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We investigate a stochastic process where a rectangle breaks into smaller rectangles through a
series of horizontal and vertical fragmentation events. We focus on the case where both the vertical
size and the horizontal size of a rectangle are discrete variables. Because of this constraint, the
system reaches a jammed state where all rectangles are sticks, that is, rectangles with minimal width.
Sticks are frozen as they can not break any further. The average number of sticks in the jammed
state, S, grows as S ≃ A/

√
2π lnA with rectangle area A in the large-area limit, and remarkably, this

behavior is independent of the aspect ratio. The distribution of stick length has a power-law tail, and
further, its moments are characterized by a nonlinear spectrum of scaling exponents. We also study
an asymmetric breakage process where vertical and horizontal fragmentation events are realized
with different probabilities. In this case, there is a phase transition between a weakly asymmetric
phase where the length distribution is independent of system size, and a strongly asymmetric phase
where this distribution depends on system size.

I. INTRODUCTION

Fragmentation processes where large objects break into
smaller ones underlie an ever growing number of physical
and natural phenomena [1–7]. In particular, fragmenta-
tion occurs in soft matter systems such as polymers [8],
active matter [9, 10], granular media [11, 12], and brittle
materials [13–15].
Experimental and theoretical studies of fragmenta-

tion generally focus on the distribution of fragment size.
Typically, this distribution is self-similar throughout the
breakage process, and it is characterized by a single quan-
tity, for example, the average fragment size [16–18]. Self-
similarity extends to discrete fragments and continuous
ones, one-dimensional fragments and multi-dimensional
ones [19]. However, while the fragment size is a fluc-
tuating quantity throughout the breakage process, the
fragment size becomes deterministic in the final state as
all fragments have the same size. In this sense, the final
state can be trivial.
Recently, non-trivial final states have been reported

in a multi-dimensional fragmentation process [20–23]
which models martensitic phase transformations [24–26].
The system reaches a jammed state where the two-
dimensional fragments are characterized two sizes: one
size is a deterministic quantity, but the second size is a
stochastic quantity. Here, we study this planar fragmen-
tation process analytically, and we present a comprehen-
sive statistical analysis of the jammed state.
We study fragmentation of rectangles with discrete

horizontal and vertical sizes (Fig. 1). A rectangle can
break vertically or horizontally into two smaller rectan-
gles. Due to discreteness, rectangles with minimal verti-
cal or horizontal size can not break, and hence, are frozen.
We refer to these frozen rectangles as “sticks.” Through
a sequence of random fragmentation events, the system
which initially consists of a single rectangle, reaches a
jammed state where all rectangles are sticks (Fig. 2).
We find that, up to a logarithmic correction, the av-

FIG. 1: Illustration of the fragmentation process (2). Initially,
the system consists of a single rectangle. Through a series of
horizontal and vertical cuts, the system reaches a jammed
state where fragmentation is no longer possible.

erage number of frozen sticks in the jammed state, S,
grows linearly with the area A,

S ≃ A√
2π lnA

. (1)

Interestingly, this asymptotic behavior is universal as it
applies regardless of aspect ratio. We also study the dis-
tribution of stick length and find that this distribution
has a power-law tail. Further, this length distribution ex-
hibits multi-scaling asymptotic behavior as its moments
are characterized by a nonlinear spectrum of exponents.
We also investigate an asymmetric process where hor-

izontal and vertical cuts are realized with different prob-
abilities. We find a phase transition at a critical value
of the asymmetry parameter. In the weakly asymmetric
phase, the length distribution does not depend on sys-
tem size, while in the strongly asymmetric phase, this
distribution does depend on system size.
The rest of this paper is organized as follows. In Sec. II,

we introduce the fragmentation process and develop the
theoretical techniques used throughout this investigation
to obtain the leading asymptotic behavior in the large
system-size limit. We first analyze the average number of
sticks and then consider the length distribution of sticks.
In Sec. III, we generalize the results to the case where
horizontal and vertical fragmentation occur at different
rates. Next, in section IV, we analyze a closely related
process of fragmentation into four, rather than two, rect-
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angles. In this case, the outcome of a fragmentation event
is deterministic, and we can also address the total num-
ber of jammed configurations. We conclude with a dis-
cussion in Sec. V. Details of several technical derivations
are presented in the Appendix.

II. FRAGMENTATION OF RECTANGLES

Initially, the system consists of a single rectangle
with horizontal size m, vertical size n, and hence, area
A = mn. Both the horizontal size and the vertical size
are integer. It is convenient to envision a square grid with
(m− 1)(n− 1) internal grid points embedded within the
rectangle (Fig. 1). In each fragmentation event, an inter-
nal grid point is selected, and then a cut is made along
the horizontal or the vertical direction. As a result, the
rectangle breaks into two smaller ones,

(m,n) →
{
(i, n) + (m− i, n) with prob. 1/2,

(m, j) + (m,n− j) with prob. 1/2.
(2)

The grid point with 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1 is
chosen at random, as is the fragmentation direction. Of
course, the total area is conserved.
Fragmentation requires an internal grid point. There-

fore, rectangles with m > 1 and n > 1 are active, and
otherwise, rectangles with m = 1 or n = 1, referred to as
sticks, are frozen. The fragmentation process (2) is re-
peated for every active rectangle until the system reaches
a jammed state with sticks only (Fig. 2). In this study,
we focus on the jammed state.
Let S(m,n) be the average number of sticks in the

jammed state when the initial rectangle has dimensions
m× n. This average is taken over all realizations of the
random breakage process. Since the fragmentation pro-
cess (2) is symmetric with respect to the horizontal and
the vertical direction, we expect S(m,n) = S(n,m). The
average number of frozen sticks obeys the recursion [26]

S(m,n) =
1

m− 1

m−1∑

i=1

S(i, n) +
1

n− 1

n−1∑

j=1

S(m, j) . (3)

The first term on the right-hand side accounts for the
m−1 possible cuts in the vertical direction, and similarly,
the second term accounts for the n−1 possible cuts in the
horizontal direction. The recursion equation is subject to
the boundary conditions

S(m, 1) = S(1, n) = 1 (4)

for all m ≥ 1 and n ≥ 1. Each fragmentation event
involves a single rectangle, and accordingly, the govern-
ing equation is linear. We emphasize that the governing
equation (3) is exact: since there are no two-body inter-
actions, our theoretical treatment makes no mean-field
assumptions regarding two-body correlations.

FIG. 2: A jammed state in a system of size 50 × 50. The
jammed state consists of rectangles of size 1× k or k × 1.

Equations (3) and (4) yield the average number of
frozen sticks for small rectangles,

S(2, 2) = 2, S(2, 3) = 5
2 , S(2, 4) = 17

6 ,

S(3, 3) = 7
2 , S(3, 4) = 17

4 S(4, 4) = 97
18 .

(5)

Moreover, for ladders (m = 2), equation (3) simplifies to
S(2, n)− S(2, n− 1) = 1

n−1 and therefore,

S(2, n) = 1 +Hn−1 , (6)

where HN =
∑

1≤i≤N i−1 is the harmonic number. For

long ladders, S(2, n) ≃ lnn + 1 + γ, where γ = 0.57721
is the Euler constant. It is also possible to show that
as long as m is finite, the leading asymptotic behavior
remains logarithmic,

S(m,n) ≃ (lnn)m−1

(m− 1)!2
, (7)

in the limit n → ∞.
Our main interest is the behavior for large rectangles,

and specifically, the leading asymptotics when m → ∞
and n → ∞. Hence, we treat m and n as continuous
variables, and replace the sums in (3) with integrals. The
average number of sticks satisfies the integral equation

S(m,n) =
1

m

∫ m

1

di S(i, n) +
1

n

∫ n

1

dj S(m, j) , (8)

within this continuous framework. Next, we multiply this
integral equation by the area mn and then differentiate
the resulting equation with respect to m and n. That
shows the quantity S(m,n) satisfies the partial differen-
tial equation

∂m∂n [mnS(m,n)]=∂m [mS(m,n)]+∂n [nS(m,n)] . (9)

We emphasize that the continuum approach yields the
leading asymptotic behavior for large n and m exactly,
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but it is not expected to give the leading correction. To
illustrate this, we take for example the recursion above
(6), which in the continuum approach translates to the
differential equation dS(2, n)/dn = 1/n. Indeed, this
equation yields the leading asymptotic behavior exactly,
S(2, n) ≃ lnn, but it does not produce the correction
which involves the Euler constant.
Hereinafter, we use ∂m = ∂

∂m and ∂n = ∂
∂n to de-

note partial derivatives. Further simplification can be
achieved by introducing the logarithmic variables

µ = lnm, ν = lnn . (10)

With this transformation, Eq. (9) reduces to a partial
differential equation with constant coefficients,

∂µ∂νS(µ, ν) = S(µ, ν) , (11)

that should be solved subject to the boundary conditions
S(µ, 0) = 1 and S(0, ν) = 1.
The central quantity throughout our analysis is the

double Laplace transform

Ŝ(p, q) =

∫ ∞

0

dµ e−pµ

∫ ∞

0

dν e−qν S(µ, ν) . (12)

It is obtained by multiplying both sides of the governing
equation (11) by e−pµ−qν and then integrating over the
logarithmic variables µ and ν. By using the boundary
conditions S(µ, 0) = 1 and S(ν, 0) = 1, we find that
double Laplace transform is remarkably compact,

Ŝ(p, q) =
1

pq − 1
. (13)

Therefore, the average number of sticks in the jammed
state, S(µ, ν), equals the inverse Laplace transform

S(µ, ν) =

∫ i∞

−i∞

dp

2πi

∫ i∞

−i∞

dq

2πi

epµ+qν

pq − 1

=

∫ i∞

−i∞

dq

2πi

1

q
eνq+µ/q . (14)

We perform the inversion first with respect to the con-
jugate variable p and then with respect to the conjugate
variable q. The inversion with respect to p is immediate
as the integrand in the first line has a pole at p = q−1.
The integral over the variable q in (14) has the form

I =

∫ i∞

−i∞

dq

2πi
F (q) eνf(q) . (15)

The exponential dominates the integrand in the limit
ν → ∞. Further, the function f(q) is maximal at the
saddle point q∗ which is determined from f ′(q∗) = 0, and
in the vicinity of this saddle point we have

f(q) ≃ f(q∗) +
1
2 (q − q∗)

2f ′′(q∗) . (16)

The integration contour in (15) can be along any line that
parallels the imaginary axis in the complex plane as long
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FIG. 3: The quantity S
√
2π lnA/A versus (lnA)−1. The

dashed line shows results of a fourth-order polynomial fit to
the data, and the intercept agrees with the theoretical pre-
diction of unity to within 0.1%. The quantity S was obtained
by numerical iteration of the recursion equation (3), subject
to the boundary condition (4).

as Re(q) is greater than the real part of any singularity
the integrand may have. We conveniently choose a line
parallel to the imaginary axis that passes through the
saddle point q∗. With the transformation of variables q =
q∗ + iy/

√
f ′′(q∗), the integral (15) reduces to a Gaussian

integral. As long as Re(q∗) exceeds the real part of the
singularities of F (q), we have

I ≃ F (q∗) e
νf(q∗)

√
2πνf ′′(q∗)

. (17)

Here, we used
∫∞
−∞ exp(−y2/2)dy =

√
2π.

First, we discuss squares, µ = ν, for which S(ν, ν) = I
with I given in (15). The quantities F (q) = q−1 and

f(q) = q + q−1 (18)

specify the integral (15). The saddle point is q∗ = 1,
and furthermore, f(q∗) = f ′′(q∗) = 2 and F (q∗) = 1. By
substituting these values into the general expression (17),
we obtain the leading asymptotic behavior

S(ν, ν) ≃ e2ν√
4πν

. (19)

Equation (1) expresses this behavior in terms of the area
A = e2ν . Results of numerical evaluation of the recursion
equation (3) are in excellent agreement with the theo-
retical prediction, and we conclude that the continuum
framework yields exact results for the leading asymptotic
behavior (Fig. 3).
We now consider rectangles of arbitrary size for which

S(µ, ν) = I with f(q) = q + (µ/ν)q−1 and F (q) = q−1.
It is straightforward to repeat the steps leading to (19),
and obtain the general behavior

S(µ, ν) ≃ e2
√
µν

√
4π

√
µν

. (20)
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As expected, the average number of sticks is symmet-
ric, S(µ, ν) = S(ν, µ), and moreover, the quantity ν in
(19) is now replaced with the geometric average

√
µν.

In the limit m → ∞ and n → ∞ with the aspect ra-
tio r = m

n kept fixed, we have
√
µν ≃ (µ + ν)/2. In this

limit, the leading asymptotic behavior (20) is identical to
(19). Interestingly, the average number of jammed sticks
is universal in the large-area limit—all rectangles with
the same area behave similarly. The only requirement is
that the aspect ratio is finite. In view of this universal-
ity, we henceforth quote results for squares without loss
of generality.
In the jammed state, the original rectangle is covered

with rectangles of size 1 × k or k × 1 with k ≥ 2, and
we now analyze the distribution of stick length k. Let
Sk(m,n) be the average number sticks of length k when
the initial rectangle has dimensions m × n. Similar to
S(m,n), the quantity Sk(m,n) is an average over all re-
alizations of the random breakage process (2) resulting
in the jammed state. For example, for a rectangle of
size 3 × 2, according to Eq. (2), with probability 1

2 , the
jammed state has two sticks of length three and with an
equal probability, the jammed state has three sticks of
length two. Hence, S2(3, 2) =

3
2 and S3(3, 2) = 1.

The quantity Sk(m,n) satisfies two sum rules,

S(m,n) =
∑

k≥2

Sk(m,n) , A =
∑

k≥2

kSk(m,n) . (21)

Let 〈k〉 =
∑

k kSk/
∑

k Sk be the first moment of the
normalized quantity Sk(m,n)/S. Equation (21) implies
that 〈k〉 = A/S, and hence, this quantity grows loga-

rithmically with area, 〈k〉 ≃
√
2π lnA. Such behavior is

independent of the aspect ratio in the large-area limit.
For all k, the quantity Sk(m,n) satisfies the recursion

equation (3), although the boundary condition does de-
pend on length

Sk(m, 1) = δm,k Sk(1, n) = δn,k . (22)

With the boundary condition Sn(1, n) = 1, the recursion
equation (3) implies Sn(m,n) = 1 for all m < n, and it
is also possible to show that Sn(n, n) = 2.
The linear equation (3) which governs S(m,n) and

Sk(m,n) is manifestly exact. It is still useful to com-
pare its predictions with results of numerical Monte Carlo
simulations of the breakage process. In the simulations,
we start with a rectangle of size m × n and perform
the fragmentation step (2) repeatedly until all rectan-
gles are sticks. We then tally the number of sticks of
a given length, and the quantity Sk(m,n) equals this
tally, divided by the number of independent realizations
of the random process. For example, for a square of size
5 × 5 we were able to validate the theoretical predic-
tions S2(5, 5) = 95

32 , S3(5, 5) = 235
144 , S4(5, 5) = 25

24 , and

S5(5, 5) = 2 to within 10−5 using 1011 independent real-
izations. Indeed, the linear recursion equation (3) yields
the average number of sticks of length k exactly. Since
the quantity Sk(m,n) measures the abundance of sticks

of length k, we define Sk(m,n)/S(m,n) as the distribu-
tion of stick length throughout this paper. We caution
that this distribution corresponds to the aforementioned
measurement procedure in numerical simulations.
For large rectangles, we utilize the continuum approach

once again. As a function of the logarithmic variables
defined in (10), the average number of frozen sticks with
a given length Sk(µ, ν) satisfies the partial differential
equation (11), subject to the boundary conditions

Sk(µ, 0) = e−µδ(µ− ln k),

Sk(0, ν) = e−νδ(ν − ln k) .
(23)

To obtain these boundary conditions, we first rewrite (22)
as Sk(m, 1) = δ(m − k) and Sk(1, n) = δ(n − k) and
then perform the transformation of variables (10) by us-
ing δ[F(x)] = δ(x− x0)/|F′(x0)|.
Next, we repeat the steps leading to (13), using

the partial differential equation (11) which also governs
Sk(µ, ν) and the boundary condition (23), and arrive at

Ŝk(p, q) =
pk−1−p + qk−1−q

pq − 1
. (24)

We note that this double Laplace transform is symmet-

ric, Ŝk(p, q) = Ŝk(q, p), as the two terms in the numer-
ator are equivalent. Since the continuum approximation
is exact only asymptotically, that is, in the limit k → ∞,
the resulting Laplace transform does not necessarily sat-

isfy the normalization
∑

k Ŝk(p, q) = Ŝ(p, q) (see also
Appendix A). For squares, µ = ν, it suffices to invert
only one of these terms. We thus perform the inverse
Laplace transform of the term qk−1−q/(pq− 1) first with
respect to p and then with respect to q, thereby leading
to Sk(ν, ν) = I with I given by (17). The integrand is
specified by F (q) = 2 and

f(q) = q + q−1 − (1 + q)x , x =
ln k

lnn
. (25)

The saddle point is q∗ = 1/
√
1− x, and by substituting

f(q∗) = 2
√
1− x− x and f ′′(q∗) = 2(1− x)3/2 into the

general formula (17), we obtain

Sk(ν, ν) ≃
exp

[
ν
(
2
√
1− x− x

)]
√
πν(1 − x)3/2

. (26)

The distribution of frozen sticks with length k is de-
fined by Pk(ν) = Sk(ν, ν)/

∑
k Sk(ν, ν), and we reiterate

that the quantities Sk are obtained as averages over all
realizations of the random breakage process (2). This
quantity is normalized,

∑
k≥2 Pk = 1, and its first mo-

ment is 〈k〉 =
∑

k≥2 kPk. By using equations (19) and

(26) we find that the length distribution adheres to the
scaling form

ln
(
1
2Pk

)

lnn
≃ Φ

(
ln k

lnn

)
(27)
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FIG. 4: The scaling function Φ(x) versus the scaling variable
x. Results from three different system sizes are compared with
the theoretical prediction. To evaluate Φ(x), the quantity
Sk(m,n) was obtained by numerical iteration of the recursion
equation (3), subject to the boundary condition (22).

with the scaling function

Φ(x) = 2
(√

1− x− 1
)
− x . (28)

Equation (27) constitutes an unusual scaling form as the
scaled logarithm of the length distribution Pk is a uni-
versal function of the scaled logarithm of the length k.
As a result, the convergence toward the ultimate asymp-
totic behavior is extremely slow as it involves logarithm
of system size (Fig. 4).
The scaling behavior (27)-(28) describes the distribu-

tion at large length scales, that is, ln k = O(lnn). Still,
the small-x behavior Φ(x) ≃ −2x− 1

4x
2 yields the be-

havior at smaller length scales,

Pk ≃ 2k−2 exp

[
− (ln k)2

4 lnn

]
. (29)

Therefore, the length distribution decays as a power-
law, Pk ≃ 2k−2 [26], at sufficiently small length scales,

ln k ≪
√
lnn. Beyond this length scale, the power-law

tail is suppressed by a log-normal term. We also note
that log-normal distributions naturally arise in multi-
plicative random processes [27, 28], and that the frag-
mentation process (2) can be formulated as such, for ex-
ample, (m,n) → (mx, n) +

(
m(1 − x), n

)
with x = i/m,

in the first line of (2).
In a finite system, the power-law tail holds over a lim-

ited range (Fig. 5). Further, the log-normal term is rel-

evant at length scales k2 determined by ln k2 ∼
√
lnn.

Similarly there is a series of length scales kb that are
specified by ln kb ∼ (lnn)(b−1)/b. For k ∼ kb, the bth

term in the Taylor expansion of Φ(x) affects the length
distribution. For instance, when k ∼ k4 we have

Pk ≃ 2 exp

[
−2 lnk − (ln k)2

4 lnn
− (ln k)3

8(lnn)2
− 5(ln k)4

64(lnn)3

]
.

Ultimately, at sufficiently large scales, the entire scal-
ing function (28) characterizes the length distribution
(Fig. 4).
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FIG. 5: The length distribution Pk versus k. Numerical re-
sults for three system sizes are compared with the theoret-
ical prediction. To evaluate Pk, the quantity Sk(m,n) was
obtained by numerical iteration of the recursion equation
(3), subject to the boundary condition (22). Not displayed
is the anomalous data point Pn = 2/S(n, n) corresponding
to the largest possible stick which shows a sharp jump as
Pn ≃ 2

√
2π lnAA−1 (see also [26]).

In appendix A, we derive the exact length distribution

Pk =
2

k(k + 1)
, (30)

which is realized in the limit n → ∞. This distribution
is properly normalized,

∑
k≥2 Pk = 1, and its power-

law tail Pk ≃ 2k−2 agrees with the asymptotic behavior
(29). We stress that (30) is exact for all k ≥ 2 whereas
(29) is only asymptotically exact, yielding the leading
behavior in the limit k → ∞. Furthermore, results of
numerical evaluation of the recursion equation (3) with
the boundary condition (22) are in excellent agreement
with this theoretical prediction (Fig. 5). Moreover, we
numerically validated the theoretical prediction P2 = 1

3
to within 0.1% using the extrapolation described in the
caption to figure 3. The exact length distribution (30)
can be expressed as a ratio of Gamma functions, the dis-
crete counterpart of a power-law. It can be derived by
treating the variables m and n as discrete, in contrast
with the continuum analysis leading to (29).
Finally, we investigate the moments of the quantity

Pk, defined by 〈kh〉 =
∑

k≥2 k
hPk. It is convenient to

normalize these moments by 〈k〉,

Mh =
〈kh〉
〈k〉 , (31)

with h > 1. By using the definition Pk = Sk/S and the
second sum rule in (21), we can express the normalized
moments through Sk(n, n),

Mh = n−2
∑

k≥2

khSk(n, n) . (32)

We now substitute (26) into this expression and convert
the sum over the discrete variable k into an integral over
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FIG. 6: The normalized moments Mh versus square area A for
h = 2, 3, 4. Also shown as a reference are the corresponding
theoretical predictions.

the continuous variable x by using k = eνx. With this
transformation of variables, the moments are given by

Mh ≃
√

ν

π

∫ 1

0

dx (1 − x)−3/4 eνφ(x) , (33)

with φ(x) = Φ(x) + (h + 1)x. The exponential
term dominates the integral in the limit ν → ∞.
The function φ(x) is maximal at the saddle point,
x∗ = 1 − h−2, and from the quadratic behavior
φ(x) = φ(x∗) +

1
2φ

′′(x∗)(x − x∗)
2, we deduce the leading

asymptotic behavior (Fig. 6)

Mh ≃ 2Aµ(h) with µ(h) =
(h− 1)2

2h
. (34)

Results of numerical evaluation of low-order moments are
in excellent agreement with this theoretical prediction.
The scaling exponent µ is a nonlinear function of

the index h, and therefore, the scaling behavior of the
first moment does not characterize high-order moments.
Hence, the moments exhibit multi-scaling asymptotic be-
havior.
It is interesting to compare the behavior with that

found for a counterpart of the fragmentation process (2)
where any point inside a rectangle may be selected at ran-
dom, and consequently, the horizontal and vertical sizes
of rectangles are not restricted to integers. In this case,
the number of fragments grows linearly with the number
of fragmentation events t, and conversely, the average
area of a fragment, 〈a〉, is inversely proportional to this
quantity, 〈a〉 ∼ t−1. In contrast with the behavior dis-
cussed above, the fragmentation process never stops and
the system does not reach a jammed state [25, 30].
To compare the two cases, we note that the aspect

ratio of a frozen rectangle r equals its length, r = k. For
the nonjamming process, the normalized moments of the
aspect ratio, Mh = 〈rh〉/〈r〉, also exhibit multi-scaling
asymptotic behavior Mh ∼ (A/〈a〉)µnonjam , where 〈a〉 is
the average area of a rectangle and

µnonjam =
√
h2 + 1−

√
2 (35)

1 2 3 4

h

0

1

2

3

µ
nonjam

µ

FIG. 7: The scaling exponents µ and µnonjam versus the mo-
ment index h.

is the nonlinear scaling exponent [25, 30]. No-
tably, the two spectra of exponents are different,
µ 6= µnonjam although both become linear at high orders,
µ ≃ µnonjam ≃ h as h → ∞. Figure 7 shows that multi-
scaling is more pronounced in the present case.

III. ASYMMETRIC FRAGMENTATION

We now generalize the fragmentation process (2) and
consider the case where the probabilities of horizontal
and vertical cuts may differ [26]. The asymmetric frag-
mentation process can be represented schematically as

(m,n) →
{
(i, n) + (m− i, n) prob. (1 − α)/2,

(m, j) + (m,n− j) prob. (1 + α)/2.
(36)

The parameter α controls the degree of asymmetry, and
without loss of generality, we assume 0 ≤ α ≤ 1. The
fragmentation process (36) reduces to (2) when there is
no asymmetry, α = 0, and it becomes one-dimensional,
when the asymmetry parameter is maximal, α = 1.
In the completely asymmetric case, the jammed state

contains n identical sticks of length n. Hence, the num-
ber of sticks is not proportional to the area, and also,
there is no logarithmic dependence on system size, unlike
(1). Below, we show that the logarithmic dependence on
system size disappears when the asymmetry parameter
exceeds the critical value

αc =
1√
2
. (37)

The average number of frozen sticks obeys

S(m,n) =
1− α

m− 1

m−1∑

i=1

S(i, n) +
1 + α

n− 1

n−1∑

j=1

S(m, j), (38)

subject to the boundary condition (4). This recurrence
reduces to (3) when the asymmetry parameter vanishes.
Once again, we employ the continuum approach. In

terms of the logarithmic variables (10), the quantity
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FIG. 8: The exponent γ given by (48) versus the asymmetry
parameter α. Also shown are results of numerical evaluation
of the recursion equations with A = 108. To estimate the
power-law exponent, we took into account the logarithmic
correction in the weakly asymmetric phase, according to (49).
The critical point (37) is indicated by the dashed vertical line.

S ≡ S(µ, ν) satisfies the partial differential equation

∂µ∂νS = S + α(∂µS − ∂νS) . (39)

We now repeat the steps leading to (13) and find that the
double Laplace transform, defined in (12), is given by

Ŝ(p, q) =
1 + α(p−1 − q−1)

pq + α(q − p)− 1
. (40)

Since the governing equation (39) is no longer symmetric
in the variables µ and ν, the Laplace transform (40) is not
symmetric when α 6= 0. We thus reiterate that results
are quoted only for squares.
To invert the Laplace transform (40), we split the

numerator 1 + α(p−1 − q−1) into q−dependent and
p−dependent terms: 1− α q−1 and αp−1. Due to asym-
metry, these two are no longer equivalent, and the aver-
age number of sticks in the jammed state S ≡ S(ν, ν) is
given by

S = I + J . (41)

The quantity I ≡ I(ν, ν) is obtained by inverting(
1− α q−1

)
/[pq + α(q − p)− 1] first with respect to the

conjugate variable p and then with respect to the con-
jugate variable q. Similarly, the quantity J ≡ J(ν, ν) is
obtained by inverting αp−1/[pq + α(q − p)− 1] first with
respect to q and then, with respect to p.
To compute the first term in (41), we follow the cal-

culations in the symmetric case, and find that I is an
integral of the form (15), specified by F (q) = q−1 and

f(q) = q − α+
β2

q − α
, β =

√
1− α2 . (42)

The saddle point is simply q∗ = β + α, and from the
general formula (17) we obtain

I ≃ β

β + α

e2βν√
4πβν

. (43)
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σ

FIG. 9: The power-law exponent, given in Eq. (50), versus
the asymmetry parameter α.

This asymptotic behavior resembles (1) in that the lead-
ing exponential behavior is suppressed by a logarithmic
term.
The second quantity in (41) is analogous in form to

(15): it is given by an integral over p, rather than q,

J =

∫ i∞

−i∞

dp

2πi
G(p) eνg(p) , (44)

with the functions

G(p) =
α

p(p+ α)
, g(p) = p+ α+

β2

p+ α
. (45)

However, the saddle point of the function g(p) is different,
p∗ = β−α. To evaluate the integral J , we simply replace
F (q∗), f(q∗), and f ′′(q∗) in (17) with G(p∗), g(p∗), and
g′′(p∗) respectively, to find

J ≃ α

β − α

e2βν√
4πβν

. (46)

Therefore, the two terms in the sum (41) are proportional
to each other, and by adding (43) and (46), we arrive at

S ≃ C
e2βν√
4πβν

, C =
1

2(α2
c − α2)

, (47)

with the critical point αc given in (37). The constant C
diverges as α ↑ αc, thereby indicating that the result (47)
is valid only when the asymmetry is sufficiently weak,
α < αc. Indeed, the integrand in (44) has two simple
poles: one at p = −α and another at p = 0. The first pole
is located to the left of the saddle point p∗, irrespective
of α. However, the second pole is located to the left of
the saddle point only when α < αc, and consequently,
Eq. (46) holds only in this regime.
To evaluate the integral J when α > αc, we deform the

integration contour so that it consists of a line parallel
to the imaginary axis which passes through the saddle
point p∗ and a small circle enclosing the origin, p = 0.
The residue at the origin gives the dominant contribu-
tion, J ≃ eν/α, which is valid when the asymmetry is
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FIG. 10: The scaling exponent, given in Eq. (52), versus the
moment index h for various values of the asymmetry param-
eter α.

sufficiently strong, α > αc. In this regime, the quantity
I in (43) is negligible, and consequently, S(ν, ν) ≃ eν/α.
In summary, the number of sticks in the jammed state

state grows algebraically with area A

S ≃ U Aγ , with γ =

{√
1− α2 α ≤ αc ,

1/(2α) α ≥ αc .
(48)

As long as there is some asymmetry, the growth is sub-
linear: γ < 1 when α > 0. The exponent γ is continuous
at the critical point, but its first derivative is discon-
tinuous at that point. Furthermore, the exponent γ is
concave when α < αc but it is convex when α > αc. The
critical value is γc = αc, and the convergence toward the
leading asymptotic behavior is slower near the critical
point (Fig. 8).
The prefactor U in (48) depends logarithmically on

area in the weakly asymmetric phase, but it is indepen-
dent of the area in the strongly asymmetric case. This
prefactor is given by

U =





C/
√
2πβ lnA α < αc,

Uc α = αc,

1 α > αc .

(49)

The constant C is quoted in (47). Hence, there is
logarithmic correction in the weakly asymmetric phase,
but the logarithmic correction disappears in the strongly
asymmetric phase. Numerically, we estimate the critical
prefactor Uc ≈ 0.4 and we note the “double discontinu-
ity”: the critical value Uc does not match either of the
limiting behaviors. On the one hand, we have U → 0 as
α ↑ αc in the large-area limit A → ∞, and on the other
hand, we have U → 1 as α ↓ αc.
The length distribution decays algebraically

Pk ≃ V k−σ, with σ = 1 + β − α , (50)

for k ≫ 1. This behavior is derived in Appendix B. The
power-law tail (50) generally holds for infinitely large sys-
tems. However, for finite systems, this behavior holds

FIG. 11: Illustration of the fragmentation process (53). Ini-
tially, the system consists of a single rectangle. Through a
series of random fragmentation events, the system arrives at
a jammed state where all rectangles are sticks with minimal
horizontal or vertical size.

in the range ln k ≪
√
lnn, as discussed above. Gen-

erally, the exponent σ decreases monotonically as α in-
creases, and it vanishes in the completely asymmetric
case (Fig. 9). Therefore, as the asymmetry parameter
becomes smaller, the tail of the length distribution de-
cays more sharply (see also Ref. [26]).
Interestingly, the exponent σ which characterizes the

tail of the length distribution has the same form (50) in
the weakly asymmetric phase, α ≤ αc and the strongly
asymmetric phase α ≥ αc. Yet, the prefactor V in (50)
depends algebraically on area in the strongly asymmetric
phase, but it is independent of the area in the weakly
asymmetric phase. This prefactor is given by

V =





2β(α2
c − α2) α < αc ,√

β/(2πU2
c lnA) α = αc√

β/(2π lnA)Aβ−1/(2α) α > αc .

(51)

Therefore, the length distribution depends on system size
in the strongly asymmetric phase, but it is independent
of system size in the weakly asymmetric phase.
From the length distribution Pk, it is also possible to

evaluate the moments Mh defined in (31). We find that
the moments grow algebraically with the area as in (34),
Mh ∼ Aµ. For asymmetric fragmentation, the spectrum
of scaling exponents is given by

µ =
β2

2(h+ α)
+

h+ α

2
− 1 . (52)

This spectrum reduces to (34) when fragmentation is
symmetric, but in contrast, the scaling exponents are lin-
ear, µ = h−1

2 , when fragmentation is completely asym-
metric. Figure 10 demonstrates how multi-scaling be-
comes less pronounced as the asymmetric nature of the
fragmentation process becomes stronger.

IV. FRAGMENTATION INTO FOUR

RECTANGLES

The fragmentation process (2) incorporates two
stochastic elements as both the fragmentation point and
the fragmentation direction are selected at random. The
latter element can be eliminated by generating four rect-
angles, rather than two, in each fragmentation event
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FIG. 12: A jammed configuration in a system of size 50× 50.

(Fig. 11). A continuous version of this planar fragmen-
tation process and related variants were analyzed in a
number of studies [29–34].
We now address this natural counterpart of the frag-

mentation process (2) where first an internal grid point
is selected at random, and then, two simultaneous cuts
are made, one in the horizontal direction and one in the
vertical direction. As a result, each fragmentation event
generates four rectangles (Fig. 11)

(m,n) → (i, j)+(m−i, j)+(i, n−j)+(m−i, n−j) , (53)

with randomly selected 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m− 1.
In contrast with (2), once the grid point is selected,
the outcome is deterministic. Again, rectangles with
m > 1 and n > 1 are active and otherwise, rectangles
with m = 1 or n = 1 are frozen. Starting with a single
m×n rectangle, the system eventually reaches a jammed
state where all rectangles are sticks, including minimal
1× 1 rectangles (Fig. 12).
The average number of frozen sticks in the jammed

state, S(m,n), satisfies the recursion equation

S(m,n) =
4

(m− 1)(n− 1)

m−1∑

i=1

n−1∑

j=1

S(i, j) , (54)

subject to the boundary conditions (4). For small rectan-
gles, the recursion equation gives S(2, 2) = 4, S(3, 3) = 7,
S(4, 4) = 32

3 , and so on. In contrast with the fragmenta-
tion process (2) where the average number of sticks for
narrow but long rectangles diverges logarithmically, these
quantities are now finite, and for example, S(2, n) = 4
and S(3, n) = 10− 6

n−1 . In general, we find the limiting
values

lim
n→∞

S(m,n) =
m(m+ 1)(m+ 2)

6
, (55)

from the recursion equation (54).

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14

(ln A)
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0.8
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π 
ln

 A
)1

/2
/A

numerical evaluation
fit

FIG. 13: The quantity S
√
2π lnA/A versus (lnA)−1. The

dashed line shows results of a fourth-order polynomial fit to
the data. Results of numerical evaluation of the recursion
equation (54) agrees with the theoretical prediction for the
leading asymptotic behavior to within 0.1%.

For large rectangles, the recursion equation (54) turns
into the partial differential equation

∂m∂n[mnS(m,n)] = 4S(m,n) . (56)

Using the logarithmic variables (10), we transform this
equation into a partial differential equation with constant
coefficients, ∂µ∂νS + ∂µS + ∂νS = 3S. By repeating the
steps leading to (13), we obtain the Laplace transform

Ŝ(p, q) =
1

pq

(p+ 1)(q + 1)− 1

(p+ 1)(q + 1)− 4
. (57)

Next, we rewrite this expression as a sum of two terms:
(2−1+q−1)/(pq+p+q+3) and (2−1+p−1)/(pq+p+q+3).
For squares, these two terms are equivalent and it suffices
to perform the inverse Laplace transform of the first term
with respect to p and then, with respect to q. We thus
obtain S(ν, ν) = I where I is given by the general integral
(17). The integrand is specified by the functions

F (q) =
q + 2

q(q + 1)
and f(q) = q − 1 +

4

q + 1
. (58)

From the condition f ′(q∗) = 0 we notice that the saddle
point remains q∗ = 1, and by using (17), we find the lead-
ing asymptotic behavior of the number of frozen sticks in
the jammed state (Fig. 13)

S ≃ 3A√
4π lnA

. (59)

In comparison with (1), the average number of frozen

sticks is now 3/
√
2 ≈ 2.12132 times larger. Results of

numerical evaluation of the recursion equation (54) are in
excellent agreement with the theoretical prediction (59).
As was the case for stochastic fragmentation, the average
number of jammed rectangles (59) extends to all rectan-
gles with a finite aspect ratio in the large-area limit.
For completeness, we quote the exact distribution of

stick length

Pk =
4

3k(k + 1)
, (60)
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for k > 1 and P1 = 1
3 . This form, which is realized in the

limit n → ∞, can be obtained using the method outlined
in Appendix A. Sticks with k ≥ 2 are doubly degener-
ate compared with minimal 1 × 1 rectangles and hence,
the quantity P1 is suppressed by a factor 2. The length
distribution has a power-law tail, Pk ≃ 4

3k
−2, which can

be established using continuum analysis used to obtain
(29). For a finite system, the power-law tail holds when

1 ≪ k ≪
√
lnn, while at larger length scales the distri-

bution is strongly suppressed by a log-normal term.
The planar fragmentation processes considered in this

investigation generate special tilings of two-dimensional
domains. Indeed, in the jammed configuration, sticks of
unit width and variable length cover the original rectan-
gle (Figures 2 & 12). The jammed configurations differ
from those in the heavily studied dimer tiling [35–41] in
two respects. First, the lengths of the sticks do vary dra-
matically [42–45]. Second, whereas in equilibrium prob-
lems jammed configurations are given equal weights, frag-
mentation is a dynamical process, and the different tiling
configurations are generally realized with different prob-
abilities.
The central quantity in tiling problem is the total num-

ber of jammed configurations which typically grows expo-
nentially with area. For the process (53), it is straightfor-
ward to show that T (m,n), the total number of jammed
configurations for a rectangle of size m× n, satisfies the
recursion equation

T (m,n)=
∑

1≤i≤m−1

1≤j≤n−1

T (i, j)T (m−i, j)T (i, n−j)T (m−i, n−j).

(61)
This recursion applies for all m ≥ 2 and n ≥ 2, and
it is subject to the boundary conditions T (m, 1) = 1
for all m ≥ 1 and T (1, n) = 1 for all n ≥ 1. As il-
lustrated in Fig. 14, for any jammed configuration, the
first fragmentation event can be uniquely identified. This
first fragmentation event divides the original rectangle to
four smaller and independent rectangles, thereby leading
to the recursion (61). The same does not hold true for
the fragmentation process (2) and for this reason, it is
not possible to write closed recursion equations for the
corresponding of number of jammed states.
A single iteration of the recursion (61) yields

the number of jammed configurations for ladders,
T (2, n) = n − 1, and a second iteration yields
T (3, n) = 1

3 (n− 2)(n2 − 4n+ 15). The exact expression

FIG. 14: Illustration of the fragmentation process (53). The
first fragmentation event can always be uniquely identified.
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FIG. 15: The total number of jammed configurations for
squares, T = T (n,n), obtained by numerical iteration of (61),
versus the area A = n2.

n 1 2 3 4 5 6 7 8

T (n, n) 1 1 4 33 436 9,524 354,224 23,097,969

TABLE I: The number of jammed states for small squares.

for T (4, n) is a seventh-order polynomial, and T (m,n)
quickly become unwieldy when m increases.
Table I lists the number of jammed configurations for

squares with n ≤ 7. Numerical iteration of the recursion
(61) shows that the number of jammed configurations
grows exponentially with area (see Fig. 15)

T ∼ eλA. (62)

For squares, the value λ = 0.2805 is obtained by fitting
the numerically evaluated quantity T (n, n) to an expo-
nential.

V. DISCUSSION

In summary, we studied planar fragmentation, which
can be viewed as dual to planar aggregation [46]. We
obtained analytically several properties of the jammed
state including the average number of rectangles, and
the length distribution of rectangles. In general, statisti-
cal properties become independent of the aspect ratio in
the large-area limit. Moreover, the length distribution of
rectangles in the jammed state has a power-law tail, and
the moments of this distribution exhibit multiscaling.
We also found a phase transition when the fragmenta-

tion process is asymmetric. Generally, the average num-
ber of jammed rectangles grows sub-linearly with system
size, and the exponent characterizing this growth varies
continuously with the asymmetry parameter. This ex-
ponent is concave in the weakly asymmetric phase and
convex in the strongly asymmetric phase. In addition,
The length distribution is independent of system size in
the weakly asymmetric phase, but it does depend on sys-
tem size in the strongly asymmetric phase.
Our theoretical analysis relies on recursion equations

that describe the final state of the system. Since each
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fragmentation event involves a single rectangle, the re-
cursion equations are linear. For large systems, we em-
ployed the continuum approach and then applied the
Laplace transform to obtain exact results for the lead-
ing asymptotic behavior. Numerical evaluation of the
recursion equations support the theoretical predictions.
The recursion equations bypass the evolution toward

the jammed state and hence, directly yield statistics of
the final configuration. The fragmentation rate may be
an arbitrary function of the area, yet, as long as the
fragmentation point is selected at random, the recursion
equation (3) holds. For specific fragmentation rates, it
is natural to study the evolution towards the jammed
state, including in particular the average jamming time,
and the distribution of jamming times.
Our analysis yields statistics of single fragments in the

jammed state such as the first moment and the length
distribution. Missing from our analysis, however, are
statistics of multiple fragments such as correlations be-
tween the orientations of neighboring sticks. Both sets
of statistics are relevant for characterizing the geometri-
cal structure of planar fragmentation patterns found in
martensitic transformations [26], breakage of brittle ob-
jects [47, 48], cracking of soils [49], and drying of suspen-
sions [50].
The behavior in higher dimensions can be studied as

well. In the three-dimensional generalization of (2), the
jammed state consists of rectangular plates, that is, boxes
with unit width. In this case, we find that the average

number F of frozen boxes grows as

F ≃
(√

3

2

)3
V

π lnV
, (63)

with V the volume of the original box. The area distribu-
tion of jammed plates represents an interesting challenge.
The process (53) can be also generalized to d dimen-

sions. Here, each fragmentation event generates 2d boxes.
The jammed state consists of frozen boxes, each of which
has at least one minimal side. The number of frozen
boxes F grows as

F ≃ 2d − 1√
d

V
(
4π
d lnV

)(d−1)/2
. (64)

This result, which generalizes (59), is derived in Ap-
pendix C. A frozen box is characterized by d−1 nontrivial
lengths and it is an interesting challenge to characterize
the distribution of these lengths.
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Appendix A: Length Distribution

To obtain the length distribution for an infinite system,
we treat m and n as discrete variables. To this end, we
introduce the generating function

S(x, y) =
∑

m≥1

∑

n≥1

S(m,n)xm−1yn−1 . (A1)

The generating function S ≡ S(x, y) satisfies the partial
differential equation

∂x∂yS = (1− x)−1 ∂yS+ (1− y)−1 ∂xS . (A2)

To obtain this equation, we multiply the recursion
equation (3), that governs the averages S(m,n), by
(m− 1)(n− 1)xm−2yn−2 and sum overm ≥ 2 and n ≥ 2.
Furthermore, equation (A2) is subject to the boundary
conditions S(x, 0) = x/(1− x) and S(0, y) = y/(1− y).
We now introduce the variables

ξ = − ln(1− x), η = − ln(1− y) . (A3)

This transformation turns (A2) into a partial differential
equation with constant coefficients

∂ξ∂ηS = ∂ξS+ ∂ηS , (A4)

while the boundary conditions become S(ξ, 0) = eξ − 1
and S(0, η) = eη − 1. Next, we introduce the double
Laplace transform

Ŝ(p, q) =

∫ ∞

0

dξ e−pξ

∫ ∞

0

dη e−qη
S(ξ, η) . (A5)

Using the governing equation (A4), we obtain

Ŝ(p, q) =
p−1 + q−1

pq − p− q
. (A6)

We now invert the Laplace transform with respect to one
of the conjugate variables, to obtain the sum

S(ξ, η) =

∫ i∞

−i∞

dq

2πi

1

q(q − 1)
eηq+ξq/(q−1)

+

∫ i∞

−i∞

dp

2πi

1

p(p− 1)
eξp+ηp/(p−1) .

Thus far, our analysis is exact and in particular, it applies
to all m and n. We now restrict our attention to squares,
ξ = η and further, we focus on the leading asymptotic
behavior for large systems which is captured by the lead-
ing behavior when η → ∞. By performing the inverse
Laplace transform over the second conjugate variable, we
obtain

S(η, η) ≃ e4η√
4πη

. (A7)

Next, we analyze the length distribution Sk(m,n). Its
corresponding generating function satisfies Eq.(A4), sub-
ject to the boundary conditions Sk(ξ, 0) = (1 − e−ξ)k−1

Sk(0, η) = (1− e−η)k−1. These two boundary conditions
follow from Sk(x, 0) = xk−1 and Sk(0, y) = yk−1. By
repeating the steps leading to (A6), we obtain

Ŝk(p, q) =
Γ(k)

pq − p− q

[
(q − 1)Γ(q)

Γ(k + q)
+

(p− 1)Γ(p)

Γ(k + p)

]
.

We can verify that S(p, q) =
∑

k≥2 Sk(p, q), whereas the

corresponding quantity in (24), which is obtained by
treating the variables m and n as continuous, violates
this normalization. The leading asymptotic behavior in
the limit η → ∞ is given by

Sk(η, η) ≃
2

k(k + 1)

e4η√
4πη

. (A8)

The average number of sticks does not depend on as-
pect ratio and thus, we assume Sk(m,n) ≃ PkS(m,n)
at large sizes. Then, according to the definition (A1)
and the leading asymptotic behavior (A7) we have
Sk(η, η) ≃ Pke

4η/
√
4πη. By comparing this expression

with (A8), we deduce the length distribution Pk in (30).
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Appendix B: Asymmetric fragmentation

The average number of sticks with a given length sat-
isfies the partial differential equation (3) subject to the
boundary conditions (23). The double Laplace trans-
form, defined by (12), is given by

Ŝk(p, q) =
(q − α)k−1−q + (p+ α)k−1−p

pq + α(q − p)− 1
. (B1)

To perform the double inverse Laplace transform, we
rewrite the numerator as a sum of the q-dependent
quantity (q − α)k−1−q and the p-dependent quantity
(p + α)k−1−p. The quantity Sk(p, q) is therefore a sum
of two terms as in (41).
The first term in the sum (41) is the integral I defined

in (15) with F (q) = 1 and

f(q) = q − α+
β2

q − α
− (1 + q)x . (B2)

Here, we again used the notations β =
√
1− α2 and

x = ln k/ lnn. The saddle point of the function f(q) is
q∗ = β(1 − x)−1/2 + α and with (17), we arrive at

I =
exp

[
ν
(
2β

√
1− x− x− αx

)]
√
4πν(1− x)3/2/β

≃
√
β√

4πν
e2βν k−(1+β+α) . (B3)

By evaluating the small-x behavior of the general expres-
sion in the first line, we obtained the large-k behavior in
the second line.
The second term in the sum (41) is the integral J de-

fined in (44) with G(p) = 1 and

g(p) = p+ α+
β2

p+ α
− (1 + p)x . (B4)

The saddle point of the function g(p) is
p∗ = β(1− x)−1/2 − α. By using the analog of the
general expression (17), we obtain

J =
exp

[
ν
(
2β

√
1− x− x+ αx

)]
√
4πν(1− x)3/2/β

≃
√

β

4πν
e2βν k−(1+β−α) . (B5)

The large-k behavior in the second line follows from the
small-x behavior in the first line. By comparing the
tails (B3) and (B5), we conclude that I is negligible
compared with J , and therefore Sk(ν, ν) ≃ J for suf-
ficiently large k. The power-law tail (50) follows from
Pk = Sk(ν, ν)/S(ν, ν).
So far, we have not differentiated between horizon-

tal sticks and vertical ones. When the fragmentation
process is asymmetric as in (36), we expect more hori-
zontal sticks than vertical ones when α > 0, and that

the opposite is true when α < 0 (see Ref. [26]). The
average number of horizontal sticks satisfies (39) with
the boundary conditions Sk(µ, 0) = e−µδ(µ − ln k) and
Sk(0, ν) = 0; similarly, the average number of verti-
cal sticks satisfies (39) with the boundary conditions
Sk(µ, 0) = 0 and Sk(0, ν) = e−νδ(ν−ln k). Let P+

k be the
length-distribution of sticks of the dominant orientation
and P−

k be the length-distribution of sticks of the sub-
dominant orientation. It is straightforward to show that
the first term in the numerator of (B1) corresponds to
the subdominant distribution, and that the second term
in (B1) yields the dominant distribution. Thus, we have

P+
k ∼ k−σ− and P−

k ∼ k−σ+ . (B6)

with σ± = 1 + β ± |α|. This tail behavior is compatible
with equation (50) as σ = σ−.

Appendix C: Arbitrary Dimensions

The process (53) can be generalized to d dimensions
where in each fragmentation event a box breaks into 2d

boxes. This elementary event is repeated until a jammed
state is reached. The recursion equation for the num-
ber of frozen boxes is a straightforward generalization of
Eq. (54) and it includes d sums.
The multivariate Laplace Transform is given by a

straightforward generalization of (57)

Ŝ(q1, q2, . . . , qd) =

∏d
ℓ=1(qℓ + 1)− 1

∏d
ℓ=1(qℓ + 1)− 2d

×
d∏

ℓ=1

1

qℓ
. (C1)

The inverse Laplace transform is a d−fold integral, and
we first invert this multivariate transform with respect
to the conjugate variable qd. Further, we restrict our
attention hyper-cubes for which lnnℓ = ν for all ℓ, and
then

S =

∫ i∞

−i∞

dq1
2πi

· · ·
∫ i∞

−i∞

dqd−1

2πi
Φ(q) eνφ(q) . (C2)

Here, we introduced the shorthand notation
q = (q1, . . . , qd−1) and

φ(q) =

d−1∑

ℓ=1

qℓ − 1 +
2d

∏d−1
ℓ=1 (qℓ + 1)

. (C3)

The saddle point is q∗ = (1, . . . , 1), and at this point, it is
easy to show that φ(q∗) = d and Φ(q∗) = (2d − 1)/2d−1.
We tacitly do not display the function Φ(q) because only
its value at the saddle point is needed.
To evaluate the integral (C2), we expand φ(q) near the

saddle point using qℓ = 1 + iuℓ/
√
ν, and then,

φ(u) ≃ d− U(u)

ν
, U(u) =

1

2

d−1∑

a=1

a∑

b=1

uaub . (C4)
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The Gaussian integral can be computed in arbitrary di-
mension,

∫ ∞

−∞
du1 · · ·

∫ ∞

−∞
dud−1e

−U(u) =
(4π)(d−1)/2

√
d

. (C5)

The computation of the Gaussian integral relies on the
fact that the (d− 1)× (d− 1) matrix associated with the
quadratic form U(u) has eigenvalues 1

2 (d, 1, . . . , 1). The
integral (C5) completes the derivation of (64).


