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We identify putatively maximally dense packings of tangent-sphere trimers with fixed bond angles
(θ = θ0) using a novel method, and contrast them to the disordered jammed states they form
under quasistatic and dynamic athermal compression. Incommensurability of θ0 with 3D close-
packing does not by itself inhibit formation of dense 3D crystals; all θ0 allow formation of crystals
with φmax(θ0) > 0.97φcp. Trimers are always able to arrange into periodic structures composed
of close-packed bilayers or trilayers of triangular-lattice planes, separated by “gap layers” that
accomodate the incommensurability. All systems have φJ significantly below the monomeric value,
indicating that trimers’ quenched bond-length and bond-angle constraints always act to promote
jamming. φJ varies strongly with θ0; straight (θ0 = 0) trimers minimize φJ while closed (θ0 = 120◦)
trimers maximize it. Marginally jammed states of trimers with lower φJ (θ0) exhibit quantifiably
greater disorder, and the lower φJ for small θ0 is apparently caused by trimers’ decreasing effective

configurational freedom as they approach linearity.

I. INTRODUCTION

Identifying the densest packings of congruent parti-
cles has fascinated mankind for centuries [1]. Compu-
tational techniques developed in recent years have fa-
cilitated identifying the densest crystalline packings of
ellipsoids [2], the Platonic and Archimidean solids [3],
“superballs” [4], and a wide variety of convex and con-
cave polyhedra [5, 6]. Such anisotropic particles have
proven broadly useful since they can be assembled into
structures with complex, tunable order [7, 8].
In contrast, dense packings of particles composed of

fused spheres have received far less attention. This is sur-
prising because their quenched intraparticle constraints
(i.e. the distances between and relative orientations of the
fused spheres) are tunable and are not in general com-
patible with 3D close-packing. For example, particles
composed of 8 tangent spheres fused into a cube obvi-
ously cannot pack at φcp = π/

√
18 ≃ .7405 as individual

spheres can. Thus fused-sphere particles offer many of
the same opportunities for forming solids with tunable
order that those with more exotic shapes do, but with
the advantage of being far easier to synthesize.
In experiments, of course, anisotropic colloidal and

granular particles do not typically form bulk crystalline
phases. Special techniques are necessary to avoid jam-
ming or glass-formation. However, a multitude of such
techniques are now available [9, 10], and understanding
particles’ densest possible packings remains highly useful
for understanding and ultimately controlling those they
form under realistically achievable preparation protocols
[11, 12]. Thus studies that characterize both the dens-
est packings that a given class of fused-sphere particles
can form and those that they do form under a variety of
preparation protocols, and identify key reasons for any
differences between these, are of particular interest.
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Here we perform such a study for bent-core fused-
sphere trimers. As illustrated in Figure 1, their shape
can be characterized using two parameters: the bond an-
gle θ0 and the ratio R of intermonomer bond length to
center-monomer diameter. Tangent-sphere trimers have
R = 1; smaller values of R lead to overlap. While the
first colloidal dimers and trimers had R < 1 [13, 14],
“colloidomers” with R ≃ 1 have recently been synthe-
sized [15, 16], and granular trimers with R ≃ 1 can be
produced using readily available techniques such as spot
welding, adhesive bonding, and 3D printing [17–19]. Re-
cent experiments [19, 20] employing 3D-printed granular
trimers have shown that closed (θ0 = 120◦) and straight
(θ0 = 0) trimers respectively maximize and minimize
the packing efficiency and elastic moduli of these sys-
tems’ disordered jammed states; associated simulations
[20] have predicted that a complex interplay of θ0 and R
determines these properties. In this paper, we will focus
primarily on the tangent-sphere case because it allows for
straightforward identification of the densest packings and
comparison to the very extensive literature on monodis-
perse hard spheres.

θ0
R

FIG. 1. Rigid bent-core trimers with bond angle θ0 and bond-
length/monomer-diameter ratio R. Here we focus primarily
on the tangent-sphere (R = 1) case.

The organization of the remainder of the paper is
as follows. In Section II we describe a novel method
for identifying bent-core tangent-sphere trimers’ densest
crystalline packings, and characterize how the packings
obtained via this method vary with θ0. In Section III
we contrast these to the disordered, jammed solid mor-
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phologies trimers form under both dynamic and qua-
sistatic athermal compression, and also investigate the
roles played by monomer overlap (R < 1) and spatial di-
mension. Finally, in Section IV we summarize our results
and conclude.

II. MAXIMALLY DENSE PACKINGS

A. Methods for obtaining crystalline structures

We begin with the hypothesis that the densest
crystalline packings of tangent-sphere trimers include
many close-packed planes. This must be true for
θ0 = 0, cos−1(5/6) ≃ 33.5573◦, 60◦, cos−1(1/3) ≃
70.5288◦, 90◦, and 120◦ since trimers with these θ0 can
form 3D close-packed lattices at the maximum sphere
packing density φcp. It is reasonable to suppose that the
densest crystals formable for other θ0 close to these six
values will be slight perturbations of close-packed lat-
tices. Thus we employ a method that generates 3D crys-
tals by first generating lattice planes that vary away from
those found in close-packed lattices in a controlled fash-
ion and then finding the optimal ways to stack them.
The first step is to define the planar configuration

shown in Figure 2(a). This configuration is a 2D Bra-

vais lattice with lattice vectors ~b1 = {1, 0, 0} and ~b2 =
{cos(α), sin(α), 0}. The positions of spheres 1 − 8 are
defined in Table I. If α = 60◦, the reference sphere con-
tacts spheres 1, 3, 4, 5, 7, and 8, forming the trian-
gular lattice. If α = 120◦, the reference sphere contacts
spheres 1, 2, 3, 5, 6, and 7, again forming the triangular
lattice. Otherwise the reference sphere contacts spheres
1, 3, 5, and 7, forming a less-dense 2D lattice, e.g. the
square lattice for α = 90◦. Now suppose [as illustrated in
panel (c)] that a second identical plane is stacked above

the first one, and define ~b3 as the vector from the center
of the reference sphere in panel (a) to the center of the
reference sphere in the plane above it. We wish to solve

for the ~b3 that will produce a maximally dense two-layer

structure, i.e. minimize ~b3 · ẑ.
First, however, it is useful to consider arbitrarily

stacked two-layer structures. Requiring that the layers
be as close together as possible (along the ẑ axis) for any

given orientation O defines a unique path for ~b3. To see
how, consider two hard unit spheres held a fixed distance
d apart (with 1 ≤ d ≤ 2.) When a third identical sphere
is introduced and forced to maintain contact with both
others, it will be free to rotate about the line connecting
them. The center of the third sphere will then trace out
a circular disk of radius R(d) =

√

1− d2/4 – centered on
and perpendicular to this line – as it rotates. Now sup-
pose that the first two spheres are the reference sphere
and one of the spheres 1−8 from Fig. 2(a), while the third

sphere lies at ~b3. Hard-sphere constraints will limit the
abovementioned rotation in a manner that depends only
on α; see Table I, with d = Dn. The accessible part of

the abovementioned circular disk is a circular arc. Figure
3 shows how combining the arcs corresponding to spheres
1− 8 yields the full set of potential configurations for the
third sphere within the stacked two-layer structures we
are considering.

FIG. 2. Plane-stacking algorithm – basic definitions. Panel
(a): definition of α, the angle characterizing the 2D lattice
planes used to generate 3D crystals. Panel (b): distances and
orientation angles defining positions of spheres neighboring
the reference sphere (Table I). Panel (c): illustration of the

vectors ~b1, ~b2, ~b3 that define the relative positions of nearby
monomers in adjacent planes.

TABLE I. Positions (~rn), distances to (Dn), and orientations
(On) of spheres 1-8 in Fig. 2 (with respect to the reference
sphere) as a function of the angle α. The colors in the second
column are illustrated in Figs. 2(b) and 3.

n Color ~rn Dn On

1 cyan ~b1 1 0

2 black ~b1 + ~b2
√

2 + 2 cos(α) α/2

3 orange ~b2 1 α

4 green ~b2 −~b1
√

2− 2 cos(α) (π+α)/2

5 blue −~b1 1 π

6 red −~b1 −~b2
√

2 + 2 cos(α) π+α/2

7 magenta −~b2 1 π+α

8 yellow ~b1 −~b2
√

2− 2 cos(α) (3π+α)/2

To describe these arcs, we will construct the vector
~ℓ(d,O) extending from the origin to an arbitrary point
on the edge of a circular disk that has radiusR(d), is cen-
tered at ~c(O) = d{cos(O)/2, sin(O)/2, 0}, and is upright
and faces towards the origin [i.e. its unit normal vector is
−ĉ(O)].] If we define a variable χ describing the angular
position along the disk’s rim, with χ = 0 corresponding

to the top of the disk, ~ℓ can be written as

~ℓ(d,O, χ) =





d cos(O)/2−R(d) sin(O) sin(χ)
d sin(O)/2 +R(d) cos(O) sin(χ)

R(d) cos(χ)



 . (1)

Substituting the Dn(α) and On(α) from Table I into this

formula gives the vectors ~ℓn(d,O, χ) respectively associ-
ated with spheres n = 1− 8, i.e.

~ℓn(α, χ) =





Dn cos(On)/2−R(Dn) sin(On) sin(χ)
Dn sin(On)/2 +R(Dn) cos(On) sin(χ)

R(Dn) cos(χ)



 .

(2)
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Since Dn and On are functions only of α, the vectors ~ℓn
are functions of only two variables: α and χ. The various
circles shown in the top panels of Fig. 3 are traced out

by ~ℓn(α, χ) as χ varies from 0 to 2π.

FIG. 3. Plane-stacking algorithm – circular arcs. Top panels:
the eight arcs associated with spheres 1-8 from Fig. 2(a). Bot-
tom panels: the union of the upper portions of of these arcs
(i.e. the portions above their z > 0 intersection points) is the

path followed by ~b3 as the orientation of the second 2D layer
varies. The left panels illustrate these features for α = 60◦

while the right panels illustrate them for α = 90◦.

The next step is to identify the ranges of χ correspond-
ing to the abovementioned circular arcs. Finding the
arcs’ points of intersection (as a function of α) will al-

low us to determine the path taken by ~b3 as the upper
layer in Fig. 2(c) is shifted around at the minimum height
that respects the hard-sphere nonoverlap constraints. It
turns out that these points can be described using only
two additional scalar functions χ1(α) and χ2(α), neither
of which depend on n:

χ1(α) =
π

2
− sin−1

[
√

2[1 + 2 sin(q)]

3[1 + sin(q)]

]

χ2(α) =
π

2
− 2 sin−1

(

1√
2 + 2 sin q

)

, (3)

where q ≡ |α− π/2|. The total range of χ subtended by
the circular arcs as the upper layer traverses the gaps is

∆(α) = 8χ1(α) + 4χ2(α). (4)

Further details on the derivation of these formulas for
χ1, χ2, and ∆ are given in the Appendix.
If we define a parameter β that varies from 0 to 1

during a full traversal, the vector ~b3(α, β) is given by the
formulas listed in Table II. As is apparent from Fig. 3, the

vector ~ℓ passes over at most six of the arcs corresponding
to spheres 1 − 8 as it traverses the gaps; the others are
excluded because their Dn are too large. These six arcs
are labeled i = 1, 2, ..., 6 in the table, and the traversal

of ~b3 over them is schematically depicted in Figure 4.

TABLE II. Definition of ~b3 in terms of the quantities defined
in Eqs. 2-4. βi

min and βi
max depend only on α. For βi

min(α) ≤
β ≤ βi

max(α), ~b3 ≡ ~bi3(α, β) is given by the indicated ~ℓn.

60◦ ≤ α ≤ 90◦

i ∆(α)βi
min ∆(α)βi

max
~bi
3
(α, β)

1 0 2χ1(α) ~ℓ1[α, β∆(α) − χ1(α)]

2 2χ1(α) 4χ1(α) ~ℓ3[α, β∆(α)− 3χ1(α)]

3 4χ1(α) 4χ1(α) + 2χ2(α) ~ℓ4[α, β∆(α) − 4χ1(α) − χ2(α)]

4 4χ1(α) + 2χ2(α) 6χ1(α) + 2χ2(α) ~ℓ5[α, β∆(α)− 5χ1(α) − 2χ2(α)]

5 6χ1(α) + 2χ2(α) 8χ1(α) + 2χ2(α) ~ℓ7[α, β∆(α)− 7χ1(α) − 2χ2(α)]

6 8χ1(α) + 2χ2(α) 8χ1(α) + 4χ2(α) ~ℓ8[α, β∆(α)− 8χ1(α) − 3χ2(α)]
90◦ ≤ α ≤ 120◦

i ∆(α)βi
min ∆(α)βi

max
~bi
3
(α, β)

1 0 2χ1(α) ~ℓ1[α, β∆(α) − χ1(α)]

2 2χ1(α) 2χ1(α) + 2χ2(α) ~ℓ2[α, β∆(α) − 2χ1(α) − χ2(α)]

3 2χ1(α) + 2χ2(α) 4χ1(α) + 2χ2(α) ~ℓ3[α, β∆(α)− 3χ1(α) − 2χ2(α)]

4 4χ1(α) + 2χ2(α) 6χ1(α) + 2χ2(α) ~ℓ5[α, β∆(α)− 5χ1(α) − 2χ2(α)]

5 6χ1(α) + 2χ2(α) 6χ1(α) + 4χ2(α) ~ℓ6[α, β∆(α)− 6χ1(α) − 3χ2(α)]

6 6χ1(α) + 4χ2(α) 8χ1(α) + 4χ2(α) ~ℓ7[α, β∆(α)− 7χ1(α) − 4χ2(α)]

FIG. 4. Plane-stacking algorithm – depiction of the traversal

made by ~b3 as β varies. The configuration of the reference
layer and subtended circular arcs are shown for [left panel:
α = 60◦, β = 7/12] and [right panel: α = 90◦, β = 3/8]. The
blue-shaded regions have been traversed for these values of β
while the gray-shaded regions have yet to be traversed.

3D space can be filled with unit-diameter spheres at

positions ~ruvw(α, β) = u~b1 + v~b2(α) + w~b3(α, β), where
{u, v, w} ∈ Z

3, but the resultant lattices will be only
a small subset of those we need to consider to identify
the maximally-dense trimer crystals for all θ0. However,
arbitrary space-filling planar stackings can be described
using M -plane bases where the positions of successive
planes are related usingM different β values {β1, ..., βM}.
We constrain these planes to have the same value of α
since different α would produce massive incommensura-
bility. Table III illustrates the diversity achievable with
this method for M = 2. It also illustrates a key strength
of our method: the ability to generate different lattice
planes of the same crystal by varying α. For example,
the planes for α = 60◦ or 120◦ correspond to the {1 1 1}
planes of an FCC lattice, whereas for α = 90◦ they cor-
respond to the {1 0 0} planes of the same FCC lattice.

Trimers with any θ0 can form periodic (M ≥ 2)-
layer planar stackings where each periodic group in-
cludes at least a bilayer of close-packed crystal [as in Fig.
2(c)]. If θ0 is incommensurable with 3D close-packing,
trimer crystals cannot include more than three consecu-
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TABLE III. Example crystalline orderings for M = 2. Here
∨ and ∧ respectively mean “or” and “and”, and (x mod y) is
the remainder of (x/y).

α(◦) Condition for β1, β2 Order
60 or 120 (β1 ∨ β2 mod 1

6
= 0) ∧ (|β1 − β2| mod 1

3
= 0) FCC

60 or 120 (β1 ∨ β2 mod 1
6
= 0) ∧ (|β1 − β2| mod 1

3
= 1

6
) HCP

90 (β1 ∨ β2 mod 1
4
= 0) ∧ (|β1 − β2| mod 1

4
= 0) FCC

tive close-packed layers; they must include defects. Re-
sults from 2D systems [21] suggest that these will take
the form of “gaps” between close-packed bilayers or tri-
layers that close when θ0 is commensurable with 3D
close-packing, and hence that maximally-dense bent-core
trimer crystals for all θ0 can be identified using only
2 ≤M ≤ 3.
Rather than identifying the densest trimer crystals us-

ing a linear-programming or Monte-Carlo-like algorithm
such as Torquato & Jiao’s ASC [22, 23], we identify them

using our α − β formalism. The vectors ~b1, ~b2(α), and
~b3(α, β) define a family of parallelopipeds. Consider a
fundamental cell C containing nx × ny × nz such paral-
lelopipeds along the x, y, and z directions. The cell can
be fully described as

C = C(nx, ny, nz, α, β1, ..., βM ). (5)

C tiles space and forms the basis for a periodic M -layer
planar stacking if nz = M . Since C must contain an in-
teger number of trimers (ntri), we have the restriction
nxnyM = 3ntri. Results for 2D bent-core tangent-disk
trimers [21] as well as other concave hard particles with a
wide variety of shapes [6] suggest that the densest pack-
ings for arbitrary θ0 will be Kuperberg double lattices
[24] and hence that ntri = 2 is a sufficiently large basis.
If these crystals consist of close-packedM -layers sepa-

rated by gap layers, we can set all but one of the {β} to
zero, i.e. we can set β1 = 0 for M = 2 and β1 = β3 = 0
for M = 3. The fundamental cells can now be fully de-
scribed as

C = C(nx, ny,M, α, β2). (6)

We find putatively maximally-dense trimer crystals by
looping over the remaining variables {nx, ny, α, β2}. For
ntri = 2 the loops over nx and ny are trivial: {nx, ny} =
{(1, 2), (2, 1)} for M = 3 and {nx, ny} = {(1, 3), (3, 1)}
for M = 2. Since all intermonomer distances are invari-
ant under the transformation ~b3(90

◦ − ξ, β) → ~b3(90
◦ +

ξ, β) for all 0 ≤ ξ ≤ 30◦, we consider the ranges
60◦ ≤ α ≤ 90◦ and 0 ≤ β2 ≤ 1. The loop we execute is
a double loop over all (αs, β2,t) where αs = (60 + .12s)◦

and β2,t = t/600, where s ∈ [0, 250] and t ∈ [200, 400].
Each (s, t) pair produces a different periodic planar stack-
ing, so the total number of distinct packings produced is
50451 [25].
Careful readers will note that we have not yet deter-

mined which of these packings correspond to trimer crys-
tals. We do this by identifying all contacting (i, j, k) and

(l,m, n) triplets within the fundamental cells that consist
of spheres at positions (~ri, ~rj , ~rk, ~rl, ~rm, ~rn) that satisfy
rij = rjk = 1 and rlm = rmn = 1, where ~rij = ~rj − ~ri
and so on, and of course i 6= j 6= k 6= l 6= m 6= n. During
this procedure, periodic boundary conditions are applied
to the fundamental cell along all three directions and
the minimum image convention is employed. The (i, j, k)
and (l,m, n) triplets identified this way have bond angles
θijk = cos−1(~rij · ~rjk) and θlmn = cos−1(~rlm · ~rmn), re-
spectively. If θijk = θlmn, then the packing is a bent-core
trimer crystal with θ0 = θijk = θlmn. We store its pack-
ing fraction in the set {φst(θ0)}, where again s ∈ [0, 250]
and t ∈ [200, 400]. This procedure allows us to identify
φmax(θ0) = max({φst(θ0)}) for all θ0 in a single sweep.
Note that its essential feature is that we impose the fixed-
angle (θ = θ0) restriction a posteriori rather than a prori.
We find that the above procedure is far more efficient for
these systems than alternative methods such as ASC.

B. Densest tangent-sphere-trimer crystals

Numerical results for φmax(θ0) are shown with red
symbols in Figure 5(a). φmax(θ0) is apparently a
piecewise-smooth function with either five or six dis-
tinct branches. Four of these branches begin and end
with close-packed crystals. The smooth variation of
φmax between cusplike maxima at the θ0 that are com-
mensurable with close-packing is reminiscent of other
packing problems where φmax(p) varies smoothly be-
tween cusplike maxima as a function of some grain-
shape or confinement-geometry parameter p [12, 26, 27],
and strongly suggests that the crystals lying on each
branch share many common features. We therefore la-
bel these branches as “families” I, II, III, and V. While
the other branch (family IV) does not obviously be-
gin/end with a close-packed crystal, it does include one
[at θ0 = cos−1(1/3)], suggesting that its crystals also
share a common character.

TABLE IV. Ordering of maximally-dense bent-core tangent-
sphere trimer crystals – basic properties. Here θ1 =
65.3512◦ and θ2 = 72.4530◦ . The average monomer co-
ordination number Z includes both covalent bonds and
noncovalent contacts. Note that Z(θ0) = 12 for θ0 =
0, cos−1(5/6), 60◦, cos−1(1/3), 90◦, and 120◦; the values
given below are for the intermediate θ0.

Family Range of θ0 ntri M Z
I 0 - cos−1(5/6) 1 3 11 1

3

II cos−1(5/6) - 60◦ 1 3 11 1

3

III 60◦ - θ1 , θ2 - 90◦ 2 2 11
IVa θ1 - cos−1(1/3) 1 3 11 1

3

IVb cos−1(1/3) - θ2 1 3 10
V 90◦ - 120◦ 2 2 11

Each family’s characteristic unit-cell and gap-layer
structure is depicted in Figure 6, and Table IV further
summarizes their basic properties. All the crystals within
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FIG. 5. Structural order of maximally dense bent-core
tangent-sphere trimer crystals. In both panels, the blue
curves show analytic results from Table V while red symbols
show numerical results from the method described in Section
IIA. The “FCC/HCP” horizontal lines in panel (b) describe
the β2(θ0)-dependent order when α(θ0) = 60◦ (as is the case
for all families except IVb.)

any given family share common values of of ntri and
M . As hypothesized above, for θ0 ≤ 60◦ the densest
bent-core-trimer crystals have a single-trimer basis and
consist of close-packed trilayers separated by gap lay-
ers. For θ0 > θ2 they are Kuperberg double lattices
[24] consisting of two interpenetrating lattices of trimers
related by a displacement plus a 180◦ rotation of all
constituents about their centers of inversion symmetry,
and have close-packed bilayers separated by gap layers.
In both cases, the size of the gaps increases with the
distance of θ0 from angles commensurable with close-
packing. The reason for the trilayer-vs-bilayer distinc-
tion is the same as for 2D bent-core trimers [21] – the
inability of a reference trimer to form a bond-triangle on
its concave side with a monomer belonging to a second
trimer when θ0 > 60◦. This distinction quantitatively
predicts the degree to which the minima of φmax(θ0) are
lower for families III and V than for families I and II.
The minimal densities of families I, II, III and V are re-
spectively φ∗1 = .980181φcp (at θ0 = 16.8421◦), φ∗2 = φ∗1
(at θ0 = 45◦), φ∗3 = .970563φcp (at θ0 = 75.5225◦), and
φ∗5 = φ3∗ (at θ0 = 104.478◦). They satisfy

φcp − φ∗

3

φcp − φ∗

1

·
φ∗

1

φ∗

3

=
φcp − φ∗

5

φcp − φ∗

1

·
φ∗

1

φ∗

5

=
φcp − φ∗

3

φcp − φ∗

2

·
φ∗

1

φ∗

2

=
φcp − φ∗

5

φcp − φ∗

2

·
φ∗

2

φ∗

5

=
3

2
.

(7)

Here the 3/2 reflects the fact that the gap-layer density
is 50% higher for families III and V than it is for families
I and II. Similar relations hold for 2D systems [21].
Although φmax(θ0) is continuous at the cusps, crystal

FIG. 6. Illustration of bent-core trimer crystals’ θ0-
dependent structure. Panels in the left column high-
light the fundamental cells C for the least dense mem-
bers of families I-III, IVa, and V, i.e. the cells for θ0 =
16.84◦, 45◦, 65.36◦, 75.52◦, and 104.47◦ (from top to bot-
tom). Panels in the right column highlight the close-packed-
bi/trilayer-plus-gap structure for the same systems. In all
panels, red lines indicate the boundaries of C and green lines
indicate covalent backbone bonds.

structure is often discontinuous. In general, ntri, M , and
the arrangement of trimers within fundamental cells can
all change going from one family to the next. At each
cusp where such changes occur, there are two degenerate
lattices with the same φ = φmax(θ0). For example, at
θ0 = 60◦, families II and III are both FCC lattices with
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TABLE V. Ordering of the densest bent-core tangent-sphere trimer crystals – analytic expressions for β2(θ0) and φmax(θ0). All
families have α(θ0) = 60◦ except for family IVb, which has α(θ0) = sec−1 [sec(θ0)− 1]. Here sign(x) = 1 (−1) if x > 0 (x < 0).

Family β2(θ0) φmax(θ0)/φcp

I
2

3
+

cos−1
(

1

3
[4 cos(θ0) − 1]

)

6
[

180◦ − 4 sec−1(
√
3)

]

9

5 + 4 cos(θ0) +
√

cos(θ0) − cos(2θ0)

II
5

12
+

sin−1

[

1

3

(

2
√
2 cos(θ0) +

√

1 − 2 cos(2θ0)
)]

sign(π/4 − θ0)

6
[

π − 4 sec−1(
√
3)

]

12

4[2 + cos(θ0)] +
√

2 − 4 cos(2θ0)

III
5

12
−

sin−1
(

1

3
[4 cos(θ0) − 1]

)

6
[

180◦ − 4 sec−1(
√
3)

]

2

1 +
√

cos(θ0) − cos(2θ0)

IVa
5

12
+

sin−1

(

1

9

[

4 cos(θ0) − 8
√

cos(π − θ0) + cos(π − 2θ0) + 1
])

6
[

180◦ − 4 csc−1(
√
3)

]

18
√
2

12
√
2 +

√

81 −
(

1 + 4 cos(θ0) − 8
√

cos(180◦ − θ0) − cos(180◦ − 2θ0)
)

2

IVb 1/2

√
2 sin(θ0/2) tan(θ0/2)
√

1 − 2 cos(θ0)

V
11

12
+

sin−1
(

1

3
[4 cos(θ0) + 1]

)

6
[

180◦ − 4 sec−1(
√
3)

]

2

1 +
√

cos(180◦ − θ0) + cos(180◦ − 2θ0)

φ = φcp, but the arrangements of trimers within these
two lattices are distinct.
Additional insight into the structure of these

maximally-dense crystals can be gained by examining
the topology of their bond/contact network and trends
in their β2(θ0). Both the close-packed-trilayer-plus-gap
families (I, II, and IVa) and the close-packed-bilayer-plus-
gap families (III and V) share the same average monomer
coordination number Z in addition to the same φ∗. Nu-
merical results for β2(θ0) are given in Fig. 5(b). These
results, together with visual inspection of the fundamen-
tal cells and gap-layer structure, suggests that the evo-
lution of any given family’s structure as θ0 varies can
be described (mathematically) as a continuous displacive
transformation. All results are consistent with the hy-
pothesis that these are Shoji-Nishiyama-like FCC↔HCP
shear transformations [28]. Family IVb is an exception
to this pattern, for reasons we will discuss below.
As discussed above, all these crystals are characterized

by their fundamental cells C(θ0) = C(nx, ny, nz, α, β2)
(Eqs. 5-6), where each of the arguments to the C function
are θ0-dependent. Recall that C is a parallelopiped de-

fined by the vectors nx
~b1, ny

~b2(α), and (M−1)~b3(α, 0)+
~b3(α, β2). Its associated packing fraction is simply

φ[C] =
3ntri(π/6)

[nx
~b1 × ny

~b2(α)] · [(M − 1)~b3(α, 0) +~b3(α, β2)]

=
πntri

2nxny sin(α)ẑ · [(M − 1)~b3(α, 0) +~b3(α, β2)]

.

(8)
The numerical data shown in Fig. 5(b) suggest that each
family’s β2(θ0) is describable by a continuous analytic
function. This is indeed the case; expressions for the
β2(θ0) are given in Table V. Since the densest crystals’
α(θ0) are also given by exact analytic expressions, we now
have a complete set of parameters and analytic functions
to plug into Equation 8. Plugging in values of ntri and
M (Tab. IV) together with these analytic forms for α(θ0)

and β2(θ0) yields the exact expressions for φmax(θ0) given
in Tab. V. Note that the values of θ1 and θ2 given in
Tab. IV were obtained by solving for the θ0 at which the
relevant analytic φmax(θ0) functions are equal. Further
details on the derivation of these formulas for β2 and
φmax are given in the Appendix.

Family IVa

Family IVb

Family III

Densest

60 65 70 75 80 85 90

0.95

0.96

0.97

0.98

0.99

1.00

θ0 (degrees)

ϕ
m
a
x
/ϕ
c
p

III III

IV

FIG. 7. Maximally and nonmaximally dense crystalline struc-
tures in the range 60◦ ≤ θ0 ≤ 90◦. The curves show the
analytic functions given in Table V.

Careful readers will note that we have not yet discussed
family IV’s structure in detail; we do so now. Clearly the
solution presented in Fig. 5 and Tab. IV is more compli-
cated in the range 60◦ ≤ θ0 ≤ 90◦ than it is for θ0 < 60◦

or θ0 > 90◦. The dashed cyan curve in Figure 7 shows
φmax(θ0) for families III and IV. Family III is the dens-
est structure for two disjoint ranges of θ0: 60

◦ ≤ θ0 ≤ θ1
and θ2 ≤ θ0 ≤ 90◦. The reason for the abovementioned
disjointness is simply that family IV’s density is greater
than family III’s in the range θ1 ≤ θ0 ≤ θ2. Family IVa’s
close-packed-trilayer-plus-gap structure is similar to fam-
ilies I and II; its minimal density φ∗4a = φ∗1 = φ∗2 occurs
at θ0 = 62.80◦. Family IVb also has a trilayer-plus-gap
structure, but is unique among families I-V in that [ex-
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cept at θ0 = cos−1(1/3)] its α(θ0) 6= 60◦ and hence its
trilayers are not close-packed. It is also unique in having
a constant β2(θ0) = 1/2; note that the distance between
the stacked planes depicted in Figs. 2-4 is minimal for
β = 0 and 1/2. Thus, in contrast to families (I-IVa,
V) where gap layers accommodate the incommensurabil-
ity of θ0 with 3D close-packing, family IVb maximizes
density while accomodating this incommensurability by
adopting a stacked-plane structure that is not triangular.
All of the above discussion has omitted one key con-

sideration: degeneracy of the solutions for β2. For exam-
ple, the fact that θ0 = 0, 60◦, 90◦, and 120◦ trimers
can form both FCC and HCP crystals while θ0 =
cos−1(5/6) and cos−1(1/3) trimers can form HCP but
not FCC crystals is not apparent from Fig. 5(b). When
α = 60◦, the structure of trimer crystals is invariant un-
der shifts of β2(θ0) by ±1/3 and also under reflections of
β2(θ0) about β2 = 0, 1/6, 1/3, 1/2, 2/3, 5/6, and 1.
A second type of degeneracy arises for θ0 ≥ 60◦: reflec-
tions of β2(θ0) about m/12, where m is an odd inte-
ger. These operations leave φ unchanged but do change
crystals’ structure. For example, the reflection β2(θ0) →
β

′

2(θ0) = 7/12− [β2(θ0)−7/12] takes (e.g.) the θ0 = 119◦

near-FCC lattice [Fig. 5(b)] into a near-HCP lattice.

III. JAMMED PACKINGS

A. Molecular dynamics simulation method

We now examine how our model trimers solidify
under dynamic compression using molecular dynamics
(MD) simulations. Each simulated trimer contains three
monomers of mass m. Trimers’ bond lengths and an-
gles are held fixed by holonomic constraints. Monomers
on different trimers interact via a harmonic potential
UH(r) = 5u0(1 − r/σ)2Θ(σ − r), where u0 is the energy
scale of the pair interactions, σ is monomer diameter,
and Θ is the Heaviside step function.
Initial states are generated by placing ntri = 1333

trimers randomly within a cubic cell at a packing frac-
tion φ0 = exp(−2/3)φcp. Periodic boundary conditions
applied along all three directions and Newton’s equations
of motion are integrated with a timestep δt = .005τ ,
where the unit of time is τ =

√

mσ2/u0. Systems are
equlibrated at finite temperature until intertrimer struc-
ture has converged, then rapidly cooled to T = 0. Then
they are hydrostatically compressed at a true strain rate
ǫ̇, i.e. the cell side length L is varied as L = L0 exp(−ǫ̇t).
To maintain near-zero temperature during compression,
we employ overdamped dynamics with the equation of
motion

m~̈ri = ~F − γ ~̇ri + h({~r,~̇r}) (9)

where ~ri is the position of monomer i, ~F is the force aris-
ing from the harmonic pair interactions, the damping co-
efficient γ = 104ǫ̇, and the h({~r,~̇r}) term enforces trimer

rigidity [29]. To access the quasistatic limit, we also per-
form compression runs wherein compression is halted at
equal increments of ln(φ/φ0) [i.e. equal volumetric strain
intervals] and followed by energy minimization as is stan-
dard in studies of jamming [30]. As in our recent study
of 2D bent-core trimers [21], jamming is defined to oc-
cur when the nonkinetic part of the pressure P exceeds
Pthres = 10−4u0/σ

2 [31]. All MD simulations are per-
formed using LAMMPS [33].

B. Variation of φJ with θ0 and strain rate

Figure 8(a) shows φJ (θ0) for three different com-
pression protocols. The compression-rate-dependence is
typical for granular materials [34]. The variation in
∂φJ(θ0; ǫ̇)/∂ǫ̇ with θ0 is small compared to the statistical
noise in φJ , suggesting that the coupling of compression-
rate- and particle-shape-driven effects is weak. We will
focus on results for quasistatically compressed systems
for the remainder of this paper.
Three key results are immediately apparent from the

variation of φJ with θ0. First, all trimers have φJ signif-
icantly below the monomeric value (φmon

J ≃ .637 [30]).
This indicates that the quenched bond-length and bond-
angle constraints always strongly promote jamming. Sec-
ond, ∂φJ/∂θ0 is large and positive for θ0 . 20◦ and for
θ0 & 100◦, but much smaller in the range 20◦ . θ0 .
100◦. Third, φJ (θ0) does not track φmax(θ0); instead,
its variation appears to arise from shape-dependent jam-
ming mechanisms. Explaining these results will be our
focus for the remainder of this section.
The significantly lower φJ for trimers with smaller θ0

strongly suggests that their marginally jammed (MJ)
states are more disordered. One simple metric for sys-
tems’ degree of disorder is the breadth of their Voronoi
volume distributions. Fig. 8(b) shows the monomeric
Voronoi-volume probability distributions P (VVor) for se-
lected θ0 (calculated using voro++ [35]) and contrasts
them to those for a MJ system of 3ntri monodisperse
monomers; note that the latter jam at φmon

J for our qua-
sistatic compression protocol. Systems with lower φJ are
more disordered in the sense that their P (VVor) distri-
butions are broader and have longer tails [36]; the inset,
which plots P (VVor) as a function of the scaled volume
φJ (θ0)VVor, illustrates this result more clearly. However,
the distributions even for the systems with the highest
φJ remain typical of those found in amorphous solids
[37], suggesting that none of the systems exhibit signifi-
cant crystallization. Indeed all results are consistent with
trends found in monomeric hard- and soft-sphere systems
[34, 38]; the distinction is that in our case the variations
in φJ and P (VVor) result from varying θ0 instead of from
varying systems’ preparation protocol.
Another way to interrogate the θ0- and rate-

dependence of φJ is to examine the statistical properties
of the voids within jammed systems. Void size distri-
butions have recently been shown to be intimately con-
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FIG. 8. Effect of the bond angle and compression rate on jam-
ming of bent-core tangent-sphere trimers. Panel (a) shows re-
sults for φJ (θ0; ǫ̇), while panels (b) and (c) respectively show
results for P (VVor) and fv(r) in selected quasistatically com-
pressed, marginally jammed systems. In panels (b-c), the
magenta curves show results for monomers, and the dotted
black curves show fits to Eq. 10. The noise in panel (a) and
in all subsequent figures is statistical; all results are for one
ntri = 1333 system for each θ0.

nected to to both the local packing geometries within and
the uniformity of MJ states [39]. Moreover, results for el-
lipsoids, rods, and semiflexible polymers [40–42] suggest
that the larger aspect ratio of small-θ0 trimers will lead
to jammed states with an excess of large voids. We cal-
culated the fraction fv(r) of empty space lying a distance
d > r away from the center of any monomer by sampling

a large number of randomly placed points within our MJ
configurations. By definition, fv(.5σ) = 1 − φ, and for
r > .5σ fv declines monotonically with increasing r. Fig.
8(c) shows fv(r) for the same systems analyzed in Fig.
8(b). Data for all systems are remarkably well fit by the
simple 3-parameter functional form

fv(r) = A exp

[

−
(

r

r0

)b
]

, (10)

where r0 is slightly less than .5σ and A ≃ (1 −
φJ ) exp

[

(.5σ/r0)
b
]

. We find that the exponent b in-
creases from ∼ 15/4 to ∼ 9/2 with increasing φJ (e.g.
with increasing θ0 for θ0 . 20◦ and for θ0 & 100◦) [36].
However, these differences in MJ systems’ void structure
are seemingly quantitative rather than qualitative.

FIG. 9. Marginally jammed states for (clockwise from upper
left) θ0 = 0, 30◦, 60◦, 90◦, and 120◦ trimers, and monomers.
Different colors indicate different trimers, but otherwise the
color of each trimer is chosen randomly.

Taken together, the above results imply that bent-core
trimers are a model system in which both φJ and the
degree of MJ states’ disorder can be tuned by varying
θ0. However, it is less clear how/why these effects arise.
Visual inspection of MJ states (Fig. 9) shows no obvious
structural differences between systems with different θ0
or between trimeric and monomeric systems.

C. Ordering within marginally jammed states

To better isolate the origin of the trends shown in
Fig. 8, we will examine monomer-monomer positional
correlations at the 2-, 3-, and 4-body levels. Figure
10 illustrates the character of these correlations in se-
lected systems’ MJ states. Panel (a) shows the to-
tal pair correlation function g(r). The most striking
feature is the sharp peaks at r = d13(R, θ0), where
d13(R, θ0) = 2R cos(θ0/2)σ is the distance between a
trimer’s end monomers. Another noteworthy feature is
that g(r) is nearly independent of θ0 for r > 2σ despite
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the systems’ very different densities. The slight differ-
ences for r > 2σ – more prominent maxima and minima
for systems with larger φJ – are consistent with these
systems’ slightly greater order.
Panel (b) shows the intermolecular contribution to the

pair correlation function [ginter(r)]. The absence of clear

peaks at r =
√
2σ and r =

√

8/3σ (which are respectively
the second-nearest-neighbor distances in FCC and HCP
lattices) for all θ0 indicates that even locally close-packed
order is strongly suppressed in these systems. Surpris-
ingly, θ0 = 0 systems (which have the lowest φJ and
broadest distribution of void and Voronoi volumes) also
have the sharpest peak in ginter(r) of any of our represen-

tative systems; this peak occurs at r ≃
√
3σ and will be

discussed further below. Otherwise, the most prominent
θ0-dependent differences are for 1.2 . r/σ . 1.6. Sys-
tems with lower φJ have larger ginter(r) in this range,
indicating that the distinction between monomers’ first
and second coordination shells is sharper for systems with
higher φJ .
Panel (c) shows the probability distribution P (θ) for

the angles

θ = cos−1

(

~bij ·~bjk
bijbjk

)

(11)

formed by contacting i − j − k triplets that do not all

belong to the same trimer [43]. Here ~bij = ~rj − ~ri
and ~bjk = ~rk − ~rj , where (~ri, ~rj , ~rk) are the positions
of monomers i, j, and k, and the pairs (i, j) and (j, k)
are each in contact, i.e. bij and bjk are each ≤ σ. The
sharp peaks in P (θ) for θ0 ≃ 60◦ and 120◦ correspond
to small 3-sphere subunits of the triangular lattice, e.g.
closed equilateral triangles have θ0 = 120◦. Surprisingly,
the peak at θ0 = 60◦ is sharpest for θ0 = 0 trimers; this
feature will be associated with these systems’ distinctive
ginter(r) below. Triplets forming three sides of a square
are far less common. The peak in P (θ) at θ = 90◦ is
prominent only for θ0 = 90◦; in these systems, trimers
always form three sides of a square and another monomer
(which belongs to an intertrimer triplet and hence gets
counted in P (θ) [43]) often completes it.
Panel (d) shows the probability distribution P (ψ) for

the dihedral angles

ψ = atan2
[(

(b̃ij × b̃jk)× (b̃jk × b̃kl)
)

· b̂kl , (b̃ij × b̃jk) · (b̃jk × b̃kl)
]

(12)

formed by contacting i − j − k − l quadruplets [44].

Here ~bij and ~bjk are as defined above, and ~bkl =
~rl − ~rk, where ~rl is the position of monomer l. The
pairs [(i, j), (j, k), and (k, l)] must be in contact, i.e.
bij , bjk, and bkl must each be ≤ σ. The peaks at |Ψ| =
54.7◦, 70.5◦, and 109.5◦ have been previously observed in
MJ configurations of monodisperse hard spheres [45] and
flexible tangent-sphere polymers [46]; they indicate lo-
cally tetrahedral and/or polytetrahedral ordering. θ0 = 0
trimers have a sharp peak at |Ψ| = 180◦ that the other
systems lack. This peak corresponds to planar trans con-
formations [44] and indicates that straight trimers have
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FIG. 10. Local structure of marginally jammed states. Pan-
els (a-b) show the pair correlation function g(r) and its in-
termolecular contribution ginter(r). Panels (c-d) show the
probability distributions P (θ) and P (Ψ) for the contact and
dihedral angles formed by i− j − k triplets and i− j − k − l
quadruplets. Both P (θ) and P (Ψ) are normalized so that
P = 1 for randomly configured systems.
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a tendency to form locally planar structures even though
they remain disordered. Other noteworthy θ0-dependent
differences are that the peaks corresponding to tetrahe-
dral quadruplets are sharpest for θ0 = 90◦ and 120◦. The
peak at |Ψ| = cos−1(1/3) ≃ 70.5◦ is particularly sharp
for θ0 = 120◦ because these trimers automatically form
three-fourths of an ideal tetrahedron; this commensura-
bility with polytetrahedral order may be one reason why
θ0 = 120◦ maximizes φJ .

FIG. 11. Favored and disfavored close-packed motifs in
marginally jammed states of bent-core trimers: aligned
straight triplets, triangular bipyramid, octahedron.

Taken together, the results in Fig. 10 identify three
motifs present in close-packed crystals that are partic-
ularly relevant to bent-core trimers’ MJ states. These
motifs are shown in Figure 11. The leftmost is formed
by two aligned straight triplets that occupy a small sub-
set of a 2D triangular lattice; the distance between the
blue monomers is

√
3σ. This motif is particularly preva-

lent in θ0 = 0 systems because straight trimers can easily
form the abovementioned aligned triplets; its prevalence
produces the strong peaks in ginter(r) at r =

√
3σ, in

P (θ) at θ = 60◦, and in P (Ψ) at |Ψ| = 180◦. The
middle motif, known as the triangular bipyramid, is
typical in HCP crystals; the distance between the blue
monomers is

√

8/3σ ≃ 1.63σ. Surprisingly, this motif is
strongly suppressed in MJ states for all θ0 despite the
fact that the two blue monomers can form a triplet [with
θ = cos−1(1/3)] with any of the red ones. The rightmost
motif, the octahedron, is formed by pairs of 2nd-nearest
neighbors in a FCC lattice together with the four spheres
that contact them both; the distance between the blue
monomers is

√
2σ. Given that the triangular bipyramid

is not found in FCC lattices and the octahedron is not
found in HCP lattices, these motifs are presumably sup-
pressed by the same competition between FCC and HCP
ordering that inhibits crystallization in athermal com-
pression of monomers [47].

D. Effect of concavity

Concavity is well known to promote jamming by
increasing particle interlocking – the influence of a
monomer that contacts two bonded monomers belonging
to a different grain increases with increasingR [48, 49]. In
contrast, a recent experiment [20] has shown that closed
R ≃ 0.4 trimers pack remarkably efficiently; their disor-
dered jammed states have φ ≃ .73. Here we examine the
effect of concavity on trimer jamming in greater detail by
contrasting our above results for tangent-sphere trimers

to those for overlapping-sphere trimers with R < 1. For
1−R ≪ 1, each trimer’s excluded volume is

vtri(R, θ0) =

{ 3vmon − 2vl(R) , θ0 < θov(R)

3vmon − 2vl(R) − vl[d13(R, θ0)] , θ0 ≥ θov(R)
,

(13)

where the volume of each monomer is vmon = πσ3/6,
the volume of the lenses formed by overlapping spheres
separated by a distance r < σ is vl(r) = (πσ3/12)(1 −
r/σ)2(2 + r/σ), and trimers’ end monomers overlap only
for θ0 ≥ θov(R) ≡ 2 cos−1[1/(2R)]. Here we study sys-
tems with R = 0.856, which matches the ratio of bond
length to bead diameter in the widely used Kremer-Grest
bead-spring polymer model [50], is known to strongly in-
hibit crystallization, and has θov = 108.526◦.
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FIG. 12. Effect of monomer overlap on rate-dependent
φJ(θ0). Solid curves indicate results for R = 0.856 trimers,
dashed curves indicate the same R = 1 results shown in Fig.
8(a), and the gray dotted curve indicates the best fit of the
quasistatic results to Eq. 14: s(.856) = .0392.

Results for the rate-dependent φJ(θ0, R) are shown in
Figure 12. Two principal effects of increasing monomer
overlap (decreasing concavity) are immediately apparent.
First, the φJ curves flatten as R decreases, as they must.
Second, when 1−R≪ 1 (as is the case forR = 0.856), the
effect of increasing overlap is – to a first approximation
– a uniform upward shift of the φJ curves, i.e.

φRJ (θ0) = φ1J (θ0) + s(R) (14)

where s increases with decreasing R < 1 but does not
depend on θ0. The effectiveness of Eq. 14 in describing
the φJ (θ0, R) data in Fig. 12 suggests that the decrease
in bent-core trimers’ φJ with increasing R is driven pri-
marily by the increasing strength of monomer-dimer in-
terlocking rather than by any structural features that
depend directly on θ0. On the other hand, the results of
Ref. [20] imply that extending Eq. 14’s range of validity
to larger R will require replacing its s(R) term with a
term that depends on both R and θ0. It would be inter-
esting to examine this issue further in future work.
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E. Comparison to results from 2D systems

Solidification of particulate matter under athermal
compression is well known to exhibit a striking depen-
dence on spatial dimension. Monodisperse disks readily
crystallize whereas monodisperse spheres typically form
disordered jammed states [38, 47]. Here we discuss how
spatial dimension affects athermal bent-core-trimer so-
lidification. Figure 13 contrasts φJ (θ0) and φmax(θ0) for
2D and 3D trimers. Three key results are apparent.
First, the quenched bond-length and bond-angle con-
straints produce comparable enhancement of jamming.
The values of φJ (θ0)/φcp averaged over all θ0 are .853
in 2D and .803 in 3D. The difference between these frac-
tions is comparable to the difference between the val-
ues of φmon

J /φcp for amorphous monomeric MJ states
(φmon

J /φcp ≃ .92 in 2D, .86 in 3D [30]). Second, in 2D
trends in φJ (θ0) track those in φmax(θ0) throughout the
full range 0 ≤ θ0 ≤ 120◦, while in 3D they do not. In
particular, 3D straight trimers (θ0 = 0) can close-pack
yet produce the global minimum in φJ (θ0). This differ-
erence arises partially from the D-dependence of crys-
tallizability; θ0 = 0 trimers form MJ states possessing
a moderate degree of crystalline order in 2D [21], but
in 3D their MJ states are maximally disordered as dis-
cussed above. Third, in both 2D and 3D, compactness
and symmetry promote dense packing, i.e. φJ is maxi-
mized for θ0 = 120◦ trimers since they are subunits of
the triangular lattice.
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FIG. 13. Effect of spatial dimension on dense-packing
and jamming of tangent-sphere trimers. Solid curves show
φJ (θ0) for quasistatic compression while dashed curves show
φmax(θ0). The 2D results are from Ref. [21]; results for φJ(θ0)
are averages over nine independent samples with ntri = 400.
Packing fractions are scaled by their values for close-packed
crystals [π/(2

√
3) in 2D, π/

√
18 in 3D].

Numerous previous studies of the jamming of
anisotropic grains have found that φJ decreases with
increasing grain aspect ratio A. Others have found
nonmonotonic behavior; for grains such as ellipses and
dimers, φJ increases with increasingA for smallA, passes
through a single maximum at some A = A∗, then de-

creases with further increasing A [40, 51, 52]. The re-
sults in Figs. 12-13 indicate that no comparably simple
explanation of the variation of φJ (θ0) in terms of A is
possible for bent-core trimers [which have A(R, θ0) =
2R cos(θ0/2) + 1]. While their |∂A/∂θ0| → 0 as θ0 → 0,
their |∂φJ (θ0)/∂θ0| is maximized as θ0 → 0.
A more likely explanation of 3D bent-core trimers’ de-

creasing φJ (θ0) as θ → 0 is the decrease in their effec-

tive configurational freedom as they approach linearity.
Specifically, in 3D the middle monomer in a bent trimer
can relax away from obstacles by rotating about the line
connecting the end monomers (even if the end monomers
are held fixed), whereas the middle monomer in a straight
trimer cannot. 2D systems lack this rotational-relaxation
mechanism. Analogous decreases in effective configura-
tional freedom as “molecules” straighten (in 3D) have
previously been associated with decreasing φJ and in-
creasing Tg in model polymeric systems [42, 53]. More-
over, a very recent study [54] has shown that thermalized
tangent-sphere trimers’ Tg and fragility both increase
sharply as θ0 → 0 and are maximized at θ0 = 0, and
also that their Tg is minimized at θ0 = 120◦. All these
results directly correspond (within Liu and Nagel’s uni-
fied picture of the glass and jamming transitions [55]) to
those reported above.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we showed that simply structured
bent-core tangent-sphere trimer crystals (with bases of
ntri ≤ 2 trimers) have maximum packing fractions above
0.97φcp for all θ0. While excluding the possibility that
denser crystals can be found by considering lattices with
larger bases would require a proof by numerical exhaus-
tion like that of Hales [56], previous results for a wide
variety of particle shapes [6, 24] suggest that ntri = 2 is
sufficiently large to identify the crystals reported here as
(putatively) maximally dense.
We showed that incommensurability of θ0 with 3D

close-packing does not by itself frustrate crystallization.
Instead, trimers are able to arrange into periodic struc-
tures composed of close-packed bilayers or trilayers of
triangular-lattice planes, separated by “gap layers” that
accomodate the incommensurability. Except for the nar-
row range 70.5288◦ ≤ θ0 ≤ 72.4530◦, such stackings are
maximally dense. In this narrow range, the incommen-
surability is instead accommodated by deviation of the
stacked planes away from triangular-lattice order.
Because obtaining crystalline bent-core-trimer systems

in experiments may be challenging, we contrasted their
dense crystalline packings to the marginally-jammed
packings they form under athermal compression. Our re-
sults indicate that two distinct sets of factors act in con-
cert to promote jamming in these systems: (i) the same
factors that promote jamming in monodisperse hard-
sphere systems (e.g. the FCC-HCP competition [47]),
and (ii) other θ0-dependent factors associated with the
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quenched 2- and 3-body constraints inherent to bent-core
trimer structure. That set (ii) always further promotes
jamming [i.e. φJ (θ0) < φmon

J for all θ0] is surprising: al-
though the quenched constraints reduce the dimensional-
ity of a system’s configuration space, a larger fraction of
that space corresponds to crystalline order if θ0 is com-
mensurable with close-packing. Other factors, such as
the decrease in trimers’ effective configurational freedom
as they straighten, are seemingly more important than
commensurability.
The dependence of granular materials’ macroscopic

properties on the shape of the grains composing them has
attracted great interest over the past decade [5, 6, 11, 18–
20, 52, 57–59]. The results presented in this paper re-
inforce and extend those of Refs. [19, 20] by providing
substantial evidence that bent-core trimers are a model
granular system in which both φJ and the local order-
ing of jammed states can be tuned by varying a single
particle-shape parameter (θ0). Other recent experiments
that have shown how strongly grain shape influences both
elastic properties and the character of plastic deformation
[58, 59] suggest also that jammed bent-core trimer sys-
tems will have intriguing mechanical and acoustic prop-
erties that can be tuned by varying θ0.
Finally, we emphasize that in this paper we have fo-

cused on athermal solidification, and that we expect the
results presented herein to be most applicable to dry
granular systems where the grains are sufficiently large
that Brownian motion can be neglected. Very recent sim-
ulation studies of thermalized fused-sphere systems have
shown that when particle shape is held fixed, both at-
tractive forces and diffusive motion make thermalized
systems more likely to crystallize than their athermal
counterparts [60, 61]. Isolating the relative importance
of particle shape and thermalization in controlling solidi-
fication of fused-sphere systems is a major challenge that
should be addressed by future work.
This material is based upon work supported by the Na-

tional Science Foundation under Grant DMR-1555242.

Appendix A: Derivation of χ1(α), χ2(α), ∆(α), β2(θ0),
and φmax(θ0)

Consider the polygon defined by~b1 = {1, 0, 0}, ~b2(α) =
{cos(α), sin(α), 0}, and

~b4(α) =
1

2
{1, csc(α)−cot(α), csc(α)

√

2[cos(α)− cos(2α)]}.
(A1)

Here ~b4(α) is the solution to |~b4| = |~b4 − ~b2(α)| =

|~b4 − ~b1| = 1. This polygon, schematically depicted in
Figure 14, is a unit tetrahedron when α = 60◦. For

60◦ < α ≤ 90◦ (as is the case for all of the maximally
dense packings identified in Sec. II B), it is an irregular
4-sided polygon in which two faces (ABD and ACD) are
unit equilateral triangles and the other two (ABC and
BCD) become isosceles triangles for which two sides have
unit length and the other side (i.e. side BC) has length

LBC(α) =
√

2− 2 cos(α) > 1. χ1(α) and χ2(α) are re-
spectively the inclination angles of faces ABD and BCD,
i.e. the angles between these sides’ unit-normal vectors
and the ẑ-axis. Expressions for their values are given in
Eq. 3.

Recall that the total angle subtended by ~b3(α, β) as it
traverses the six circular arcs depicted in Figs. 3-4 (i.e.
as β varies from 0 to 1) is, by definition, ∆(α). The
four neighbors that contact the reference monomer each
contribute 2χ1(α) to this total angle, and the two neigh-
bors that do not contact the reference monomer each
contribute 2χ2(α); cf. Figs. 2-4 and Tabs. I-II. Thus
∆(α) = 8χ1(α) + 4χ2(α).
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FIG. 14. Schematic depiction of the polygon ABCD defined

by the vectors ~b1, ~b2(α), and ~b4(α) (Eq. A1), and the relation
of these to the angles χ1(α) and χ2(α) (Eq. 3).

To obtain the exact analytic expressions for φmax(θ0)
given in Table V, we first had to obtain exact expres-
sions for α(θ0) and β2(θ0) to plug into Eq. 8. For-
tunately, for every family, numerical results (Fig. 5)
showed that either α or β2 is constant. This reduces
the problem to solving for family IVb’s α(θ0) and the
other families’ β2(θ0). We did this using the following
procedure: Suppose η(θ0) ≡ α(θ0) for family IVb and
η(θ0) ≡ β2(θ0) for all other families. Analytic expres-
sions for η(θ0) can be obtained by examining how the
reference trimer’s covalent bond vectors ~rij and ~rjk (Sec.
II A) relate to the vectors defining C. Owing to the con-
struction of our method, both ~rij and ~rjk are always el-

ements of the set {±~b1,±~b2(α),±~b3(α, β)}. This means
that θ0 = cos−1(~rij · ~rjk) can be always be written as
a function of η, i.e. θ0 = θ0(η). For each family, we
found analytic forms for θ0(η) that matched our numeri-
cal data, and inverted them to find η(θ0). Plugging these
η(θ0) into Eq. 8 yields φmax(θ0).
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[52] T. Börsönyi and R. Stannarius, “Granular materials com-
posed of shape-anisotropic grains,” Soft Matt. 9, 7401
(2013).

[53] C. O. Plaza-Rivera, H. T. Nguyen, and R. S. Hoy,
“Isostaticity and the solidifcation of semiflexible polymer
melts,” Soft Matt. 13, 7948 (2017).

[54] V. Meenakshisundaram, J.-H. Hung, and D. S. Simmons;
submitted.

[55] A. J. Liu and S. R. Nagel, “Nonlinear dynamics - jam-
ming is not just cool any more,” Nature 396, 21 (1998).

[56] T. C. Hales, “A proof of the Kepler conjecture,” Ann.
Math. 162, 1065 (1998).

[57] H. M. Jaeger, “Toward jamming by design,” Soft Matt.
11, 12 (2014).

[58] A. G. Athanassiadis, M. Z. Miskin, P. Kaplan, N. Ro-
denberg, S. H. Lee, J. Merritt, E. Brown, J. Amend,
H. Lipson, and H. M. Jaeger, “Particle shape effects on
the stress response of granular packings,” Soft Matt. 10,
48 (2014).

[59] K. A. Murphy, K. A. Dahmen, and H. M. Jaeger, “Trans-
forming mesoscale granular plasticity through particle
shape,” Phys. Rev. X 9, 011014 (2019).

[60] R. L. Marson, E. G. Teich, J. Dshmuchadse, S. C.
Glotzer, and R. G. Larson, “Computational self-
assembly of colloidal crystals from platonic polyhedral
sphere clusters,” Soft. Matt. 15, 6288 (2019).

[61] E. D. Salcedo, H. T. Nguyen, and R. S. Hoy;
https://arxiv.org/abs/1907.09616.


