhoff,448

Climatic Change 129, 525 (2015).449

[51] N. Schwarz, U. Schlink, U. Franck, and K. Großmann, Ecological Indicators 18, 693 (2012).450

[52] J. A. Henry, O. F. Wetterqvist, S. J. Roguski, and S. E. Dicks, Photogrammetric Engineering and451

Remote Sensing 55, 69 (1989).452

[53] S. Chapman, J. E. Watson, A. Salazar, M. Thatcher, and C. A. McAlpine, Landscape Ecology 32,453

1921 (2017).454

[54] K. C. Seto, A. Reenberg, C. G. Boone, M. Fragkias, D. Haase, T. Langanke, P. Marcotullio, D. K.455

Munroe, B. Olah, and D. Simon, Proceedings of the National Academy of Sciences 109, 7687 (2012).456

[55] F. Creutzig, G. Baiocchi, R. Bierkandt, P.-P. Pichler, and K. C. Seto, Proceedings of the National457

Academy of Sciences 112, 6283 (2015).458

[56] P. J. Robinson, Journal of Applied Meteorology 40, 762 (2001).459

[57] See Supplemental Material at [URL To Be Inserted by the journal] for the complete metadata on the460

analysis discussed here .461

22


