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A prescribed, horizontal temperature gradient is imposed upon a horizontal liquid layer bounded
from above by a deformable, liquid-gas interface and bounded from below by a partial-slip, rigid
surface. A steady shear flow driven by thermocapillary motion emerges. This dynamic liquid layer
is susceptible to the onset of oblique three-dimensional hydrothermal waves, purely two-dimensional
hydrothermal waves, longitudinal travelling waves and longitudinal rolls depending on the capillary
number. A low capillary number analysis finds that surface deformations are destabilizing for all
modes of instability. There is a preference for two-dimensional hydrothermal waves when there are
surface deformations. Though longitudinal travelling waves are never selected as the preferred mode
of instability, these waves offer a convenient way to understand the behaviour of oblique hydrother-
mal waves, which are near-longitudinal. This is especially the case for low capillary numbers, but
oblique hydrothermal waves instead tend to align themselves with the direction of flow as the cap-
illary number increases. Surface deformations affect longitudinal waves most significantly out of all
the modes of instability, especially for low Prandtl numbers. The typical length scales shorten and
the critical Marangoni numbers increase with the capillary number for all types of modes. Notably,
the system selects long waves near a critical Prandtl number when the interface is non-deformable
and when the layer is subject to partial slip, but this is no longer the case when the upper surface
is deformable.
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FIG. 1. Schematic of the geometry of the problem

I. INTRODUCTION

As a result of recent developments of additive manufacturing (AM), or three-dimensional printing (3DP) techniques,
it is currently within reach to print complex structures of various geometries and materials, such as metallic, plastic
and organic parts [1–10]. Nevertheless, the current layer-by-layer production methods are impeded by numerous
undesirable effects that are costly to eliminate via experimental trials alone [6, 11, 12]. A key limitation originates
from the high temperature gradients within the melt pool near the laser heat source, which brings about the onset
of thermocapillary convection [11, 13, 14]. The resulting flow fields strongly affect the microstructures of the grown
solid [15, 16] and the rapid solidification rates common to AM and 3DP trigger complex nonlinear pattern selection
[17]. These effects are potentially controllable by an appropriate adjustment of material properties, laser intensity
and speed, the ambient thermal field and various thermo-physical effects.
As modelled by [16], the substrate over which material is deposited in the layer-by-layer production methods of

AM, can be described as providing an effective slip to the liquid film of the deposited material. This effectively stems
from an average over the microstructure of the substrate and a homogenization of the mixture of solid and liquid
comprising the substrate on the small scales. The liquid-to-solid fraction, and hence the effective slip, depends on the
adopted production method, in which, in general, solid material deposited upon a substrate melts under a moving
laser heat source and tends to resolidify in the ambient thermal field. This is a layer-by-layer process and the geometry
of the finished product is shaped by the paths taken. The substrate at any given moment is either mostly solid, or
mostly liquid depending on whether or not the same path is continually traversed as well as on the geometry and
material properties of the desired product. In general, there are inhomogeneities in the structure and composition
of the substrate on scales much smaller than that of the liquid layer, which can be averaged out and built into an
effective slip experienced by the liquid layer.
Previous literature on thermocapillary convection focused on static [18–20] and dynamic [16, 21–24] liquid layers,

flows in cavities [25–30] and in the quarter plane at high Marangoni number [31]. These have been supplemented by
a number of experimental studies [e.g., 32–34]. When the lower boundary is a no-slip rigid surface, a dynamic liquid
layer is prone to the emergence of two- and three-dimensional hydrothermal waves, and longitudinal travelling waves
and rolls [22]. The latter of these approach a long-wave limit at a critical Prandtl number when the lower boundary
allows for slip [16]. We build upon the work of [16], which involves thermocapillary instabilities in non-deformable
liquid layers, to investigate the role of surface deformations on the selection of the preferred mode of instability,
influence on stability thresholds, trends in wavenumber selection and whether or not long waves appear.
We begin with a theoretical development in Section II, which lays out the governing equations, the basic state, the

non-deformable limit and an adjoint problem useful in examining contributions due to surface deformation, which are
formulated at the close of this section. We follow with a discussion on longitudinal rolls in Section III, longitudinal
travelling waves in Section IV, two-dimensional hydrothermal waves in Section V, and oblique hydrothermal waves in
Section VI, followed with concluding remarks in Section VII.

II. THEORETICAL DEVELOPMENT

Motivated by the effective slip experienced by molten liquid layers in AM environments, we consider a deformable,
three-dimensional liquid layer bounded by a rigid, partial-slip surface (z∗ = 0) from below and a deformable liquid-gas
interface (z∗ = η∗) from above. The liquid layer is an incompressible, Newtonian fluid of mean depth d, viscosity µ,
density ρ, specific heat cp, thermal conductivity k, thermal surface conductance h, velocity u∗, pressure field p∗ and
is subject to an imposed horizontal temperature gradient ∂T ∗/∂x∗ = −b along its upper surface, as illustrated in Fig.
1. As the film thicknesses involved are on the scale of 100µm, gravity can be assumed to be negligible.
Thermocapillary motion results from variations in the surface tension σ∗

s of the liquid-gas interface, which decreases
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as a function of the temperature

σ∗

s = σ∗

0 − γ(T ∗ − T0), (1)

where T0 is a reference value for the temperature. In dimensionless terms, this reduces to a relationship

σs = 1− CaT, (2)

involving the capillary number

Ca =
γbd

σ0

, (3)

which we assume is small but nonzero so that the interface η = η(x, t) is deformable, in contrast to the limit of zero
capillary number [16], in which the interface remains flat. The non-dimensionalization used is given by

x∗ = dx, t∗ =
µ

γb
t, u∗ =

γbd

µ
u, (4)

p∗ = γbp, T ∗ − T0 = bdT, σ∗

s = σ∗

0σs, (5)

where the components of the velocity vector are given by u = (u, v, w).
We assume that the upper layer is a gas of negligible density and zero pressure so that the conditions at the

liquid-gas interface become

w = ηt + uηx + vηy, (6)

σ · n = −∇T − 2H(Ca−1 − T )n, (7)

where

2H = −
[

(1 + η2y)ηxx − 2ηxηyηxy + (1 + η2x)ηyy
]

· (1 + |∇η|2)−3/2, (8)

and

−n · ∇T = B(T − T∞) +Q, (9)

at z = 1, where σ is the stress tensor. The remaining parameters are the upper-surface Biot number,

B =
hd

k
(10)

the dimensionless surface heat flux Q determined by the basic state, and the far-field temperature T∞ of the gas.
These represent the kinematic boundary condition, the thermo-capillary stress conditions and the heat flux condition
at the interface.
The lower boundary exerts partial slip and no penetration, so that

∂u

∂z
= βu,

∂v

∂z
= βv, w = 0, (z = 0), (11)

where β−1 is a dimensionless, effective slip parameter. We also allow for a nonzero heat flux,

−n ·∇T = Bl(T − T∞), (z = 0), (12)

across the lower boundary in terms of the lower-boundary Biot number Bl.
The remaining equations governing the flow within the layer are given by

MPr−1

[

∂u

∂t
+ u ·∇u

]

= −∇p+∇
2u, (13)

∇ · u = 0, (14)
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M

[

∂T

∂t
+ u ·∇T

]

= ∇
2T, (15)

for 0 < z < η. These represent the momentum balance, incompressibility and heat balance in dimensionless terms, in
terms of the Prandtl number Pr and Marangoni number M , where

Pr =
M

R
=

µcp
k

, M =
ργbd2cp

µk
. (16)

Here,

R =
ργbd2

µ2
, (17)

is the Reynolds number. The remaining dimensionless parameters are the previously defined effective slip parameter
β−1, the upper- and lower-layer Biot number B and Bl, respectively, and the capillary number Ca.

A. Basic state

We consider the partial-slip shear-flow solution given by

ū = z + β−1, v̄ = w̄ = 0, p̄ = 0, (18)

T̄ =− x+M

[

1

6

(

1− z3
)

+
1

2β

(

1− z2
)

+

+B−1

(

1

2
+

1

β

)

+QM−1B−1

]

+

−Blγ(1 +B(1 − z)), (19)

where

γ =
M(3(β + 2) + (β + 3)B)− 6βQ

6βB(BBl +B +Bl)
(20)

is a constant. The temperature of the bounding gas is externally imposed to have a linear, horizontal gradient,

T∞ = −x. (21)

Continuity of temperature at the upper interface fixes Q,

Q =
M(3β + (2β + 3)Bl + 6)

6β(Bl + 1)
, (22)

so that,

T̄ = −x−
M(z − 1)(z(zβ + β + 3)(Bl + 1) + 3 + β)

6β(Bl + 1)
. (23)

The limit β → ∞ and Bl = 0, recovers the basic state of [22].

B. Non-deformable limit: Ca=0

We expand in the small parameter Ca and introduce perturbations X = X̄ + ǫX ′ + . . . , where X = (u, p, T, η) and
X ′ = (u0, p0, T0, η0)+Ca(u1, p1, T1, η1)+ . . . . The problem at zeroth-order in Ca, for which the interface remains flat
η0 = 1, has been formulated by [16]. We state the corresponding equations in this limit as follows, for completeness:

M0Pr
−1

[

∂u0

∂t
+ ū

∂u0

∂x
+ w0

∂ū

∂z
ex

]

= −∇p0 +∇
2u0, (24)
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M0

[

∂T0

∂t
+ ū

∂T0

∂x
+ u0

∂T̄

∂x
+ w0

∂T̄

∂z

]

= ∇
2T0, (25)

∇ · u0 = 0, (26)

with the boundary conditions

w0 = 0 (z = 1), (27)

∂u0

∂z
+

∂w0

∂x
= −

∂T0

∂x
(z = 1), (28)

∂v0
∂z

+
∂w0

∂y
= −

∂T0

∂y
(z = 1), (29)

−
∂T0

∂z
= BT0 (z = 1), (30)

∂u0

∂z
= βu0,

∂v0
∂z

= βv0, w0 = 0 (z = 0), (31)

∂T0

∂z
= BlT0 (z = 0). (32)

We are interested in normal mode solutions

(u0, p0, T0) = (û0(z), p̂0(z), T̂0(z))e
σ0t+iα·x, (33)

where α = (α1, α2, 0), α = |α|, and eliminate p̂ and v̂ to obtain a reduced system of differential equations for the
problem at zeroth order in Ca.
This gives an eighth-order eigenvalue problem, which we solve numerically. We are, in particular, interested in

neutral stability and write σ = iω, where ω is the angular frequency, to obtain the neutral curve in terms of the
Marangoni number

M0 = M0(α1, α2,Pr, B,Bl, β), (34)

and frequency

ω0 = ω0(α1, α2,Pr, B,Bl, β). (35)

C. Adjoint problem

In order to solve the problem at first order in the capillary number, it is useful to formulate the adjoint problem
at zeroth order. We denote the adjoint solution by X̃0 = (ũ0, p̃0, T̃0, η̃0). Note the difference in notation between the

original solution, X̂0, and the adjoint solution, X̃0. By taking inner products and integrating, we find the following
adjoint equations:

M0Pr
−1(iα1(z + β−1) + σ0)ũ0 + α2ũ0 − ũ′′

0

−M0T̃0 + iα1p̃0 = 0, (36)

M0Pr
−1(iα1(z + β−1) + σ0)ṽ0 + α2ṽ0 − ṽ′′0

+ iα2p̃0 = 0, (37)

M0Pr
−1ũ0 +M0Pr

−1(iα1(z + β−1) + σ0)w̃0

+ α2w̃0 − w̃′′

0 −M2
0 (2

−1z2 + β−1z)T̃0 − p̃′0 = 0, (38)
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M0(iα1(z + β−1) + σ0)T̃0 + α2T̃0 − T̃ ′′

0 = 0, (39)

iα1ũ0 + iα2ṽ0 − w̃′

0 = 0, (40)

subject to the boundary conditions

ũ′

0 = βũ0, ṽ′0 = βṽ0, w̃0 = 0, T̃ ′

0 = BlT0, (41)

at z = 0, and

ũ′

0 = 0, ṽ′0 = 0, w̃0 = 0, (42)

iα1ũ0 + iα2ṽ0 +BT̃0 + T̃ ′

0 = 0, (43)

at z = 1.
This, too, gives an eighth-order eigenvalue problem, which can be solved numerically. We can similarly obtain the

neutral curve in terms of the Marangoni number, which coincides with the neutral curve for the original problem.
Quantities of interest to us for the next-order problem are the adjoint solutions X̃0.

D. Surface deformations

We formulate the problem at the next order in the capillary number in terms of the operators L1, . . . ,L5, the
functions φ(0) = (u0, v0, w0, T0, p0) and φ(1) = (u1, v1, w1, T1, p1) and a matrix F , which will be specified below. The
governing equations can be summarised by

L · φ(1) = F · φ(0), (44)

where L = (L1, . . . ,L5), and

L1 · φ(1) =M0Pr
−1

[

iα1zu1 + (iα1β
−1 + σ0)u1 + w1

]

+ iα1p1 + α2u1 − u′′

1 , (45)

L2 · φ(1) =M0Pr
−1

[

iα1zv1 + (iα1β
−1 + σ0)v1

]

+ iα2p1 + α2v1 − v′′1 , (46)

L3 · φ(1) =M0Pr
−1

[

iα1zw1 + (iα1β
−1 + σ0)w1

]

+ p′1 + α2w1 − w′′

1 , (47)

L4 · φ(1) =M0

[

iα1zT1 + (iα1β
−1 + σ0)T1 − u1

−M0(2
−1z2 + β−1z)w1

]

+ α2T1 − T ′′

1 , (48)

L5 · φ(1) =iα1u1 + iα2v1 + w′

1, (49)

and
[

F · φ(0)
]

1

=− Pr−1
[

M1(iα1(z + β−1) + σ0)+

M0σ1

]

u0 −M1Pr
−1w0, (50)

[

F · φ(0)
]

2

=− Pr−1
[

M1(iα1(z + β−1) + σ0)+

M0σ1

]

v0, (51)
[

F · φ(0)
]

3

=− Pr−1
[

M1(iα1(z + β−1) + σ0)+

M0σ1

]

w0, (52)
[

F · φ(0)
]

4

=−
[

M1(iα1(z + β−1) + σ0) +M0σ1

]

T0+

M1u0 +M0M1(z
2 + 2β−1z)w0, (53)

[

F · φ(0)
]

5

= 0. (54)
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These are supplemented by the boundary conditions

w1 = (iα1(1 + β−1) + σ0)η1, (55)

iα1w1 + u′

1 = −iα1T1, (56)

iα2w1 + v′1 = −iα2T1, (57)

(M0(1 + β−1)− iα1)η1 − T ′

1 =

−BM0(2
−1 + β−1)η1 +BT1, (58)

p0 + 2w′

0 = −α2η1 − T ′

0, (59)

at z = 1, and

u′

1 = βu1, v′1 = βv1, w1 = 0, (60)

T ′

1 = BlT1, (61)

at z = 0.
We obtain a solvability condition by forming the inner product

(

φ̃(0),L · φ(1)
)

=
(

φ̃(0),F · φ(0)
)

, (62)

where (f, g) =
∫ 1

0
f(z)g(z)dz. Noting that φ̃(0) solves the adjoint problem and reducing, we obtain the solvability

condition explicitly as follows,

η1 ·

[

(iα1ũ0 + iα2ṽ0 + w̃′

0)(iα1(1 + β−1) + σ0)

− T̃0(M0(1 + β−1)− iα1 +BM0(2
−1 + β−1))

]

z=1

= σ1I1 +M1I2, (63)

where the integrals I1 and I2 are defined by

I1 =−

∫ 1

0

M0

(

Pr−1(ũ0u0 + ṽ0v0 + w̃0w0) + T̃0T0

)

dz, (64)

I2 =−

∫ 1

0

[

(iα1(z + β−1) + σ0)
(

Pr−1(ũ0u0 + ṽ0v0

+ w̃0w0) + T̃0T0

)

+ Pr−1ũ0w0 + T̃0(u0+

M0(z
22β−1z)w0)

]

dz. (65)

The solvability condition (63) determines σ1 and M1 in terms of quantities known at zeroth order in Ca. Note that
the surface deformation η1 can be determined from (59) in terms of known quantities.

III. LONGITUDINAL ROLLS

Longitudinal instabilities occur when α1 = 0. Longitudinal rolls are a type of longitudinal instability for which
ω = 0. Physically, these are seen as rolls aligned along the x axis.
Typical neutral curves for longitudinal rolls are shown in Fig. 2 for both Ca = 0 and Ca 6= 0. The region of

instability expands when the capillary number is allowed to be nonzero. The critical Marangoni number, necessary for
the onset of instability, increases moderately with the capillary number as shown in Fig. 3a. The critical wavenumber
corresponding to this is also seen to increase with the capillary number as shown in Fig. 3b. That is, when the
interface is deformable, the system is more prone to the onset of longitudinal rolls and their typical length scales are
shorter.
The critical Marangoni number for the onset of longitudinal rolls is depicted as a function of the Prandtl number in

Fig. 4a for both Ca = 0 and Ca 6= 0. The effect of surface deformations is weak for low Prandtl numbers; the critical
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FIG. 2. Neutral curves depicting the inverse Marangoni number for longitudinal travelling waves (dashed) and longitudinal
rolls (solid) for Ca = 0 (blue) and Ca = 0.1 (black).

Marangoni numbers for Ca = 0 and Ca 6= 0 are close to each other in this range. Surface deformations begin to play
a more significant role for large Prandtl numbers. The critical Marangoni number for Ca 6= 0 is significantly larger
than that for Ca = 0 for this range of Prandtl numbers. A major difference is that the system selects long waves for
Ca = 0 near a critical Prandtl number Pr = Prc, defined as the maximal Prandtl number for which instabilities occur
(Prc ≈ 30 in Fig. 4b), but this is no longer the case when Ca 6= 0. This can be seen in Fig. 4b near Pr = Prc. The
critical wavenumber decreases towards 0 as Pr → Prc for Ca = 0, however, it remains bounded away from 0 when
Ca 6= 0.
Longitudinal rolls are the preferred mode of instability for large Prandtl numbers. This range of Prandtl numbers

reduces with the capillary number, but does so only weakly as seen in Fig. 10, in favor of two-dimensional hydrothermal
waves, which become selected instead.

IV. LONGITUDINAL TRAVELLING WAVES

Longitudinal travelling waves are a type of longitudinal instability for which the frequency ω 6= 0. Physically, these
are seen as waves aligned along the x-axis and travelling in the direction orthogonal to it.
Typical neutral curves for longitudinal waves are shown in Fig. 2 for Ca = 0 and Ca 6= 0. Neutral curves for

Ca 6= 0 depart significantly from those for which Ca = 0, in comparison to the neutral curves for longitudinal rolls.
The region of instability expands significantly when the capillary number is taken to be nonzero. This occurs for all
Prandtl numbers for which longitudinal hydrothermal waves are the near-dominant mode of instability, as seen in
Fig. 4a. The departure of the critical Marangoni number as the capillary number is taken to be nonzero is among
the largest for longitudinal travelling waves in comparison to the remaining modes of instability. This departure for
longitudinal travelling waves is largest for low Prandtl numbers.
Similarly to the case in which there are no surface deformations, the neutral curves, and therefore the critical

Marangoni number, for longitudinal travelling waves are close to another mode of instability, namely, close to oblique
hydrothermal waves which are discussed in Section VI. These two modes are closest to each other for large Prandtl
numbers and the oblique mode is always more unstable. This amounts to Pr ∼ 0.4− 0.6 in the range for which the
oblique mode is selected by the system as the dominant mode of instability among all modes. Despite never being
selected by the system, longitudinal travelling waves offer a simple way to understand the behaviour of oblique hy-
drothermal waves, which are near-longitudinal in instances in which these modes are the dominant mode of instability.
The critical Marangoni number for longitudinal travelling waves increases monotonically with the capillary number

as shown in Fig. 3a, in comparison to the critical Marangoni number for longitudinal rolls. The two modes exchange
stability for high enough capillary number (Ca ∼ 0.42). The critical wavenumber increases with Ca similarly, as
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FIG. 3. (a) The critical Marangoni number and (b) the critical wavenumber for longitudinal rolls (solid) and longitudinal
travelling waves (dashed) versus the capillary number.

shown in Fig. 3b. Even though the critical wavenumber for longitudinal waves increases at a faster rate than that for
longitudinal modes, these two wavenumbers do not coincide at any capillary number.

The corresponding critical wavenumbers are shown in Fig. 4b. The critical wavenumbers of the two modes (lon-
gitudinal and oblique hydrothermal waves) are closest to each other when there are no surface deformations. This is
particularly the case for low Prandtl numbers.

The critical frequency decreases when there are surface surface deformations, as shown in Fig. 5a. This occurs for
all relevant Prandtl numbers. The general behavior, however, remains the same as for the case in which there are no
surface deformations.
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FIG. 4. (a) Neutral curves depicting the critical Marangoni number and (b) the magnitude of the wavevector for each Prandtl
number for oblique waves (black), longitudinal travelling waves (green), two-dimensional modes (blue) and longitudinal rolls
(cyan) for Ca = 0 (solid) and Ca = 0.1 (dashed). The minimal Marangoni number for each mode at a given value of Pr defines
the preferred mode of instability.

V. TWO-DIMENSIONAL HYDROTHERMAL WAVES

Two-dimensional hydrothermal waves are modes which do not involve the cross-flow direction, that is, modes for
which α2 = 0. These are seen as waves propagating along the mean flow direction without any cross-flow component.

Two-dimensional hydrothermal waves are selected by the system as the dominant mode of instability for intermediate
Prandtl numbers, as seen in Fig. 10. These waves are more common when surface deformations are allowed. As the
capillary number increases, the range of Prandtl numbers for which these waves are the dominant mode of instability
expands, as seen in Fig. 10. These two-dimensional hydrothermal waves appear for more Prandtl numbers instead of
longitudinal rolls and, particularly, oblique hydrothermal waves.

Neutral curves depicting the critical Marangoni number for two-dimensional hydrothermal waves are shown in Fig.
4a, in comparison to the other modes of instability, for Ca = 0 and Ca 6= 0. Surface deformations affect these modes
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FIG. 5. The critical frequency for (a) longitudinal travelling waves, (b) two-dimensional hydrothermal waves, and (c) oblique
hydrothermal waves, versus the Prandtl number for Ca = 0 (solid) and Ca = 0.1 (dashed).
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FIG. 6. The critical wavevector (α1, α2) for oblique hydrothermal waves (a) as Pr varies for Ca = 0 (solid) and Ca = 0.05, 0.1
(dashed) – these are the nondeformable and deformable branches – and (b) at a fixed value of Pr = 1/2 as the capillary number
varies.

most for large Prandlt numbers. The corresponding critical wavenumber for two-dimensional modes is shown in Fig.
4b, in which the effect of surface deformation is similarly seen most visibly for large Prandtl numbers. The critical
Marangoni number as well as the critical wavenumber both increase with the capillary number, as seen in Fig. 7.

The magnitude of the frequency of these waves is, in general, smaller with surface deformations than without, as
seen in Fig. 5. However, this is only the case for large enough capillary numbers, as the magnitude of the critical
frequency is seen to initially increase with the capillary number, until it decreases for Ca ' 0.07.
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FIG. 7. (a) The critical Marangoni number and (b) the magnitude of the critical wavevector for oblique hydrothermal waves
(black) and two-dimensional hydrothermal waves (blue) versus the capillary number.

VI. OBLIQUE HYDROTHERMAL WAVES

Oblique hydrothermal waves are the most general type of mode. For these waves, α1 6= 0, α2 6= 0, and ω 6= 0.
Physically, these are seen as waves travelling at an angle φ to the x-axis, where φ 6= 0.
Oblique hydrothermal waves are selected by the system as the dominant mode of instability for low Prandtl numbers,

as seen in Fig. 10. However, the range of Prandtl numbers for which these modes dominate reduces with the capillary
number. When there are surface deformations, oblique waves are less common. This occurs in favor of two-dimensional
hydrothermal waves, which appear instead.
The critical Marangoni number for oblique hydrothermal waves is shown in Fig. 4a, in comparison to other modes

along with the magnitude of the critical wavevector in Fig. 4b for Ca = 0 and Ca 6= 0. In particular, these modes
are seen to be near-longitudinal and their critical Marangoni number is seen to be close to that of purely longitudinal
hydrothermal waves. However, oblique hydrothermal waves appear to become less near-longitudinal as the capillary
number increases. This is seen in Fig. 6a, where the critical wave vector for oblique hydrothermal waves is seen to be
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FIG. 8. The critical frequency versus the capillary number for (a) two-dimensional hydrothermal waves and (b) oblique
hydrothermal waves.

further away from the α2-axis than for the non-deformable limit for all Prandtl numbers. In fact, both components of
the critical wave-vector grow with the capillary number as shown in Fig. 6b. The character of the variation of the wave
vector with the Prandtl number changes once surface deformations are allowed. Namely, with surface deformations,
these waves no longer become more near-longitudinal as the Prandtl number decreases.
Surface deformations decrease the critical frequency of oblique hydrothermal waves for all Prandtl numbers for

which these waves dominante, as shown in Fig. 5. The decrease is most apparent for intermediate Prandtl numbers.
The corresponding magnitude of the critical wave vector is shown in Fig. 7b, which is seen to increase steadily

with the capillary number. The critical frequency for oblique hydrothermal waves initially increases until Ca ∼ 0.1,
followed by a rapid decrease in frequency for larger capillary numbers.
The critical Marangoni number for oblique hydrothermal waves increases monotonically with the capillary number

as shown in Fig. 7a, triggering an exchange of stability with two-dimensional hydrothermal waves. Even though
oblique waves are preferred by the system for Ca = 0 and for low enough capillary numbers, there is an exchange of
stability for Ca ∼ 0.1 and two-dimensional waves become preferred for larger values of Ca. The angle of inclination,
φ, for oblique waves is shown in Fig. 9 for Ca = 0 and Ca 6= 0, where a decrease from 90 degrees is seen as the
Prandtl number decreases. The angle of inclination is also shown for a fixed Prandtl number as a function of the
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FIG. 9. The angle of inclination of the critical wavevector for oblique hydrothermal waves (a) versus the Prandtl number for
Ca = 0 (solid) and Ca = 0.1 (dashed) and (b) versus the capillary number.

capillary number in Fig. 9b, where it is seen to initially increase, followed by a sharp decrease from 90 degrees with
the capillary number.

VII. CONCLUSIONS

We have investigated the onset of hydrothermal instabilities in a dynamic, horizontal liquid layer, with a deformable,
upper liquid-gas surface and a rigid lower boundary that allows for slip. The system is susceptible to the onset of
oblique three-dimensional hydrothermal waves, purely two-dimensional hydrothermal waves, longitudinal travelling
waves and longitudinal rolls. These result from an imposed horizontal temperature gradient along the upper interface,
which in turn makes the liquid layer dynamic as opposed to static. We perform a low capillary number analysis and
find that the capillary number intricately affects the preferred mode of instability.
We find that surface deformations are destabilizing and the region of parameter space for which the system is
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FIG. 10. Regime diagram depicting the preferred modes of instability in (Ca,Pr)-space.

unstable expands for all modes of instability. However, there is a preference towards two-dimensional hydrothermal
waves as the capillary number increases. These are preferable for intermediate Prandtl numbers, followed by lon-
gitudinal rolls for large Prandtl numbers. The range of Prandtl numbers for which longitudinal modes are selected
by the system reduces with the capillary number in favor of two-dimensional waves, but does so only weakly. The
system is more prone to the onset of longitudinal rolls when the interface is deformable and their typical length scales
are shorter. The effect of surface deformations is weak for longitudinal rolls at low Prandtl numbers, but become
significant for large Prandtl numbers. A key difference is that the system selects long waves near a critical Prandtl
number Pr = Prc when the interface is non-deformable and when the layer is subject to partial slip, but this is no
longer the case when surface deformations are allowed as the critical wavenumber remains bounded away from zero
for Ca 6= 0.
Hydrothermal waves travelling longitudinally along the direction of flow are never selected by the system. How-

ever, these waves offer a simple way to understand the behaviour of oblique hydrothermal waves as these are near-
longitudinal whenever they are selected. Surface deformations affect longitudinal waves most significantly out of all
the modes of instability, for all Prandtl numbers for which these waves are the near-dominant mode of instability.
However, this effect is largest for low Prandtl numbers. Both with and without surface deformations, longitudinal
and oblique hydrothermal waves are closest to each other for large Prandtl numbers, but oblique waves are always
more unstable. The critical wavenumbers of these two modes are closest to each other when there are no surface
deformations, especially for low Prandtl numbers. Longitudinal waves and rolls exchange stability for high enough
capillary number and the critical Marangoni number and critical wavenumber increase monotonically with the cap-
illary number for both of these modes. The critical wavenumber for longitudinal waves is always smaller than that
of longitudinal rolls, even though it increases at a faster rate for longitudinal waves. The critical frequency for longi-
tudinal waves decreases with the capillary number for all relevant Prandtl numbers. The general behavior, however,
remains unchanged.
Two-dimensional hydrothermal waves are the preferred mode of instability for intermediate Prandtl numbers, and

these waves become more dominant as the capillary number increases. Surface deformations affect these modes most
for large Prandtl numbers. The critical wavenumber for these waves is similarly affected most visibly for large Prandtl
numbers. Both the critical Marangoni number and the critical wavenumber both increase with the capillary number.
The magnitude of the frequency of these waves decreases with the capillary number but only for large enough capillary
numbers, preceded by an initial increase for small Ca.
The system selects oblique hydrothermal waves for low Prandtl numbers. However, these waves are less com-

mon when there are surface deformations and two-dimensional hydrothermal waves are selected instead. Oblique
hydrothermal waves are shown to be near-longitudinal and the critical Marangoni number closely follows that of
purely longitudinal hydrothermal waves for low capillary numbers. As the capillary number increases, these waves
become less near-longitudinal, instead, tending to align themselves with the direction of flow. The magnitude of the
wavevector grows with the capillary number. Notably, as the Prandtl number decreases, these waves become more
near-longitudinal in the non-defor3mable limit. This is no longer the case when there are surface deformations. A
sharp decrease of the angle of inclination from 90 degrees is seen as the Prandtl number decreases. When the Prandtl
number is fixed, the angle of inclination initially increases, followed by a sharp decrease from 90 degrees when the
capillary number increases. The critical frequency of these waves rapidly decreases for all relevant Prandtl numbers,
most notably for intermediate Prandtl numbers, when the interface is deformable and the capillary number is large
enough. However, there is an initial increase in the frequency for low capillary numbers, up to Ca ∼ 0.1. The critical
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Marangoni number for oblique waves increases with the capillary number at a rate lower than that for two-dimensional
hydrothermal waves, triggering an exchange of stability between these two modes at Ca ∼ 0.1.
Our results imply that melt pools in the context of AM are more susceptible to the onset of thermocapillary

convection when surface tension is moderate enough to allow for surface deformation, in contrast to scenarios in
which there are no surface deformations. The resulting flow fields affect the microstructures of the finished product
after solidification. In particular, microstructures of alternate layers, or bands, of dendrites, cells and homogenous
material seen in experiments on metallic systems [35–38] appear for lower solidification rates with such a flow than
without, and may disappear completely when the magnitude of the flow is large enough [15, 39].
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