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Diffusion processes with boundaries are models of transport phenomena with wide applicability
across many fields. These processes are described by their probability density functions (PDF's),
which often obey Fokker-Planck equations (FPEs). While obtaining analytical solutions is often
possible in the absence of boundaries, obtaining closed-form solutions to the FPE is more challenging
once absorbing boundaries are present. As a result, analyses of these processes have largely relied on
approximations or direct simulations. In this paper, we studied two-dimensional, time-homogeneous,
spatially-correlated diffusion with linear, axis-aligned, absorbing boundaries. Our main result is the
explicit construction of a full family of closed-form solutions for their PDFs using the method of
images (Mol). We found that such solutions can be built if and only if the correlation coefficient
p between the two diffusing processes takes one of a numerable set of values. Using a geometric
argument, we derived the complete set of p’s where such solutions can be found. Solvable p’s are
given by p = — cos (%), where k € ZT U{+0o0}. Solutions were validated in simulations. Qualitative
behaviors of the process appear to vary smoothly over p, allowing extrapolation from our solutions

to cases with unsolvable p’s.

INTRODUCTION

Diffusion processes with absorbing boundaries are es-
sential tools to model a multitude of real-world pro-
cesses. In neuroscience, for example, they act as mod-
els of decision-making [1] and neuronal action poten-
tial generation [2]; in finance, they are used for stock
pricing [3] and risk modeling [4]; and in physics, they
have, for example, been used to model movement of
charges through conductors [5, 6]. Some applications in-
volve higher-dimensional diffusions in which the process
can become spatially correlated. For example, decision-
making models can assume multiple, correlated sources of
decision-related evidence [7]. In models of neural action
potentials, correlated diffusions might occur if neurons
receive shared inputs [8]. In these cases, it is essential
to understand how these correlations impact the process’
behaviors.

Due to their large number of applications, diffusion
processes with boundaries have been widely studied. A
fundamental quantity describing these processes is the
probability density function (PDF) of x(t), here denoted
as Z(x,t). Its time-evolution is described by the Fokker-
Planck equation (FPE) [9]. Once the PDF is known by
solving the FPE, multiple other process properties, such
as the survival probability and boundary first-passage
times, can be derived. Therefore, finding the PDF is

the first step towards a better understanding of the pro-
cess. Much work has been performed on finding solutions
to the FPE for one-dimensional processes. In this case,
PDFs for problems with one or two time-invariant ab-
sorbing boundaries can be found with the method of im-
ages, which constructs PDFs as linear superpositions of
free-space solutions [9]. In higher dimensions, however,
the geometry of the process becomes significantly more
complex, especially in the presence of a non-zero drift. As
a result, analytic results are scarce despite decades of ef-
fort. Notable work includes [10], which provided analytic
PDF expressions for two-dimensional processes with or-
thogonal boundaries on one side but without drift. Later
work provided some corrections, and proposed numerical
methods to approximate the PDFs of processes with drift
[11]. Most relevantly for our work is [12, Sec. 6], which
provided PDFs for drifting two-dimensional, correlated
diffusion processes as infinite sums of Bessel functions
with space- and time-dependent arguments.

In particular for two-dimensional, correlated diffusion
processes, the majority of previous work only provided
analytical PDF expressions that gives limited insight,
and whose numerical evaluation might be cumbersome.
Closed-form expressions are known only in rare cases,
such as for uncorrelated processes or processes with a
correlation coefficient of p = —0.5 [7]. [13] derived the

solution for p = fg, but did not provide the resulting



expression. Such closed-form expressions have multiple
benefits. They are usually easier to interpret than direct
simulations, and they can provide a core around which
analytical approximation can be found by perturbative
expansions (e.g., colored noise diffusion from white noise
[2, 8, 14]). For numerical analyses, closed-form expres-
sions are significantly cheaper to compute than simula-
tions and they are easy to evaluate to machine precision
with finite operations.

Our aim was to find closed-form expressions for PDF's
that describe two-dimensional, correlated diffusions with
drift in the presence of two time-invariant, orthogonal,
and absorbing boundaries. We approached this problem
by focusing on solutions that can be constructed with
the method of images (Mol). In particular, we aimed to
determine under which circumstances we can find solu-
tions that are expressible with such a finite number of
images. In what follows, we show that the only property
that determines if such a solution exists is the diffusion
process’ correlation coefficient p. Specifically, with the
exception of p = 1, no close-form solution exists for pos-
itive p. Furthermore, for negative p’s, we can only find
solutions for a countable but infinite number of p. For
those, we provide the closed-form solutions, and demon-
strate their validity in numerical simulations. Thus, our
work provides the complete set of all FPE solutions that
can be found by the Mol and contain a countable number
of images for this problem.

RESULTS

We consider a 2D diffusion process with drift, denoted
as x(t). Its dynamics are given by

dae(t) = pdt + €(2), (1)

where p is the drift rate and £€(¢) is a Gaussian process.
&(t) has zero mean and covariance

(EME)T) =o(t —1)Z, (2)
where §(-) is the Dirac delta function and
> (; f) pel-1,1]. 3)

While we develop our solutions for covariance matrices of
this specific form, our results also capture processes &(t)
with arbitrary positive definite covariance matrices X by

letting x1(¢t) = #1(t)/V $1; and xa(t) = 2a(t)/V Yoo

The probabihty density function Z(x, t) obeys the FPE
9= ve=sl Z (4)
ot~ M Ves i 336,83:]

,j=1

We assume the initial condition z(0) = s(®). This is
equivalent to

E(x,t =0) = d(x —s0). (5)

Without loss of generality, we assume the process to be in
the third quadrant Qpyy in Cartesian coordinates. Thus,

s ¢ O = {zlr1 < 0,22 <0}. (6)

The process is bounded from above by two linear, axis-
aligned, absorbing boundaries at

B = {:IJ|1’1 <0,z = O}v (7)
B2 = {$|1'1 == nyQ S O}v (8)

such that it additionally needs to obey Dirichlet
(a.k.a. absorbing) boundary conditions

thO,VLIZEBlUBQ E(:Z?,t):() (9)

These boundary conditions ensures that no probability
mass enters the space outside the third quadrant (see
[9, Sec. 5.7, Eq. (63)]). Finally, the solution for =(z,t)
must be non-negative everywhere. This is guaranteed by
the boundary conditions and the maximum principle of
elliptic PDEs, to which the considered FPE belongs [15,
Chap. 2].

In what follows, we study the Dirichlet problem of ob-
taining solutions (Z(x,t)) to Eq. (4) under constraints
Egs. (5) and (9). We will derive necessary and suffi-
cient conditions for the existence of Mol solutions, and
will determine these solutions in cases where they exist.
As we will show, such solutions only exist for a discrete
set of correlation coefficients p. To show this, we will
first discuss a general expression for Mol constructions.
Second, we will identify the conditions under which Mol
constructions satisfy the boundary condition, and, third,
the initial condition. Our approach reveals a restricted,
discrete set of p’s for which exact solutions can be found,
while at the same time providing closed-form expressions
for these solutions. Lastly, we will validate exact solu-
tions with numerical simulations of the process.

Mol construction of potential solutions

Let us for now ignore the boundary condition, Eq. (9).
In this case, free-space solutions to the FP equation are
known to be the PDF of a bivariate Gaussian distribution
with mean s(®) + pt and covariance Xit,

N (s(o) + pt, Et)

=l e ) A ) ()
27t/ X

where A = %71,

The Mol constructs solutions to a PDE with bound-
ary conditions by adding scaled image functions,
N (89 + put, 3t), to Eq. (10). Hereafter, we will sim-
ply refer to the image function as an image s, and the



point in space specified by s as a source s(¥). The
resulting Mol construction has the form

= (:c,t; s(o)> =N (3(0) + pt, Et)

N-1
+ Z aN (s(i) + pt, Et) , (11)

i=1

where a; is the image weight associated with image s(®.
Mol constructions of the form of Eq. (11) satisfy the FP
equation due to linearity of PDEs, and will satisfy Eq. (5)
for any value of the weights if none of the added images
are in the third quadrant. Furthermore, they will satisfy
Eq.(9) if images cancel each other on the boundaries. We
denote the set of sources by Q = {s(?) zN:_Ol and the set of
image weights by k = {ai}ijigl (with constant ag = 1).
Overall, finding an expression of the form of Eq. (11)
that meets all criteria implies that we have identified a
closed-form solution.

Satisfying the boundary conditions
Placement of canceling images

As discussed above, an Mol construction satisfies the
boundary condition if and only if images cancel each
other at the boundaries. More specifically, for any image
with source s € Q and at any time ¢, there should be a
set of images that cancel it on both boundaries ({B1,2}).

Importantly, linearity of exponential functions in
Eq. (11) requires all images cancelling each other on a
particular boundary to have the same exponent on that
boundary for all times ¢t > 0. For instance, to cancel im-
age s on By, we must add at least one other image s(/)
to € that satisfies

(az — s — ut)T A (az — s — ut)
= (a: —sU) — ut)TA (il: — sl — pt) , (12)

forallt >0 and x € Bj.

To determine canceling images that satisfy this condi-
tion, we rewrite Eq. (10) by separating terms linear and
quadratic in s in the exponent,

N (s+ pt,3t) = — gy (@—pt) T A(z—pt)

1
NN

x g7 38 As i (@—pt)" As (13)

The first exponent is independent of s, and therefore
shared by all images; matching the second exponent re-
quires

s ek (s(i)) = {az|:cTA:I: = s(i)TAs(i)} ;o (14)

B
Z1

FIG. 1: Example construction to cancel s(?) at the two
boundaries, here for p = —% and some arbitrary s(©).
The intersections of L 2 with I uniquely determine the
placement of image sources to cancel (9 at By 5.

matching the last exponent for © € B, 3 respectively re-
quires

sO) € Ly (Su)) _ {w‘eszw = e{QAs(i>}, (15)

where e; = (1,0)7 and ey = (0,1)T are the Cartesian
basis vectors. Geometrically, E (s() is an ellipse and
Lo (s(i)) are lines, all of which pass through s (Fig.1).
The ellipse and each of the lines intersect at s() and, in
general, another point (), leading to a unique canceling
image.

Algebraically, it is easy to show that the mapping
from to-be-cancelled image source s() to canceling im-
age source s¢) for boundaries B 2, respectively, is given
by

, 1 -2 i i
B sm:(o _f)swznl(p)s“, (16)

j -1 0\ i
By: sU) = (2P 1) s =11, (p) sV, (17)

Hereafter, we drop the dependency of the mapping IT; o
on p for notational convenience. Both II; o are involu-
tory, that is IT; ' = II}, for both &k € {1,2}.

To find the scaling coefficient a; for the canceling im-
age, we solve

aiN (s(“ n ut,Et) = —a;N (s(j) ¥ ut, Et) ., (18)
for all ¢ > 0 and for all * € B; or & € By, leading to
0 — 7ai€HTA(S(]'),S(i))' (19)

What would happen if E (s) and Ly, (s) (for k €
{1,2}) only intersect at a single point? In this case, the
line Ly, (sY) would be a tangent to the ellipse at s, It
is easy to show that, for Ly (or Ls), this only occurs if
s;i) =0 (or ng‘) = 0), that is, if the image to be canceled
happens to be located on one of the axes. In those cases,



sU) = I, = s() such that the canceling image is
mapped onto the image to be cancelled. Furthermore,
they receive opposite weights, that is a; = —a;, such
that they cancel each other, and could be both removed.
While this is an intuitively odd scenario, it does not inval-
idate our approach, as the mappings II; » remain valid.
Furthermore, as will become apparent later, no valid so-
lution will have this property. Therefore, it isn’t a case
that requires special attention.

Finding a complete set of images

We now consider how a set of images following the
Mol construction can satisfy the boundary condition in
Eq. (9). As we have two boundaries, two additional im-
ages, II;5(9) and IT,s(? are introduced to cancel the
density from image s(®). The density of image IT;s(® is
canceled on boundary By by image s(9); however, it intro-
duces additional density at By. Similarly, image ITys(®)
introduces some additional density at B;. Therefore, yet
another pair of images, ILL,II,5® and H1H28(0), are
needed, and a further pair of images to cancel their den-
sities, and so on. This leads to a pair-wise construction
of images (Fig. 2(a)).

@ e (®)

1M1y s(0)
(1,11, T15s(0) 2

(T151y)?2 S(O>i

s(0)
= (1,11, )3 s(0
o Iy (M,117)2 s(0)

X1 1

FIG. 2: Two constructions to create a complete set of
images, here illustrated for p = —%. Note that the same
source can be expressed in multiple ways, allowing two
formalisms to characterize the same set of images. (a)

Pair-wise construction. (b) Sequential construction.

We proceed with the ansatz that having a finite set of
images, that is || < oo, is a necessary condition for the
existence of solutions (except when p = —1). The mo-
tivating intuition is that one cannot introduce infinitely
many sources without placing any in the third quadrant,
thus violating the initial condition. In a later section,
this is shown to indeed be the case.

The number of images is finite if and only if, at some
point, new images to be added are already in the set. Fol-
lowing the pair-wise construction (Fig. 2(a)), this occurs
only if there exist images that cancel two other images
across different boundaries, that is

3530 € 1 50 = 11,50 = Ty, (20)

The alternative of canceling two images across the same
boundary, that is IT; sV = IT;50) | is invalid because this
would imply s = s() in which case additional images
are not necessary.

Due to the involutoriness of II; 5, Eq. (20) leads to
s =TI,5%) and s = II,s(). Here, s is the image
that is cancelled by image s*) across B;. Unless s is
the original image s(9), sV was introduced to cancel an-
other image II,s() = II,I1; s*) across B,. This implies
that, by further alternating application of IT; and Ils,
we can trace its origin back to s(9). It follows that if two
images "meet” in the fashion of Eq. (20), then the com-
plete set of images can be generated by following the se-
quence IT; s TILII; 59 II, II,IT; 5?0, . .. until we find
an image with source that coincides with the original lo-
cation s(®) (Fig. 2(b)), resulting in |Q| < co. Formally,
this sequential image construction is given by the source
generating function

® (s(o) n) _ (TI,11,)"/? s(0) if n is even,
’ IO, (TLLIT,) "2 50 if p is odd.
(21)
Following this formalism, we define all images with
even n ”even-numbered images” (and similarly for ”odd-
numbered images”). For the number of images to be
finite, we require

IneZt:® (s(o)m) =50, (22)

This condition cannot hold for odd n, as |II;| = —1 for
both j € {1,2}, such that the product of an odd num-
ber of these mapping has determinant of -1, which cannot
equate identity. Therefore, we consider only even n. Let-
ting n = 2k, Eq. (22) equals

ezt (ILI)" =1L (23)

To show which values of p satisfy this condition, let us
first introduce a whitened process for mathematical con-
venience.

Whitening the process

We have shown that all images lie on the ellipse
E (s(9) whose eccentricity increases with |p|. We can
simplify the analysis of image locations by whitening the
process, after which all images come to lie on a circle,
such that the location of each image is fully determined
by its angle. To perform this whitening, we desire to find
a linear mapping @ that maps the original process x(t)
into its whitened equivalent, #(t) = Q(t). Under the
required whitening constraint that A = Q7 Q, one choice
of @Q that is symmetric is given by

_ p2 _
Q=a( it VUYL e



with

‘= sgn(p) .
2= (1- vI=72)

This mapping, Q, has singularities at p = £1, where
the process collapses into a 1D process with one or two
absorbing boundaries for p = 1 and p = —1, respectively.
Solutions in these special cases are known, and given in
[9, Sec. 5.7, Egs. (71) and (78)]. We thus restrict our
discussions to 0 < |p| < 1.

(25)

(a) (b)

E (s(9)

>

&
—
[7)
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FIG. 3: Whitening the diffusion (a) expands (for
0 < p < 1) or (b) shrinks (for —1 < p < 0) the original
third quadrant (shaded) into a new region (green). The
ellipse (gray line) on which images are found becomes a
circle (green line). Boundaries (B, B, thick black line)
are rotated into or away from the third quadrant
(Bl, Bs, thick green line). s(®) here was chosen to not
lie on the identity line, to show the resulting angular
displacement of §(©) relative to s(9) in such
circumstances.

The consequences of this re-mapping are as follows
(see Appendix for derivations). First, the image can-
cellation maps for the whitened process become 1211’2 =
QII, Q1 that, as before, obey I = ﬂ% = 1I. Second,
as desired, all images are now located on the circle

i = 50750 (26)

where 50 = Qs(® (Fig. 3). Third, TI,IT; is a clockwise
rotation matrix of angle 2a (which we denote as R(2«)),
where a = arccos(p) € (0,7)). Thus, if we define the
source generating function for the whitened process anal-
ogous to Eq. (21) by

n/2 §(0)

N A~ (n—=1)/2
II, (H2H1>

(f.[gf.[l) if n is even,
O if n is odd,

(27)
then all even-numbered sources satisfy

s2m) _ (ﬂQﬂl)m 9 = R(2ma)s® (28)

for positive integers m € Z*. Fourth, the odd-numbered
sources can be found similarly by

§@m+D) 1, 5Cm) — p [R((2m + 1)a) -§(O)] ;o (29)

which corresponds to a clockwise rotation of §(© by
(2m + 1)a, followed by a flip across the anti-diagonal,

0 -1

) 0

With these properties established, let us return to the
question about which values of p lead to a finite set of
images, || < co. As for the non-whitened process, this
number is finite if the source generating process returns
to its origin after a finite number of steps. We have al-
ready established that this only holds for an even num-
ber of steps. Therefore, there needs to exists some inte-
ger k such that §%) = 500 By Eq. (28), this implies
R(2ka) = 1, which holds as long as 2ka is some multiple
of 27 (i.e., one or several full rotations). Overall, this
means that the only values of p that lead to a finite set
of images, are

keZti=1,...,k—1,

(31)
where we have used « = arccos(p), and have restricted [
to1 <1<k—1toensurel/k < 1.

p = cos(a), with a = &

Satisfying the initial condition

So far we have focused on satisfying the boundary con-
dition, Eq. (9), which has led to a restrictions on the val-
ues that p can take. Let us now consider which of those
p’s additionally satisfy the initial condition, Eq. (5). This
condition implies that no other image than s(®) can lie in
the third quadrant. After whitening, the third quadrant
Qpyy is mapped into a circular sector

. J1— 02—
Omr = {i’@ < %ﬁh
VI 21
sgn(p)dy < Sgn(P)pp@Z}- (32)

For p < 0 or p > 0, the corresponding boundaries are
rotated into or out of the original third quadrant, re-
spectively (Fig. 3), by

1 = arctan (‘1p21> =

() Ne)

(33)

=

p

Therefore, the angular width of QIII isT/2—2¢ =7—qu.

In order to determine when it is possible to avoid plac-
ing sources (other than (%)) in the whitened third quad-
rant, QHI? we will use the fact that all sources in the



whitened space are located on a circle, such that it is
sufficient to describe any source §(i) by its polar angle
0;. In addition, we will use the polar representation for
the third quadrant,

3 a Tt «

QI[I = {(7",9)’9 € qm} with qqr = [4 +

27 4 21’

(34)
where qpy is the range of polar angles within the third
quadrant in whitened space. A source §(i) falls into the
third quadrant if 6; € qpyT.

An infinite number of images

We can now revisit the previous ansatz that, unless
p = —1, sets with an infinite number of images will
violate the initial condition. To do so, note that, by
Egs. (28) and (31), consecutive even-numbered images
are placed at angular distance 2a = QZT“ of each other.
However, as a complete construction might imply mul-
tiple full rotations (if [ > 1), these consecutive even-
numbered sources are not necessarily the even-numbered
sources closest to each other. Indeed, by periodicity,
the angular spacing between all even-numbered sources
is regular (Fig. 4) and given by

2
8= = (35)

Therefore, once the number of images approaches infinity,
B approaches zero. However, for any |p| < 1, a < 7 such
that the angular width of QDI remains positive. This
implies that some images will fall into the third quadrant,
such that such an infinite number of images will violate
the initial condition. This argument does not apply to
p = —1, for which the whitening transformation is not
well-defined.

A finite number of images

Let us now focus on finite image sets. Since, by
Eq. (29), there is a one-to-one mapping from source §0m)
to source §2m+1)  we can reformulate the constraint that
82m+1) ¢ Oy as a constraint on source ™). That is,
there exists some region D such that 0s,, ¢ D guarantees
that 0oy, 1 ¢ qqpr- This region is given by (see Appendix)

™ 3o a 37
D= 1 + 573 + 1 (36)
Therefore, we only need to make sure that the even-
numbered sources do not fall into g U D. Incidentally,
qqp and D are adjacent, such that they together from
a single sector with combined width 27 — 2« (Fig. 4).
For what follows we will again exclude the special cases

(b)

FIG. 4: Using polar coordinates, the third quadrant
after whitening, qqpy (green shade), and region D (yellow
shade) together have width 27 — 2¢; geometrically
adjacent even-numbered sources (red dots) have angular
distance 8. The odd-numbered sources are indicated by
blue crosses. (a) 0<p<1(a=4im). (b) =1 <p<0

(a=zm).

of p € {£1,0} where solutions are known. This corre-
sponds to taking [ € 1,....,k — 1 in Eq. (31).

As the angular width of both ¢y and D individually is
T —aq, a necessary condition for even-numbered sources to
"avoid” them is for the angle between two geometrically
adjacent sources (8 to be larger than this region, that is

2
ﬁ:£>ﬂ'foz =

k—1<2
3 < (37)

where the second inequality follows from « = Ir/k. We
will consider the two cases of positive and negative cor-
relations p in turn.

For all 0 < p < 1, we have the additional constraint of
20 < k (since p = cos (12)). Together with the previous
inequality, this implies | < 2 and thus | = 1. However,
there is no value of k € ZT that satisfies both inequalities.
Thus, initial conditions cannot be satisfied for any 0 <
p < 1, regardless of 8.

Since the original source is in the sector gpyy, a sufficient
condition for all other sources to skip the sector is

27
62?2271'—204 = k—1<1 (38)
which holds if we simply choose I = k — 1. On the other
hand, a necessary condition is that g is larger than half
the width of the combined ¢ U D region, such that

even if (9 approaches the center of that region, adjacent
sources will be outside of it. This leads to
27

B=—>1T—« =

k—1<2
k <2, (39)

which only holds for [ = k — 1. Thus, for —1 < p < 0,
initial conditions are satisfied if and only if [ = k — 1.



image mapping formalism

&) _ (Hgl‘[l)j/2 sfo) j is even,
I, (TI,I0,)Y 972500 5 is odd, s =

(1 =2 (-1 0
(o ). e (5 0):

sin (%)
(— sin (ja + %)

image rotation formalism

(sin (ja + %)
1

—sin (ja)

sin (ja)

vy ” ) s jis even,
—sin (]a - E)

sin (jo) sin (jo — ) s® s odd
—sin (ja) ’

2k—1

E(x,t) =N (S(O) + pt, Et) + Z a;N (s<j) + pt, Et) ,

j=1

a® = (=1) exp (NTA (sm _ s(o>)) 7

where A = 271,

TABLE I: Full expression of closed-form solutions for 2k images, corresponding to correlation coefficient
p = —cos (7/k). Image locations are given in two alternative formalisms. The image mapping formalism is based on
Eq. (21). The image rotation formalism is based on Eqs. (28) and (29) (see Appendix for derivation). Both solutions
have a computational complexity that scales linearly with the number of images.

(a) (b)

Z2

FIG. 5: Illustration of full solutions in the non-whitened
space. Even- and odd-numbered sources are shown as
red and blue dots, respectively. (a) k=3 (p = —1). (b)
k=5 (p=—0.809).

Exact solutions and their construction

Having derived the necessary and sufficient conditions
on p for 0 < |p| < 1 to satisfy the initial boundary con-
dition, we can now combine these solutions with those
known for p = 0[7, Eq. (A.9)], p =119, Sec.5.7, Eq. (71)],
and p = —1 [9, Sec.5.7, Eq. (78)]. Overall, that leads to
the the necessary and sufficient conditions on p for exis-
tence of a exact solution to be given by

p = —cos (%) , keZtU{+oo}. (40)
Where k& = oo corresponds to the case of p = —1. It is
worth reiterating that this condition holds regardless of
5 Solutions, if they exist, are given by the Mol con-
struction in Table I. This construction also recovers the
known solutions for p = —1 (see Appendix). Examples

for k = 3 and k£ = 5 are shown in Fig. 5.

Validation with simulations

To validate the closed-form solutions we obtained, we
compared them with Monte Carlo simulations based on
Eq. (1), using time step-size dt = 0.1ms and 50000 repe-
titions per figure panel.

We first compared our closed-form expressions of
E(x,t) with those obtained from simulations (Fig. 6).
Our expressions show good agreement with results from
simulation.

A quantity of interest for diffusion processes with
Dirichlet boundaries is the survival probability, defined
as the probability mass within boundaries at a given
time. Once these survival probabilities are known, it is
easy to computer other quantities, such as the probabil-
ity flux across boundaries. Using our expressions, the
survival probabilities become a weighted sum of the cu-
mulative distribution functions (CDFs) of the different
images. Since each image is a scaled bivariate Gaussian
distribution, evaluation of its CDF's can be carried out
efficiently (we used the stats.multivariate normal ob-
ject in SciPy). We compared the survival probability
obtained from expressions to that obtained from simula-
tions (Fig. 7(a)). The two again show good agreement.

Finally, we validated by simulations that qualitative
behaviors of the process vary smoothly with p, even
though we could only find closed-form expressions for a
limited set of p’s. To do so, we computed the survival
probability from these simulations at fixed time ¢ = 1 for
processes with different p’s. As shown in Fig. 7(b), the
survival probability varies smoothly (and for most p’s,
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FIG. 6: Hlustration of PDFs at different ¢ obtained
from Monte Carlo simulations (top row) and
closed-form expressions (bottom row). The diamond
marks s(©) and the arrow indicates the direction of
drift. Solid lines indicate boundaries. (a) uses k =3
(p=-3), p=(1,2), s = (-1.5,—15); (b) uses k =8
(p~ —0.924), p = (3,1), 50 = (=1, —1.5). Note that
s and p differ between (a) and (b). The analytical
results were computed using the image rotation
formalism. The image mapping formalism yielded, as
expected, equivalent results (not shown).

linearly) as a function of p, and matched those found nu-
merically for the p’s for which such numerical evaluation
was possible. To further demonstrate this smoothness,
we plotted the survival probability across time for var-
ious solvable p’s (Fig. 7(c)). The smoothness validates
that we can generalizing qualitative insights from solv-
able ps to unsolvable ones.

(@,
5 1
Q
—_
(=W
E
=
-
&
0 T T T
0.0 0.5 1.0
Time (s)
(b) (c)
w 1.0 A -0.0
S 0.4 4 > o0
I £ 0.8+ —— _0.707
- B —— -0.809
< 0.3 1 £ 06 — -0.866
s 2 — -0.901
g 0.2 4 = 0.4
= -
3 :
E 0.1 4 U:} 0.2
@
4 0.0 +
00 T T T T T
-1 0 1 0.0 0.5
p Time (s)

FIG. 7: (a) Survival probability (k=3 (p = —31)).
Results from numerically integrating closed-form
expressions are shown in black; results from simulations
are shown in gray. (b) Survival probability at a fixed
time increases as a function of p. (c¢) Survival
probability over time for some solvable p’s. In all
panels, u = (2,1) and s(®) = (—1.5, —-1.5). All
numerical solutions were computed using the image
rotation formalism.

DISCUSSION

We used the method of images (Mol) to derive a family
of closed-form, analytical solutions for two-dimensional
Fokker-Planck equations (FPE). The resulting solutions
are unique, exact and compact. Using geometric ar-
guments, we derived necessary and sufficient conditions
for Mol solutions to exist, and validated these solutions
through Monte Carlo simulations.

While we focused on two-dimensional spaces, it
should be possible to generalize our approach to higher-
dimensional spaces. Specifically, the analogous version
of our problem in N-dimensions entails N orthogonal,
hyperplanar Dirichlet boundaries that are orthogonal to
each of the axes. In such cases, the ellipse E(s(?)) re-
placed by hyperellipsoids and lines L »(s(?)) replaced
by hyperplanes. However, even for three dimensions,
we would need three additional images to cancel a sin-
gle image along each boundary. For a three-dimensional,
uncorrelated diffusion, for example, we require seven im-
ages, rather than the three required for an analogue two
dimensional, uncorrelated diffusion. Thus, the solution
complexity will increase with the dimensionality of the



space. A similar approach may lead to closed-form solu-
tions for other boundary conditions, like non-orthogonal,
or reflecting boundaries.

While we considered spatially homogeneous diffusion,
our results can be extended to spatially heterogeneous
cases as long as they can be transformed into cases
we considered here via a diffeomorphism of the third
quadrant. For example, we could define a new pro-
cess y(t) : yi(t) = x;(t)? with spatially heterogeneous
diffusion, since VP depends on y. Its solutions can
nonetheless be found by transforming the Mol solution
for x(t) with the same diffeomorphism.

The set of p’s for which we derived closed-form solu-
tions is discrete and covers the regime of strong anti-
correlations, p < —1/2 densely. In contrast, positive
correlations are not covered at all. Based on our nu-
merical analyses, we contend that qualitative behaviors
of the process are sufficiently smooth over p that insights
from solvable p’s are highly relevant in unsolvable cases as
well. Further quantitative extrapolations can be explored
now by using peturbative expansions around solvable p’s,
which our solutions enable.

Finally, note that showing that it is impossible to find
close-form solutions for certain p’s with the Mol does not
imply that there don’t exist any close-form solutions for
these p’s with a different from. If such solutions exist, and
what form they might take, remains an open question.
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Appendix

Properties of the whitening transformation

Source locations

After whitening the process spatially with Eq. (24), the mapping between sources becomes (analogous to Egs. (16)

and (17))

B : IL=QI,Q ' = (

1_ 2 _
- p2), (41)

B, : ﬂngngQ—lz(””Z —P ) (42)

Their product is
207 —1

ILIT, =
= (2p\/1p2

2p% — 1.

% W) = (lesﬁgg) cos(20z)> = R(20), )

—p 1— p2

sin(2a)

where the second equality follows from p = cos(«) and trigonometric identities. The result is a clock-wise rotation ma-
trix R(2a) by an angle 2«. To find the odd-numbered sources on the circle, we will use §@m+1) — f[1 (ﬂ2ﬂ1> é(o),
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and observe that IT; can be decomposed into
~ (0 -1 cos(a) sin(a)) _
I, = (—1 0 ) (— sin(a) cos(a)) — F[R(a)]. (44)

Here, R is again a clockwise rotation matrix, and the permutation F' (see Eq. (30)) mirrors the source across the
anti-diagonal (where 1 = —x3). Therefore, the odd-numbered source locations are given by

gem+l) — [R ((2m + 1)a) §<0>} , (45)

which again corresponds to an even spacing along the circle in steps of 2«, but, due to the mirroring, in the opposite
direction as the even-numbered sources.

The avoidance region D

As Egs. (28) and (29) show, the sources 2m and 2m + 1 are related by a one-to-one mapping. In particular, the
source 2m follows from a clockwise rotation by 2ma of §(%), whereas the source 2m+ 1 follows from a similar clockwise
rotation by (2m + 1)a of (%), followed by a flip along the anti-diagonal. In terms of polar angle transformation, the
relations are given by

92m = 90 - 2ma, (46)

3
02m+1 = 577 - 927n + «, (47)

where ), is the polar angle of ().

To derive conditions for avoiding placing images in gy, we use the above relationship to find a region D such that
O2m+1 & qr <= 0O2m ¢ D. This way, all conditions will be about even-numbered images. Expression for D simply
follows Eqgs. (34) and (47), and result in the D given by Eq. (36) in the main text.

Deriving the closed-form solution in the image rotation formalism

We rely on Egs. (28) and (29) to derive the closed-form solution in the image rotation formalism. They use 2k
images, corresponding to correlation coefficient p = — cos (7/k), resulting in the sources

s — {Q_IRUO‘) Qs 7 is even,

48
Q 'FR(ja)Qs® jisodd, (48)

where oo = w(k — 1)/k, Q and F are given by Egs. (24) and (30), respectively, and R(j«) is a 2D clockwise rotation
matrix of angle ja. In the above, Q and @', map into and out of the whitened space, respectively.
For even-numbered images, the image mapping can be simplified to

cos (jOé) _ psin(ja) sin(ja)
QilR (_]OL) Q = sin(jor) e . 17p;sin(ja) . (49)
—SR cos (jor) + SVt
Substituting p = — cos (7/k) results, after some simplification, in
_ . 1 sin (jo+ %) sin (ja)
1
R = .k S . 50
Q (jo) @ sin(%) < — sin (ja) —sm(ga—%) (50)
For odd-numbered images,
sin(jor) _ COS( . __ psin(ja)
= jo) — ==t
QUFR(je)Q= | cos ( 'a;fpsmw Cange 7] (51)
J \/1—p? \1—p2
Substituting again p = — cos (7/k) results, after some simplification, in
_ . 1 sin (jo) sin (jo— F)
'FR = ( - o RD) 52
Q (]Oé)Q sin(%) 7Sln(‘]a+%) 7Sln(‘]a) ( )
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Recovering known solution for p = —1

For p = —1, the process is a one-dimensional drift-diffusion process between two absorbing boundaries. The solution
to this problem is provided in [9, Sec. 5.7, Eq. (78)] by using the Mol with an infinite number of images. They denote
the one-dimensional drift by p, the diffusion variance by o2, assume boundaries at £ = a and z = —b, and initial

condition p (z,0) = ¢ (). Under these circumstances, they show the solution to be given by

S () () ()]

where x}, = 2k (a + b) and 2} = (2 — 2k) a — 2kb are locations of image sources for k = 0,+1,42,..., and a,b > 0 are
the distances from the origin to the two boundaries.

p(z,t) =

Our formalism can also recover the infinite-image solution for p = —1. In this case,
1 2 -10
placing sources on the line defined by s(z) + sé) (10) + Sgo). More generally, IT;s = (51 + 252, —s2)7 and TIys =

S1,281 + s9)".
. To7 relate th)is to the above infinite-image expression, note that the drift-diffusion process is now restricted to the
line Z = {x|21 + 3 = ¢}, where ¢ = s§0) séo). Let z denote how far we move along this line from s(©) in the
(1,—1)T direction, such that, for a given z, the two-dimensional coordinates are & = s(9 + 2(1,—-1)7/v/2. The
mapping from « to 7 is thus given by zz(x) = v/2 (1’1 — Sgo)) =2 (séo) — x2>. This implies that the distances at

which the line Z intersects the boundaries, By and By are at

a=uzyz ((0 s 4 <°)) 25, and b= -ay ((ng> s )) V25, (55)

respectively. Furthermore, it is easy to verify that

xz (Iix) =—-2b—xz(x), (56)
2z (yx) = 2a — xz (x). (57)
Then zz (s?) = z{, and
Tz (Hls(o)) 2z (H2H13(0)> Ty (H1H2H13<0>) 2z (1‘[21'[11'[21'[13(0)) .. = —9b,2a+2b,—2a — 4b, da + 4b, . ..
=y, 5,2, ..., (58)
Tz (H2s<0>) Ty (H1H2s<0>) 7 (1‘[21'111'[23(0)) Tz (1‘[11'[21'111'[23(0)) . =2a,—2a —2b,4a +2b, —4a — 4b, . . .|
=i, 22", 2 ... (59)

which corresponds to the image sequence of the above solution.



