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Recombination is one of the leading forces of evolutionary dynamics. Although the importance of both

recombination and migration in evolution is well recognized, there is currently no exact theory of evolutionary

dynamics for large genome models that incorporates recombination, mutation, selection (quasispecies model

with recombination) and spatial dynamics. To address this problem, we analyze the simplest spatial evolutionary

process, namely, evolution of haploid populations with mutation, selection, recombination and uni-directional

migration, in its exact analytical form. This model is based on the quasispecies theory with recombination, but

with replicators migrating from one habitat to another. In standard evolutionary models involving one habitat,

the evolutionary processes depend on the ratios of fitness for different sequences. In the case of migration,

we consider the absolute fitness values because there is no competition for resources between the population

of different habitats. In the standard model without epistasis, recombination does not affect the mean fitness

of the population. When migration is introduced, the situation changes drastically such that recombination

can affect the mean fitness as strongly as mutation, as has been observed by Li and Nei for few loci model

without mutations. We have solved our model in the limit of large genome size for the fitness landscapes having

different peaks in the first and second habitats and obtained the total population sizes for both habitats as well

as the proportion of the population around two peak sequences in the second habitat. We identify four phases in

the model and present the exact solutions for three of them.

All evolving genomes recombine via different mechanisms,

and in sexually reproducing organisms, multiple recombina-

tion events between homologous chromosomes occur in each

meiotic division [1]-[6]. Although recombination clearly is

one of the central process in evolution, the evolutionary ad-

vantages it provides remain a matter of active study and de-

bate [2]-[6]. There is an exact analytical solution for recom-

bination processes with a single crossover on symmetric fit-

ness landscapes [7]-[11]. However, there is no exact theory

for recombination with mutation combined with migration for

symmetric landscapes although it has been suggested [12] that

recombination is central to the evolutionary process in space.

The evolutionary dynamics in space is complicated, but can be

emulated as a simple migration between two habitats. Evo-

lution with both recombination and migration was first inves-

tigated in a series of papers [13]-[24]. The mathematical bi-

ologists discovered that even in the absence of epistasis, mi-

gration can still create an effective epistasis [13]. Most of

these studies describe the diploid evolution and do not take

into account mutation. For the recombination version of qua-

sispecies model, we investigate the haploid case with muta-

tion and selection for large genome length. The quasispecies

model with migration (without recombination) has been in-

vestigated in [25],[26] using a modified quasispecies model

[28]-[39]. The migration model can capture some features of

evolution in space while allowing an exact analytical solution.

In this letter, we formulate a model of evolution with migra-
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tion and recombination, based on the Crow-Kimura model,

and solve this model exactly. Our exact solution supports the

hypothesis [12] on a particularly important role of recombina-

tion for the evolution in space.

Our results can be viewed as both a solution to the spatial

aspects of recombination and a new direction of quasispecies

analysis that involves space dependence. The space depen-

dence of evolutionary dynamics is usually ignored in quasis-

pecies research, but there are some situations where space de-

pendence strongly affects evolution. The space structure is as-

sumed to play a crucial role in the case of the hypercycle via

compartmentalization of replicators that circumvents the er-

ror threshold problem [40].In [41, 42], evolution models with

migration are used to model cancer development. The quasis-

pecies model has been numerically investigated with a simpli-

fied mutation scheme [25]. The quasispecies version of [25]

has also been solved exactly [26]. In [27] the Eigen model

version of migration between two habitats has been solved

in case of single peak fitness landscape. The general case of

symmetric fitness landscape analytically is unsolvable.

The conventional quasispecies model includes selection,

mutation and dilution processes. The frequencies of all types

in the population decrease at the same rate and are related to

the average fitness of the population. The population size is

constant. Dilution corresponds to non-linear interaction terms

in the evolutionary equation: every type interacts with the oth-

ers competing for the resources.

In the evolutionary models with migration, there is com-

petition for the resources within each habitat, and migration

from one habitat to another. In such a case, there is no reason

to assume a constant population size. Hence, the notion of

saturation is introduced instead of dilution [25].
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Consider an evolutionary model with two types of nu-

cleotides, where L is the genome length. In the Crow-Kimura

model with recombination, we have probabilities p̂i for the

2L sequences. There are mutation processes with transition

rates from the j-th type to the i-th type µij (nonzero only

between neighbor states i and j). The balance condition is

µij = 0. There is also a recombination process when the se-

quence i and j meet and exchange alleles at some position in

the genome.

Let us consider a symmetric fitness landscape, where fitness

depends on the total number of mutations [7],[8]. In such a

model, the population is distributed among Hamming classes,

i.e. sets of sequences with the same number of mutations.

We denote Pl the total probability of all the sequences with l
mutations. We set the mutation rate to be equal to 1, and the

recombination rate c/2. Recombination with the rate c/2 is

equivalent to horizontal gene transfer (HGT) with the rate c.
In models of HGT, an allele at some position in the genome

is replaced by the corresponding allele from another sequence

that is randomly chosen from the entire population. Assuming

the fitness of a sequence with l mutations to be rl, we derive

dPl

dt
= Pl(rl − 1−R)

− cPl

[

(1−
l̄

L
)
l

L
+ (1−

l

L
)
l̄

L

]
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L
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[

1 + c
l̄

L
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L
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(1)

where 0 ≤ l ≤ L, l̄ =
∑

l lPl is the mean number of

mutations, and R
∑

l Pl(t)rl is the mean fitness. The term
L−l+1

L
Pl−1c

l̄
L

has an explicit meaning: in the l − 1-th Ham-

ming class, a +1 allele ( with the probability L−l+1
L

) is re-

placed with the −1 allele, (with the probability l̄
L

). In the

same way, we can deduce the terms ∼ Pl+1. Then, the term

∼ Pl is derived from the balance condition.

For the case of l = 0, l = N , we drop the terms P−1, PN+1.

A balance condition is usually required at the initial t = 0:

∑

i

Pl = 1

and this condition holds for any moment of time. The balance

condition is a reasonable mathematical constraint, and also

directly describes serial transfer experiments with viruses in a

chemical reactor. The model described by Eqs. (1),(2) has an

important property: only the ratio of the Wrightian fitnesses

(the difference of the Malthusian fitnesses) is important for the

evolution processes. In the case of two habitats, the situation

changes: like mutation, migration is a kinetic process, and the

mean fitness depends on the absolute fitnesses as well as the

mutation and migration rates.

Two-habitat model with recombination. Consider now

the two-habitat model, where Pl is the total frequency of the

replicator of the l-th Hamming class from the first habitat, Ql

is the frequency of the same class in the second habitat, and rl
and r̂l are the corresponding fitness values:
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(3)

where α is defined as the rate of migration from the first habi-

tat to the second habitat with 1 and µ as the mutation rates.

There is no motivation for maintaining the balance of the total

population, so saturation functions −PlP̂ and −QlQ̂ have to

be introduced to restrict the population growth (this is equiv-

alent to degradation depending on the population size). The

population sizes in both habitats become important character-

istics of the state of the model and there is an ambiguity in the

choice of the saturation function.

Following [25], we choose for P̂ and Q̂:

P̂ =
∑

l

Pl, Q̂ =
∑

l

Ql, (4)

which implies saturation of the population growth. We can

actually choose:

P = φ(
∑

l

Pl), Q̂ = φ(
∑

l

Q), (5)

φ(P ) is a polynomial function with the property φ(0) = 0.

Symmetric fitness landscape. Consider Eq. (4) where the

fitnesses can be described by the smooth functions:

rl = f(xl), r̂l = g(xl),

and xl = 1− 2l/L.

A trivial solution is:

P̂ = 0. (6)

Consider the non-trivial solutions, first, for the zero recom-

bination case. Fig. 1 illustrates the dependence of the sec-

ond habitat population size on the migration rate. We observe
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FIG. 1: The population size in the second habitat Q = Q̂ versus

the transition rate α for N = 100, f(x) = 0.05x + 0.95, g(x) =
0.95 − 0.05x, α = 1, µ = 0.032, c = 0. The smooth line is the

analytical solution, the solid dots show the numerical results. There

are three intervals of solutions. In the interval [0, x1], there is a two-

peak distribution in the second habitat, with the solution given by

Eqs.(14)-(17) with c = 0; in the interval [x1, x2], there is a single-

peak distribution in the second habitat, with the solution given by

Eq.(12); and in the third interval [x2, 1], there is a nonzero population

only in the second habitat, with the solution given by the standard

Crow-Kimura model. x1 = 0.0581, x2 = 0.9191

plateaus at the very low and very high migration rates but a

concave function in the mid-range (Fig.1). The concave curve

corresponds to the one-peak distribution, whereas the plateaus

reflect the two-peak distribution.

Let us now return to the non-zero recombination case. The

equation for the first habitat is independent of the second habi-

tat. Let us assume:

Pl = exp[Nu(1− 2l/L)].

Using the formulas Pl±1 = Ple
−2u′

, we derive

P̂ = f(x) +
1 + x

2
(1 + c

1− s1
2

)e2u
′

+

1− x

2
e−2u′

(1 + c
1− s1

2
)− α− 1− c

1− xs1
2

. (7)

where u′ = du/dx.

This is, simply, the equation for the Crow-Kimura recom-

bination model [11], the only difference being that fitness is

changed by −α, and R is replaced with P̂ . To obtain the value

of P̂ , we turn to the righthand side of the equation to derive

the minimum of the expression as a function of u′. Thus:

P̂ = Max[f(x) +

√

(1 − x2)((1 +
c

2
)2 −

c2s21
4

)

−1− c
1− xs1

2
− α]

∣

∣

∣

x
. (8)

We introduce the surplus of the distribution:

s =

∑

l Pl(1 − 2l/L)
∑

l Pl
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FIG. 2: The probability distribution in the second habitat P versus

l for N = 100, f(x) = 0.05x + 0.95, g(x) = 0.95 − 0.05x, α =
1, µ = 0.032, α = 0.04, c = 0, the case of the first horizontal line

in Fig. 1. A two-peak distribution is observed.
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FIG. 3: The probability distribution in the second habitat P versus

l for N = 100, f(x) = 0.05x + 0.9, g(x) = 0.9 − 0.05x, α =
0.02, µ = 0.032, α = 0.2, c = 0, the central region of the graph in

Fig. 1. A single-peak distribution is observed.

At the maximum point, we have u′ = 0 and obtain

P̂ = f(s1)− α. (9)

Importantly, s1 does not depend on α.

The correlated phase in the second habitat. We have to

choose the maximum among Eq. (5) and (7). Thus, as before,

there are three phases: extinction phase (5), non-selective

phase (s1 = 0 in Eq. (7)) and selective phase (s1 > 0 in

Eq. (7)).

We first focus on the second habitat. Summing over the

index l in the second equation, we derive an exact relation

(Q̂)2 = (Q̂)

∑

l r̂lQl

Q̂
+ αP. (10)

When deriving the solution for the second habitat, we en-

counter two situations: (a) a distribution around the peak se-

quence of the first habitat, and (b) distributions around the two

peaks, where the first peak corresponds to the distribution for
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FIG. 4: The population size in the second habitat Q = Q̂ versus mi-

gration rate a = α for N = 100, f(x) = 0.05x + 0.9, g(x) =
0.9 − 0.05x, α = 0.6, µ = 0.032, c = 0.1. The dashed line

represents the analytical solution, and the solid line represents the

numerical result. Four intervals of the solution are observed. In

the interval [0, 0.03], there is a two-peak distribution in the second

habitat, Q is given by Eqs. (14)-(17); in the interval [0.03, 0.955],
there is a single-peak distribution in the second habitat given by Eq.

(12); in the third interval [0.955, 0.975], increase of the mean fitness

with α is observed, and there is no solution; in the fourth interval

0.975 < α, there is a nonzero population only in the second habitat,

with the simple solution given by the standard Crow-Kimura model.
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FIG. 5: The probability distribution in the second habitat P versus

l for N = 100, f(x) = 0.05x + 0.9, g(x) = 0.9 − 0.05x, α =
0.965, µ = 0.032, c = 0.1. A single-peak distribution is observed.

the first habitat and the second peak corresponds to the Crow-

Kimura model for the second habitat.

Let us denote the population size in the second habitat near

the first peak as q1, and the population size near the second

peak as q2.

We can consider two cases, the first (uncorrelated) one with

two peaks:

q1 ∼ q2, (11)

and the second (correlated) one with a single peak:

q2 ≪ q1. (12)

Consider now the case of Eq. (15) for strong correlation

between Pl and Ql with q2 = 0.

Eq. (2) gives

(g(s)− Q̂)Q̂+ (f(s)− α)α = 0. (13)

This is the first solution for the population size in the second

habitat.

The uncorrelated phase with two-peak distribution. Let

us assume that the distribution has two peaks. The first one is

just s1 and the second one is some unknown s2.

We assume that Ql has the following representation:

Ql = exp[Lū(1− 2l/L)].

Then we derive, far from s1:

Q̂ = g(x) +
1 + x

2
(1 + c

1− s1
2

)e2ū
′

+

1− x

2
e−2ū′

(1 + c
1− s

2
)− α− 1− c

1− xs

2
, (14)

where s2 is the point of maximum, and we obtain

Q̂ = g(s2). (15)

Near the s1, Eq. (2) gives

q1 =
αP̂

g(s2)− g(s1)
, (16)

where P̂ is given by Eq. (6).

Now s in Eq. (13) is a linear combination of s1 and s2,

s =
q1s1 + q2s2
q1 + q2

= s2 +
q1(s1 − s2)

g(s2)
. (17)

Solving for the minimum of Eq. (13) via u′ and the maximum

via x, we obtain

g(s2) = Max[g(x) +

√

(1− x2)((µ +
c

2
)2 −

c2s2

4
)

−µ− c
1− xs

2
− α]

∣

∣

∣

x
. (18)

Substituting Eq.(16) into Eq.(17), we obtain a system of

equations for the variables x and s2.

Different phases for the population distribution. For the

case without recombination, we obtain a concave graph with

local plateaus and a global maximum point (see Fig. 1 for

more information). There are three regimes for the population

size in the second habitat. The plateaus correspond to the two-

peak (bi-modal) distribution in Fig. 2, and the single-peak

distribution in Fig. 3 corresponds to the central part of the

curve in Fig. 1.

In the case of nonzero-recombination, we found four

regimes (see Fig. 4) where we observe a global maximum

and two local minima.

The most important finding of this work is the decrease of

mean fitness due to recombination in our model without epis-

tasis for both habitats and with different selection coefficients.

We hypothesize that this is a general phenomenon whereby
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migration followed by recombination results in effective epis-

tasis.

The case of a general saturation function. The results de-

rived thus far have been for a specific choice of the saturation

function given by Eq.(3). Let us now consider the general case

given by Eq. (4). We obtain an exact relation

(Q̂)φ(Q̂) = (Q̂)

∑

l r̂lQl

Q̂
+ αP. (19)

Then, we obtain the following equation by taking the limit at

large L for the correlated phase

(g(s)− φ(Q̂))Q̂+ (f(s)− α)α = 0. (20)

This equation is nonlinear, and a mathematical problem

arises for the proper choice of Q̂. The solution with the max-

imum value of Q̂ can be chosen. We can use our formulas to

obtain solutions for different schemes of saturation given that

there is no single scheme for such a phenomenon.

In conclusion, recombination is one of the leading forces

of evolutionary dynamics, and it is crucial for exploring and

understanding different aspects of evolution. Real-world evo-

lutionary dynamics unravel in space, with migration between

different habitats occurring at a certain rate. This includes

evolutionary dynamics which involve recombination. There-

fore, it is essential to investigate the space-dependence of such

evolutionary processes and to identify the boundaries within

which space-dependence can be safely ignored. We have an-

alyzed the space dependence of evolutionary dynamics with

recombination by using a simple quasispecies model with mi-

gration between two habitats. We obtained the first exact solu-

tion of such dynamics. While a series of results about recom-

bination in space have been documented, our work closes an

important lacuna by incorporating mutation, recombination,

selection and migration. Our proposed quasispecies model

can describe the critical features of evolutionary dynamics

while allowing for an exact analytical solution. Numerical ex-

periments corroborate our analytical solutions, which are ex-

act in the large genome length limit. We have also proved that

the mean fitness in the steady-state depends on the absolute

values of Wrightian fitnesses, rather than their ratio (as is the

case for evolution without space dependence). While in the

zero epistasis case, recombination affects only the dynamics

of the evolutionary process without changing the mean fitness,

the situation drastically changes when asymmetric migration

between two habitats is introduced. In this case, recombina-

tion can affect mean fitness as much as mutation. When solv-

ing our model in the steady-state, we observe either a distri-

bution grouped around single-peak or a distribution grouped

around two peaks. The order parameters of the model are the

total population sizes in the habitats as well as the fractions

of the populations around the peaks. There are four phases

in the model, and we obtained the exact solutions for three of

these. We derived the steady-state distribution and the size of

populations in the two habitats in the exact form in the limit of

large L. We also obtained the solution for the correlated case

in which the distributions in the two habitats have the same

peak position, defined by the peak in the first habitat. Solving

for the third phase in our classification, which is the situation

just before the extinction of the population in the first habi-

tat, motivates future work. Our results are important as we

have identified new phases of evolutionary dynamics which

are universal in nature.
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