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Near a bifurcation point, the response time of a system is expected to diverge due to the phe-
nomenon of critical slowing down. We investigate critical slowing down in well-mixed stochastic
models of biochemical feedback by exploiting a mapping to the mean-field Ising universality class.
We analyze the responses to a sudden quench and to continuous driving in the model parameters. In
the latter case, we demonstrate that our class of models exhibits the Kibble-Zurek collapse, which
predicts the scaling of hysteresis in cellular responses to gradual perturbations. We discuss the
implications of our results in terms of the tradeoff between a precise and a fast response. Finally,
we use our mapping to quantify critical slowing down in T cells, where the addition of a drug is
equivalent to a sudden quench in parameter space.

I. INTRODUCTION

Critical slowing down is the phenomenon in which the
relaxation time of a dynamical system diverges at a bi-
furcation point [1]. Biological systems are inherently dy-
namic, and therefore one generally expects critical slow-
ing down to accompany transitions between their dy-
namic regimes. Indeed, signatures of critical slowing
down, including increased autocorrelation time and in-
creased fluctuations, have been shown to precede an ex-
tinction transition in many biological populations [2, 3],
including bacteria [4], yeast [5], and entire ecosystems
[6]. Similar signatures are also found in other biological
time series, including dynamics of protein activity [7] and
neural spike dynamics [8].

Canonically, critical slowing down depends on scal-
ing exponents that define divergences along particular
parameter directions in the vicinity of a critical point
[9]. Therefore, connecting the theory of critical slowing
down to biological data requires identification of thermo-
dynamic state variables, their scaling exponents, and a
principled definition of distance from the critical point.
However, in most biological systems it is not obvious how
to define the thermodynamic state variables, let alone
scaling exponents and distance from criticality. In a pre-
vious study [10] we showed how near a feedback-induced
pitchfork bifurcation, a class of biochemical systems can
be mapped to the mean-field Ising model, thus defining
the state variables and their associated scaling exponents.
A followup study further investigated the relationship be-
tween bifurcation and criticality [11]. These earlier stud-
ies provide a starting point for the investigation of critical
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slowing down in such systems, as well as how to apply
such a theory to experimental data.

Additionally, most studies of critical slowing down in
biological systems investigate the response to a sudden
experimental perturbation (a “quench”), such as a dilu-
tion or the addition of a nutrient or drug. This leaves un-
explored the response to gradual environmental changes,
a common natural scenario. When a gradual change
drives a system near its critical point, critical slowing
down delays the system’s response such that no matter
how gradual the change, the response lags behind the
driving. In physical systems this effect is known as the
Kibble-Zurek mechanism [12, 13], which predicts these
nonequilibrium lagging dynamics in terms of the expo-
nents of the critical point. It remains unclear whether
and how the Kibble-Zurek mechanism applies to biolog-
ical systems.

Here we investigate critical slowing down for well-
mixed biochemical networks with positive feedback. Us-
ing our previously derived mapping [10], we show theo-
retically that critical slowing down in our class of models
proceeds according to the static and dynamic exponents
of the mean-field Ising universality class. The mapping
identifies an effective temperature and magnetic field in
terms of the biochemical parameters, which defines a dis-
tance from the critical point. We define response time
as the time it takes the system to reach a new steady
state, and we investigate the dependence of the response
time to a quench and the quench parameters. We then
show that our system, when driven across its bifurcation
point, falls out of steady state in the manner predicted by
the Kibble-Zurek mechanism, thereby extending Kibble-
Zurek theory to a biologically relevant nonequilibrium
setting. Finally, as a proof of concept for the application
of our theory on experimental data, we perform quench
experiments on immune cells and use our theory to inter-
pret the response. We find that drug-induced quenches
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FIG. 1: (a) Inside a cell, a chemical species X with molecule
number n exists in a bath of other species. (b) We consider
steady-state, quench, and driven dynamics for the bath, and
focus on the autocorrelation time τc, response time τr, and
driving time τd, respectively.

that take an immune cell closer to its critical point re-
sult in longer response times, in qualitative agreement
with our theory. Our work elucidates the effects of crit-
ical slowing down in biological systems with feedback,
and provides insights for interpreting cell responses near
a dynamical transition point.

II. RESULTS

We consider a well-mixed reaction network in a cell
where X is the molecular species of interest, and the
other species A, B, C, etc. form a chemical bath for X
[Fig. 1(a)]. Whereas previously we considered only the
steady state distribution of X [10], here we focus on dy-
namics in and out of steady state. Specifically, as shown
in Fig. 1(b), we consider (i) steady state, where the bath
is constant in time; (ii) a quench, where the bath changes
its parameters suddenly; and (iii) driving, where the bath
changes its parameters slowly and continuously. In each
case we are interested in a corresponding timescale: (i)
the autocorrelation time τc of X, (ii) the response time
τr of X, and (iii) the driving time τd of the bath.

First we review the key features of our stochastic
framework for biochemical feedback and its mapping to
the mean-field Ising model [10]. We consider an arbitrary
number of reactions r in which X is produced from bath
species Y ±r and/or X itself (feedback),

jrX + Y +
r
⇀↽ (jr + 1)X + Y −r , (1)

where jr are stoichiometric integers. The probability of
observing n molecules of species X in steady state ac-
cording to Eq. 1 is

pn =
p0
n!

n∏
j=1

fj , (2)

where p−10 =
∑∞
n=0(1/n!)

∏n
j=1 fj is set by normaliza-

tion, and fn is a nonlinear feedback function governed
by the reaction network. The inverse of Eq. 2,

fn =
npn
pn−1

, (3)

allows calculation of the feedback function from the dis-
tribution. The function fn determines an effective order
parameter, reduced temperature, and magnetic field,

m ≡ n∗ − nc
nc

, h ≡ 2(fnc
− nc)

−f ′′′nc
n3c

, θ ≡
2(1− f ′nc

)

−f ′′′nc
n2c

,

(4)
respectively, where nc is defined by f ′′nc

= 0, and n∗
are the maxima of pn. Qualitatively, nc sets the typi-
cal molecule number, θ drives the system to a unimodal
(θ > 0) or bimodal (θ < 0) state, and h biases the sys-
tem to high (h > 0) or low (h < 0) molecule numbers.
The critical point occurs at θ = h = 0 and corresponds
to a pitchfork bifurcation in the biochemical state space.
The state variables m, θ, and h, and the heat capacity C,
scale according to the exponents α = 0, β = 1/2, γ = 1,
and δ = 3 of the mean-field Ising universality class. De-
tailed analysis of this mapping in steady state is found
in our previous work [10].

Near the critical point, all specific realizations of a class
of systems scale in the same way, and therefore it suffices
to consider a particular realization of Eq. 1 from here
on. We choose Schlögl’s second model [10], a simple and
well-studied case [14–21] in which X is either produced
spontaneously from bath species A, or in a trimolecular
reaction from two existing X molecules and bath species
B,

A
k+1−−⇀↽−−
k−1

X, 2X +B
k+2−−⇀↽−−
k−2

3X. (5)

In this case the birth and death propensities are bn =
k+1 nA+k+2 nBn(n−1) and dn = k−1 n+k−2 n(n−1)(n−2),
respectively, in terms of the reaction rates and the num-
bers of A and B molecules. The steady-state distribution
is pn = p0

∏n
j=1 bj−1/dj [22, 23], and by Eq. 3 the feed-

back function is

fn =
aK2 + s(n− 1)(n− 2)

(n− 1)(n− 2) +K2
, (6)

where we have introduced the dimensionless quantities
a ≡ k+1 nA/k

−
1 , s ≡ k+2 nB/k

−
2 , and K2 ≡ k−1 /k

−
2 . Given

Eqs. 4 and 6, the effective thermodynamic variables nc,
θ, and h can be written in terms of a, s, and K or vice
versa [10], with 1/k−1 setting the units of time.

A. Critical slowing down in steady state

In steady state, critical slowing down causes correla-
tions to become long-lived near a dynamical transition
point. Qualitatively, the fixed point is transitioning from
stable to unstable, and therefore the basin of attraction is
becoming increasingly wide. As a result, a dynamic tra-
jectory takes increasingly long excursions from the mean,
making it heavily autocorrelated. The autocorrelation
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FIG. 2: Critical slowing down in steady state. (a) Autocor-
relation time τc in Schlögl model (Eq. 9) peaks with field h
when reduced temperature θ = 0. Height increases and loca-
tion moves to h = 0 as molecule number nc increases. Time
is in units of 1/k−1 . (b) At large nc, τc scales with |h| with
expected exponent of νz/βδ = 2/3. Inset: τc at θ = h = 0

scales as n
1/2
c . In a and inset of b, τc is calculated using

eigenfunctions with cutoff N = max(100, 3nc); in main panel
of b, τc is calculated using batch means with 250 trajectories,
duration T = 105, and batch time τb = 2,222 (see Appendix
A).

time τc diverges at the critical point according to [24]

τc|h=0 ∼ |θ|−νz, (7)

τc|θ=0 ∼ |h|−νz/βδ, (8)

where we expect νz = 1 for mean-field dynamics [9, 25].
Here the autocorrelation time τc is defined as

τc =
1

κ(0)

∫ ∞
0

dt κ(t), (9)

where κ(t) = 〈n(0)n(t)〉− n̄2 is the steady-state autocor-
relation function, κ(0) = σ2 is the variance, and we have
taken the start time to be t = 0 without loss of generality
because the system is in steady state.

To confirm the value of νz, we plot τc vs. h at θ = 0
(Eq. 8). We calculate τc either directly from the mas-
ter equation or from stochastic simulations [26] using the
method of batch means [27] (see Appendix A). The re-
sults are shown in Fig. 2. We see in Fig. 2(a) that τc
indeed diverges with h, and that the location of the di-
vergence approaches the expected value h = 0 as the
molecule number nc increases. We also see that the
height of the peak increases with nc due to the rounding
of the divergence [28]. The inset of Fig. 2(b) plots this
dependence: we see that τc at the critical point θ = h = 0

scales like n
1/2
c for large nc (the application of this de-

pendence to dynamic driving will be discussed in Section
II C). Finally, we see in the main panel of Fig. 2(b) that
when nc is sufficiently large, τc falls off with |h| with
the expected scaling exponent of νz/βδ = 2/3. Taken
together, these results confirm that the divergence of
the autocorrelation time in the Schlögl model obeys the
static exponents of the mean-field Ising universality class
(βδ = 3/2) and the dynamic expectation for mean-field
systems (νz = 1).

B. Approach to steady state following a sudden
quench

When subjected to a sudden environmental change (a
quench), the system will take some finite amount of time
to respond [Fig. 1(b), middle]. How does the response
time depend on the quench parameters? We expect that
if a quench takes the system closer to its critical point,
the response time should be longer due to critical slowing
down [29]. To make this expectation quantitative, we
define the response time τr in terms of the dynamics of
the mean molecule number n̄ as

τr =
1

∆n̄(0)

∫ tmax

0

dt ∆n̄(t), (10)

where the quench occurs at t = 0, we define ∆n̄(t) =
n̄(t)−n̄(tmax), and we ensure that tmax � τr (see caption
of Fig. ??.

To test whether the response time increases with prox-
imity to the critical point, we must define initial values
θi and hi for the environment before the quench, and a
series of values θf and hf for the environment after the
quench that are varying distances from the critical point
θ = h = 0. We consider three scenarios, depicted in
Fig. 3(a): quenching only h (circles), quenching h and θ
in a correlated manner (upward pointing triangles), and
quenching h and θ in an anti-correlated manner (down-
ward pointing triangles). We do not consider quenches
with an initial or final pn that is bimodal, i.e. starting or
ending with θ < 0 and |h| ≤ 2

3 (−θ)3/2, shown in grey in
Fig. 3(a) [10]. The reason is that such bimodal dynam-
ics involve inter-peak as well as intra-peak timescales;
moreover, the mean number n̄(t) is no longer a useful
observable. For these reasons, we limit our investigation
to quenches where pn is unimodal, both before and after
the quench.

We compute n̄(t) from stochastic simulations [26]. We
start in steady state for a given (θi, hi), depicted as black
squares in Fig. 3(a). Then the simulation parameters
are changed to (θf , hf ), translated to Schlögl parameters
according to Eq. 4-6, shown as the colored symbols in
Fig. 3(a). The color encodes the quench direction: from
hi > 0 or hi < 0 to hf > 0 or hf < 0, as shown in the
key of Fig. 3(a) and the legend of Fig. 3(b). A quench is
either cis-critical if it does not take the system across the
critical point (yellow and blue), or trans-critical if takes
the system across the critical point (red and cyan) [30].
Given n̄(t), we compute the response time τr according
to Eq. 10.

We define the distance from the critical point in terms
of the state variables at the quench destination, θ = θf
and h = hf . Specifically, the fact that τc scales identi-
cally with θβδ as it does with h (Eqs. 7 and 8) suggests
the Euclidean distance dc from the critical point

dc =
[
(θβδ)2 + h2

]1/2
. (11)

This measure is important when comparing with exper-
iments (as we do later) because, as opposed to typical
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FIG. 3: Response to sudden quench. (a) Starting from six

steady states at (hi ∈ {±10−3/4}; θi ∈ {0,±10−3/4}) (black
squares) we suddenly quench the system paramters to a range
of values with hf < 0 or hf > 0, as depicted. Colors corre-
spond to the choice of hi, hf ; see key in (a) and legend in
(b). The region shaded in grey corresponds to θ, h values
that yield a bimodal pn, where n̄(t) is no longer a useful ob-
servable. (b) Following each quench, we measure the time it
takes to reach the new steady state τr using stochastic sim-
ulations [26] and Eq. 10. In all simulations, nc = 104 and
tmax = 1000� τc > τr. Time is in units of 1/k−1 .

condensed matter experiments, it is difficult in biological
experiments to manipulate only one parameter (θ or h)
independently of the other.

The dependence of the response time τr on the dis-
tance from the critical point dc is shown in Fig. 3(b).
We see that τr decreases with dc for all quenches, as ex-
pected from critical slowing down. We also see that the
quenches split into two groups according to whether they
are cis-critical or trans-critical. Trans-critical quenches
take more time to respond than cis-critical quenches,
as expected because trans-critical quenches traverse the
critical point whereas cis-critical quenches do not. This
difference may be more than just a multiplicative fac-
tor, as the log-log plots appear to show a different slope,
though this could be a result of mixing more than one
timescale [29].

C. Dynamic driving and Kibble-Zurek collapse

While some environmental changes are sudden, many
changes in a biological context are gradual [Fig. 1(b),
right]. When a gradual change drives a system through
its critical point, critical slowing down delays the sys-
tem’s response such that no matter how gradual the
change, the response lags behind the driving. Although
in a biological setting the driving protocol could take
many forms, terms beyond the leading-order linear term
do not change the critical dynamics [30]. This is a ma-
jor theoretical advantage because it allows us to special-
ize to linear driving without loss of biological realism.
Specifically, we focus on linear driving across the crit-
ical point with driving time τd, setting either θ(t) =
θi− (θf − θi)t/τd and h = 0, or h(t) = hi− (hf − hi)t/τd
and θ = 0, where i and f denote the initial and final
parameter values, respectively.

In a traditional equilibrium setting, the dynamics of
lagging trajectories are described in terms of the critical
exponents by the Kibble-Zurek mechanism [12, 13]. The
idea of the Kibble-Zurek mechanism is that far from the
critical point, the change in the system’s correlation time
due to the driving, over a correlation time, is small com-
pared to the correlation time itself, (dτc/dt)τc � τc, and
therefore the system responds adiabatically. However, as
the system is driven closer to the critical point, these two
quantities are on the same order, or dτc/dt ∼ 1, and the
system begins to lag. Applying this condition to Eqs. 7
and 8, and using the above expressions for θ(t) and h(t),
one obtains

θ ∼ τ−1/(νz+1)
d , (12)

h ∼ τ−βδ/(νz+βδ)d , (13)

respectively. Because m ∼ (−θ)β or m ∼ h1/δ near criti-
cality in the mean-field Ising class, we have

m ∼ τ−β/(νz+1)
d , (14)

m ∼ τ−β/(νz+βδ)d , (15)

respectively. Therefore, if the system is driven at dif-
ferent timescales τd, the Kibble-Zurek mechanism pre-

dicts that plots of the rescaled variables mτ
β/(νz+1)
d vs.

θτ
1/(νz+1)
d or mτ

β/(νz+βδ)
d vs. hτ

βδ/(νz+βδ)
d will collapse

onto universal curves.
When testing these predictions using simulations of a

spatially extended physical system, the finite size of the
system causes a truncation of the autocorrelation time.
This truncation is usually accounted for using a finite-
size correction [30]. In our system, a similar truncation of
the autocorrelation time is caused by the finite number of
molecules. Specifically, the inset of Fig. 2(b) shows that

at criticality we have τc ∼ n1/2c for large nc, where nc sets
the typical number of molecules in the system. Therefore,
we interpret nc as a “system size,” and we correct for
finite-size effects in the following way. Combining the

relation τc ∼ n1/2c with Eqs. 7 and 8, and Eqs. 12 and 13,
we obtain

nc ∼ τ2νz/(νz+1)
d , (16)

nc ∼ τ2νz/(νz+βδ)d , (17)

for the driving of θ or h, respectively. We choose nc
arbitrarily for a particular driving time τd, and when we
choose a new τd, we scale nc appropriately according to
Eqs. 16 and 17.

This procedure allows us to test the predictions of the
Kibble-Zurek mechanism using simulations of the Schlögl
model. The results are shown in Fig. 4. We see in Fig.
4(a) that as θ is driven from a positive to a negative
value, the bifurcation response is lagging, occurring at a
value less than the critical value θ = 0 (supercooling).
Conversely, when θ is driven from a negative to a posi-
tive value, the convergence occurs at a value greater than
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FIG. 4: Dynamic driving and Kibble-Zurek collapse. (a) As
reduced temperature θ is driven over time τd in Schlögl model,
order parameter m lags behind due to critical slowing down.
Decreasing θ causes supercooling (left curves), while increas-
ing θ causes superheating (right curves), resulting in hystere-
sis. (b) Same, for driving h. (c, d) Rescaled curves collapse
as predicted. Each point is computed via Eq. 4 from the

mode n∗ in b, or the modes n
(1)
∗ < nc and n

(2)
∗ > nc in a, of

105 simulation trajectories. For finite-size correction we use

nc = 10τd in a and nc = 22τ
4/5
d in b. Time is in units of

1/k−1 .

θ = 0 (superheating). In both directions, the lag is larger
when the driving is faster, corresponding to smaller val-
ues of τd (from yellow to dark brown). We see in Fig.
4(b) that similar effects occur for the driving of h. Yet,
we see in Figs. 4(c) and (d) that the rescaled variables
collapse onto single, direction-dependent curves within
large regions near criticality. Note that the direction de-
pendence (i.e., hysteresis) is preserved as part of these
universal curves, but the lags vanish in the collapse. This
result demonstrates that our nonequilibrium birth-death
model exhibits the Kibble-Zurek collapse predicted for
critical systems. Together with our previous findings,
this result suggests that such a collapse should emerge in
biological experiments where environmental parameters
(e.g., drug dose) are dynamically controlled in a gradual
manner. More broadly, by phenomenologically collapsing
such experimental curves, it should be possible to deduce
the critical exponents of such biological systems without
fine-tuning them to criticality, but instead by gradual
parameter sweeps.

III. DISCUSSION

We have investigated critical slowing down in a min-
imal stochastic model of biochemical feedback. By ex-
ploiting a mapping to Ising-like thermodynamic vari-
ables, we have made quantitative predictions for the re-

sponse of a system with feedback to both sudden and
gradual environmental changes. In response to a sudden
change (a quench), we have shown that the system will
respond more slowly if the quench takes it closer to its
critical point. In response to more gradual driving, we
have shown that the lagging dynamics of the system pro-
ceed according to the Kibble-Zurek mechanism for driven
critical phenomena. Together, our results elucidate the
consequences of critical slowing down for biochemical sys-
tems with feedback.

Critical slowing down may present a tradeoff in terms
of the speed vs. the precision of a response. Specifically,
the inset of Fig. 2(b) demonstrates that the system slows
down as the number of molecules in the system increases.
On the other hand, large molecule number is known to
decrease intrinsic noise and thereby increase the precision
of a response [31]. This suggests that cells may face a
tradeoff in terms of speed vs. precision when responding
to changes that occur near criticality, as suggested for
other biological systems [32, 33].

Our work extends the Kibble-Zurek mechanism to
a nonequilibrium biological context. Traditionally, the
mechanism has been applied to physical systems from
cosmology [12] and from hard [13, 34] or soft [35] con-
densed matter. Here, we extend the mechanism to the
context of biochemical networks with feedback, where the
system already exists in a nonequilibrium steady state,
and the external protocol takes the system further out
of equilibrium into a driven state. It will be interesting
to see to what other nonequilibrium contexts the Kibble-
Zurek mechanism can be successfully applied [36].

How can our theory be used to analyze experimen-
tal data? As a proof of concept, we perform quench
experiments on immune cells. Specifically, we measure
the abundance in T cells of doubly phosphorylated ERK
(ppERK), a protein that initiates cell proliferation and is
implicated in the self/non-self decision between mounting
an immune response or not [37, 38]. We use flow cytom-
etry to measure the ppERK distribution at various times
after the addition of a drug that inhibits SRC, a key en-
zyme in the cascade that leads to ERK phosphorlyation
(see Appendix B for experimental methods). When the
dose of the drug is small, the distribution hardly changes
[Fig. 5(d), top]; whereas when the dose is large, the dis-
tribution changes significantly [Fig. 5(d), bottom]. The
responses to all doses are shown in Appendix B.

After the addition of the drug, the cells reach a new
steady-state ppERK distribution [light brown curves in
Fig. 5(d)]. The distribution corresponds to an effective
feedback function via Eq. 3, from which the effective tem-
perature θ and field h are calculated via Eq. 4 [10] and
shown in Fig. 5(e). We see that larger doses take the cells
farther from their initial distribution (black square), as
expected. We also see that larger doses take the system
farther from the critical point θ = h = 0 (dotted curves
show contours of equal dc).

Motivated by the data in Fig. 5(e), we perform
quenches in our theory using the initial point (black
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FIG. 5: Quench response in theory (left) and in immune
cell experimental data (right). (a) Stochastic simulations
of Shlögl model show effect of small and large parameter
quenches on distribution. Time is in units of 1/k−1 . (b) Initial
(black square) and quenched (colored circles) parameter val-
ues in θ and h space in model; nc = 500. Dotted lines show
contours of equal dc (Eq. 11), distance from critical point
(θ = h = 0). (c) Response time τr in model decreases with dc.
(d) Experimental distributions of T cell ppERK fluorescence
intensity measured at times after addition of SRC inhibitor
(see Fig. 7 for all doses). (e) θ and h extracted from initial
distribution (black square) and final distributions (colored cir-
cles) for all [SRCi] doses (color bar). Experimental response
time τr decreases with dc. Error bars: for θ and h, standard
error from Savitzky-Golay [39] filter windows 25 ≤ W ≤ 35
[10]; for dc, propagated in quadrature from e; for τr, standard
deviation of Riemann sums spanning left- to right-endpoint
methods to approximate integral in Eq. 10.

square) and final points (colored circles) shown in Fig.
5(b). In the language of Sec. II B, these quenches are
cis-critical with hi < 0 and hf < 0, and the majority of
the quench is in the h direction as expected from pre-
vious work with SRC inhibitors [10]. Consistent with
the experiments, we see in Fig. 5(a) that small and large
quenches have small and large effects on the distribution,
respectively. The dependence of τr on dc in the theory is

shown in Fig. 5(c), and we see that indeed τr decreases
with dc as expected.

Experimentally, we define the response time to the
drug as in Eq. 10 with n̄ replaced by the mean fluores-
cence intensity of ppERK and tmax = 30 min. We cal-
culate the distance from criticality using Eq. 11 and the
experimental values of θ and h. We see in Fig. 5(f) that
the τr decreases with dc, consistent with the the theory.
In Appendix C we verify that this consistency also holds
when using the entropy of the distribution, which unlike
dc is a measure that is independent of the assumptions
of the theory.

The application of our methodology to these exper-
iments serves as a proof of concept, and questions re-
main with regard to the interpretation of the experimen-
tal data. For example, here we do not address the well-
known question of the role of cell-to-cell variability in
the broadening of immune cell distributions [40, 41]. Al-
though critical slowing down has been observed in yeast
[42, 43], it remains an open question whether cell-to-cell
variability dominates dynamics in mammalian cells. In-
deed, the theory assumes only intrinsic birth-death re-
actions and neglects cell-to-cell variability, as well as
other mechanisms such as bursting [44, 45] and param-
eter fluctuations [46, 47] that may play an important
role. Nonetheless, similar models that also focus only
on intrinsic noise have successfully described ppERK in
T cells in the past [48, 49]. Moreover, we expect that
intrinsic fluctuations should play their largest role near
the bifurcation point. Finally, we expect that near the
bifurcation point, the essential behavior of the system
should be captured by any model that falls within the
appropriate universality class.

In this and previous work [10] we have explored the
dynamic and static scaling properties of single cells sub-
ject to biochemical feedback. In both works we apply our
theory to immune cell data, but the analysis is general
and in principle can be applied to any single-cell protein
abundance data. Natural extensions include generalizing
the theory to cell populations or other systems that are
not well-mixed such as intracellular compartments. This
would allow one to investigate the spatial consequences
of proximity to a bifurcation point, such as long-range
correlations in molecule numbers and the associated im-
plications for sensing, information transmission, pattern-
ing, or other biological functions.
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Appendix A: Autocorrelation time

We calculate the autocorrelation time τc (Eq. 9) for
the Schlögl model in steady state using one of two meth-
ods, the first more efficient for small molecule numbers,
and the second more efficient for large molecule numbers.
The first method is to calculate τc numerically from the
master equation for pn by eigenfunction expansion. The
master equation follows from the reactions in Eq. 5 [10]
and can be written in vector notation as

~̇p = L~p. (A1)

where L is a tridiagonal matrix containing the birth and
death propensities for X. The eigenvectors of L satisfy

L~vj = λj~vj , (A2)

~ujL = λj~uj , (A3)

where the eigenvalues obey λj ≤ 0 with only λ0 vanishing
for the steady state, and ~vTj 6= ~uj because L is not Her-
mitian [50]. Because Eq. A1 is linear in ~p, the solution
is

pn(t) =
∑
jn′

ujn′pn′(0)eλjtvnj (A4)

for initial condition pn(0). Calling n(0) ≡ m and n(t) ≡
n, we write the autocorrelation function (see Eq. 9) as

κ(t) = −n̄2 +
∑
mn

pmnmn = −n̄2 +
∑
mn

pn|mpmmn, (A5)

where pm = vm0 is the steady-state distribution, and
pn|m is the dynamic solution at time t assuming the sys-
tem starts with m molecules. That is, pn|m is given by
Eq. A4 with initial condition pn(0) = δnm. Eq. A5 be-
comes

κ(t) = −n̄2 +
∑
mn

mnvm0

∑
j

ujme
λjtvnj (A6)

=
∑
mn

mnvm0

∞∑
j=1

ujme
λjtvnj , (A7)

where the second step uses orthonormality,
∑
j vnjujn′ =

δnn′ , and probability conservation, u0n = 1, to recognize
that the j = 0 term evaluates to n̄2. Inserting Eq. A7 into
Eq. 9 and performing the integral (recalling that λj < 0
for j > 0), we obtain

τc =
1

σ2

∑
mn

mnvm0

∞∑
j=1

ujm

(
1

−λj

)
vnj . (A8)
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FIG. 6: Autocorrelation time computed (a) numerically using
eigenfunction expansion or (b) by simulation using method of
batch means. For sufficient cutoff N or trajectory duration
T , respectively, both methods converge to same value (dashed
line). Parameters: θ = h = 0 and nc = 100. Time is in units
of 1/k−1 . In (b), τb = 1000, and error bars are standard error
from 50 trajectories.

τc = σ−2~nVFU~w, (A9)

where ~n is a row vector, ~w = mvm0 is a column vector,
and neither the eigenvector matrices V and U nor the
diagonal matrix Fjj′ = −δjj′/λj contain the j = 0 term.
Numerically, we compute τc via Eq. A9 using a cutoff
N > nc for the vectors and matrices.

The second method is to calculate τc from stochastic
simulations [26] and the method of batch means [27]. The
idea is to divide a simulation trajectory of length T into
batches of length τb. In the limit T � τb � τc, the
correlation time can be estimated by [27]

τc =
τbσ

2
b

2σ2
, (A10)

where σ2
b is the variance of the means of the batches.

In Fig. 6 we verify that the two methods converge to
the same limit for sufficiently large N or T , respectively.
We find that the first method is more efficient until nc ∼
1000, when numerically computing the eigenvectors for
large N > nc becomes intractable.

Appendix B: Experimental methods

The data in Fig. 7 [of which the smallest and largest
doses are reproduced in Fig. 5(d)] were acquired at the
same time and in a similar way as the data published
in [37] and summarized in [10]. The difference is that,
instead of only recording the data after steady state was
reached, the time series was sampled by applying a chem-
ical fixative to stop chemical reactions and preserve all
biomolecular states. Specifically, we administered ice
cold formaldehyde in PBS to each experimental well of a
96 well-v-bottom plate such that the final working dilu-
tion is 2%, and then transferred the cell-fixative solution
to a new 96 well-v-bottom plate on ice. Cells were kept
on ice for 10 minutes and then precipitated by centrifuga-
tion, resuspended in ice-cold 90% methanol, and placed
in a −20 oC freezer until measurements were taken.
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FIG. 7: Experimental distributions of T cell ppERK fluorescence intensity measured at times after addition of SRC inhibitor.
Times given in legend in upper right. Dose given in title of each panel; colored square in upper corner of each panel corresponds
to color bar in Fig. 5(e), (f) and (h). Panels with smallest and largest dose are reproduced in Fig. 5(d).

Appendix C: Quench analysis using entropy

Although in Fig. 5(f) the response time τr comes di-
rectly from the experimental data, the distance from crit-
icality dc is calculated from the experimental data using
expressions from the theory (Eqs. 3 and 4). This makes
the results in Figs. 5(c) and 5(f) not entirely indepen-
dent. To confirm that the agreement between Figs. 5(c)
and 5(f) is not a result of an implicit co-dependence, we
seek a measure that is related to distance from critical-
ity but that is not dependent on the theory. We choose
the entropy of the distribution S = −

∑
n pn log pn be-

cause near criticality, the distribution is broad and flat,
and therefore we expect the entropy to be large; whereas
far from criticality, the distribution has either one or two
narrow peaks, and therefore we expect the entropy to be
small [10]. Indeed, we see in Fig. 8(a) that in the theory,
the response time τr increases with the entropy S, con-
sistent with the fact that it decreases with the distance
from criticality [Fig. 5(c)]. The same is evident in the ex-
periments: we see in Fig. 8(b) that low drug doses corre-
spond to long response times and high entropies, whereas
high drug doses correspond to short response times and
low entropies, resulting in an increase of response time

τr with entropy S. Calculating the entropy in Fig. 8(a)
requires a conversion between intensity I and molecule
number n, and we have checked that the results in Fig.
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FIG. 8: Quench analysis using entropy. (a) Response time
τr in model increases with entropy S of the distribution. (b)
Experimental response time τr also increases with S. Fluo-
rescence of one molecule set to I1 = 10.

8(b) are qualitatively unchanged for different choices of
this conversion factor over several orders of magnitude.
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