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Microtubules are tubular proteins that form part of the cytoskeleton in eukaryotic cells. Because
of their unique mechanical properties, many studies have theorized microtubules could show high
frequency mechanical vibrations. Others have further suggested these vibrations of the electrically
polar microtubules could be a source of electric fields inside the cell that could serve some biological
function, such as a role in organizing mitosis, or also possibly in cell-to-cell communication. In
this work, we use a transient method to simulate the electric fields that would be generated from a
single microtubule supposing they could sustain vibrations. We evaluate the biological significance
of the electric fields, and the potential energy microtubules might exert on one another. Our
simulation method allows us to evaluate vibrational modes that have not previously been studied.
The simulations suggest the acoustic branch flexing mode would actually be the most electrically
active. Our results suggest a single vibrating microtubule could potentially exert significant forces
(those that exceed thermal energy) on biological dipoles or charges at distances larger then the
Debye length, on the order of 10 nm from the surface of the microtubule, but interaction is not
likely at greater distances.

I. INTRODUCTION

Microtubules are ubiquitous organelles, appearing in
the cytoskeleton of eukaryotic cells. They are tubular
protein complexes constructed out of alpha and beta
tubulin monomers. Microtubules are highly conserved
across different species, and important for functions such
as maintaining cell structure, intracellular transport, and
cell division [1]. Researchers have spent considerable
effort investigating and simulating the high frequency
(>kHz) mechanical vibrations naturally exerted by mi-
crotubules [2]. One motivation behind this research is
the theory that vibrating microtubules are the source of
endogenous electric fields, which may serve some biolog-
ical function [3–6]. The constituent protein tubulin has
a net dipole moment, and the arrangement of tubulin
in the microtubule is such that the microtubule strand
actually has a net dipole moment along its axis. There-
fore, the motion of these tubulin proteins would generate
alternating electric fields inside the cell.

To date, no experimental evidence has confirmed these
high frequency vibrations. Simulation results are mixed
in their findings. Many of these computational stud-
ies calculate vibrational frequencies on the order of 1 to
100 GHz. These resonant frequencies are dependent on
the microtubule length, as are the material properties
of the microtubules themselves [2]. One work that used
molecular dynamics to identify the normal modes of the
microtubule noted that all modes other than flexing (the
resonant frequency of which was not dependent on micro-
tubule length) seemed to have lower resonant frequencies
for longer microtubules [7]. They also noted that mode
number was not length dependent for bending and twist-
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ing modes, while axial mode number decreased with in-
creasing length, and flexing mode number increased with
increasing length. An approximate model describing mi-
crotubule resonant frequency as a function of length is
found in [8].

Even if microtubules were able to sustain high fre-
quency mechanical vibrations, however, their ability to
generate significant electric fields is not clear. Previ-
ous work has modeled electric fields from microtubules
undergoing optical branch axial vibrations based on the
vibrational analysis of Pokorný [9, 10]. These studies
have modeled different arrangements of microtubules us-
ing what they have named the Microtubule Resonance
Dipole Network Approximation method [8, 11–13].

These previous electric field simulations have only
modeled one of the hypothesized vibrational modes from
microtubules, namely the optial branch axial vibration.
Additionally, it has not been thoroughly investigated
whether such theoretical fields could have any biological
significance. In this work, we use a transient method to
simulate the electric fields from multiple vibrations (op-
tical branch axial, acoustic branch axial, bending, twist-
ing, and flexing). As in other biophysics work, we de-
termine the field strength to be significant when it can
interact with a potential energy greater than the back-
ground thermal energy [14]. We also evaluate the abil-
ity of microtubules to induce vibrations on one another
based on their interaction energy.

II. SIMULATION METHODS

In this work, we will use a numerical transient method
to determine the fields generated by microtubule vibra-
tions. Our model is transient in contrast to previous,
frequency domain models. We simulate the trajectory of
each tubulin monomer over the course of two vibrational
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Table I. Dipole moments of tubulin. Note the direction of
the dipole moments is presented in cylindrical coordinates, as
opposed to the Cartesian coordinate system in the source [16]

. Direction of dipole moments defined in Fig. 1.

Tubulin Dipole Moment (Debye) α monomer β Monomer
Pz 115 222
Pr 554 1115
Pθ -6 -192

periods in discrete time steps. Our model treats each
tubulin monomer as a point dipole and sums the field
contributions from each one as they move according to a
given equation of motion.

A. Seeding the Microtubule System

The electromagnetic properties of tubulin and the ge-
ometric arrangement of tubulin in the microtubule are
fortunately well studied. Although microtubules can be
up to 50 µm long, most microtubules are 0.5 µm to 2 µm
[1]. The hollow tube of a microtubule has an inner di-
ameter of approximately 15 nm and an outer diameter of
approximately 23 nm. In vivo, they consist of 13 protofil-
aments which wrap around the microtubule with an 8 nm
pitch, as depicted in Fig. 1. Typically microtubules form
a lattice of tubulin dimers in either the ”13A” or ”13B”
configuration [15]. For the purposes of electric field gen-
eration, we have no reason to suspect one lattice type
should be more electrically active than the other. In this
work, we will consider the ”13B” lattice type.

The electrical properties of the alpha and beta tubulin
monomers are taken from molecular dynamics simula-
tions and listed in Table I [16]. The dipole moment di-
rections are defined in cylindrical coordinates, as labeled
in Fig. 1. The z direction is along the axis of the micro-
tubule, the r direction is directed radially away from the
microtubule center, and the θ direction is tangential to
the microtubule surface. Note that while the microtubule
does have a net dipole moment along its axis, the radial
component of tubulin’s dipole moment is the greatest.

B. Motion of the Microtubule

We simulate five modes of vibrations that have been
hypothesized or simulated in previous works. The first
four are acoustic branch vibrations: axial, bending, flex-
ing, and twisting [17]. The fifth mode is an axial vi-
bration on the optical branch [9]. The two constituent
particles in the microtubule lattice are the alpha and beta
tubulin monomers. In acoustic branch vibrations, these
monomers move coherently, whereas in optical branch vi-
brations they move out of phase [18]. For this reason
we simulate alpha and beta monomers independently,
instead of looking at just the tubulin dimer. Tradi-

Figure 1. Three dimensional structure of a microtubule. Red
spheres indicate alpha tubulin and blue spheres indicate beta
tubulin. The black arrows show the dipole moment of each
tubulin monomer.

tionally, optical branch vibrations are considered more
electromagnetically active than acoustic branch vibra-
tions, hence the focus on optical branch vibrations in
past works.

The equations of motion for each mode follow the form
of:

ξi(t) = A sin(ωt) sin

(
nπzi0
L

)
+ ξ0 (1)

Where A is the amplitude of the vibration, ω is the
angular frequency of the vibration, n is the order of the
mode, L is the length of the microtubule, ξi(t) is the
coordinate dependent on the mode of vibration of node i
as a function of time, ξ0 is that same coordinate at t = 0,
and zi0 is the z coordinate at t = 0. Every alpha and beta
monomer constitutes its own node. The axial, bending,
flexing, and twisting modes represent vibrations along
the z, x, r, and θ coordinates respectively (assuming the
microtubule is aligned on the z axis, with the base at z =
0 and the top at z = L, as shown in Fig. 1). In twisting
vibrations, the amplitude is scaled to the microtubule
radius such that the amplitude of θ corresponds to the
arc length swept. For the optical branch vibration, the
beta tubulin monomers are vibrating out of phase with
the alpha monomers along the z axis. The motion of Eq.
1 fixes the end points of the microtubule, which would
be expected in many biological settings.

Additionally, our simulation applies rotation matrices
to the dipole moment of each node at every time step
to simulate the deformation of the microtubule. Node
i remains in the same orientation to the node directly
above it (node i+ 13). These rotation matrices are given
by Eq. 2 and Eq. 3, and the angles of rotation are given
by Eq. 4.
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Figure 2. Bending, axial, twisting, and flexing microtubule
vibrations (left to right, top to bottom). Amplitudes are ex-
aggerated for the purposes of illustration. All vibrations are
second order (n = 2).

[Rx] =

1 0 0
0 cos θx − sin θx
0 sin θx cos θx

 (2)

[Ry] =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 (3)

θx = − tan−1
(

∆y

∆z

)
, θy = tan−1

(
∆x

∆z

)
(4)

The lengths of ∆x, ∆y, and ∆z are defined as the
differences in the x, y, and z coordinate respectively be-
tween node i and node i + 13. Thus the dipole moment
of any node as a function of time is given by Eq. 5.

~pi(t) = [Ry][Rx]~pi0 (5)

Illustrations of the four acoustic modes, with exagger-
ated amplitudes, are shown in Fig. 2.

C. Fields from Microtubule

Because we only consider distances much less than the
expected wavelength (� 1 mm), we calculate the total
fields using a quasi-static approximation. The electro-
static field from each dipole is summed at every discrete
time point in a particular point in space, with the field
expression given by Eq. 6 [19].

~E =
3r̂(r̂ · ~p)− ~p

4πεr3
(6)

Where ~E is the electric field strength in V/m, ~p is the
vector dipole moment in C m, ε is the permittivity of
the medium, and ~r is the distance vector pointing from
the center of the dipole to the observation point. In or-
der to enforce the screening effect of the media, which

Figure 3. Procedure for numerically calculating the E field
strength in conductive media for arbitrary vibrations: (1)
Move dipole moments along predetermined motion. (2) Sum
fields from all nodes at particular point in space. (3) Get E
field vs. time for one point in space. (4) Remove DC compo-
nent. (5) Extract peak to peak E field.

is discussed in greater detail in Appendix A, we simu-
late the total transient fields at some point in space for
a few periods. We remove the DC offset of the field to
account for screening and calculate the peak-to-peak elec-
tric field strength. This peak-to-peak value is taken as
the strength of the E field in the medium. A flowchart
depicting how we calculate the electric field in space from
the moving microtubules is shown in Fig. 3.

When we calculate the potential energy in an electric
field, we use Eq. 7.

U = −~p · ~E (7)

Where U is the potential energy. When we calculate
the potential energy between microtubules, we sum the
absolute value of the potential energy of every tubulin
dimer in the receiving microtubule system in the presence
of the fields generated by the transmitting microtubule.

D. Comparison with Microtubule Resonance
Dipole Network Approximation

Our results are slightly different from previous simula-
tions using the Microtubule Resonance Dipole Network
Approximation [8, 11–13], which models the the oscillat-
ing tubulin as a Hertzian dipole. Here we argue this is not
an accurate approximation at larger distances. Just as
the time varying fields from an oscillating charge look like
a Hertzian dipole, the time varying fields from an oscil-
lating dipole should look like a Hertzian quadrapole. To
demonstrate this, let us examine the electric field along
the z axis given by a dipole oriented and moving up and
down along that same axis.
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E =
2p

4πε
(
r +A sin(ωt)

)3 (8)

Where p is the magnitude of the dipole moment, r
is the distance between the observation point and the
dipole, A is the amplitude of the oscillation, ω is the an-
gular frequency of vibration, and t is time. If we assume
r � A, we can take the first two terms of the Taylor
series expansion of Eq. 8. This isolates the principle
component of the time varying fields.

E ≈ 2p

4πεr3
−A sin(ωt)

6p

4πεr4
(9)

The first term in Eq. 9 represents the DC component
of the fields, while the second term is time dependent.
The time varying fields decay as a power of r−4, similar
to a Hertzian quadrapole. In conductive media, the DC
and low frequency components are screened, as described
in Appendix A. Modeling each oscillating tubulin as a
Hertzian dipole is therefore overestimating the distance
of interaction. We believe our quasi-static transient sim-
ulation, which removes the DC fields numerically, is a
more accurate simulation.

III. RESULTS

The key parameters we can sweep in our simulation are
the vibration type, mode number, vibration amplitude,
the length of the vibrating microtubule, and of course
where in space we are measuring field strength. As dis-
cussed in Appendix A, we will not consider the impact
of vibration frequency as we are only studying near fields
from vibrations occurring beyond the Maxwell frequency.

In past works considering the biological effects of elec-
tromagnetic fields, significant interaction was deemed to
occur at interaction energies greater than thermal en-
ergy (kBT ), or with forces on the order of 1 pN [14]. The
largest dipole moment for a single protein cataloged by
[20] is 34,460 Debye (or 1.232× 10−25 C m). From Eq.
7, we can determine the E field necessary to have a po-
tential energy equal to thermal energy (kBT ). Assuming
a temperature of 300 K, the E field would need a mag-
nitude of 3.36 kV/m. The same database catalogs the
largest free charge of any single protein at 446 e. To
exert a force of 1 pN would require 1.4 kV/m. This sug-
gests that biologically significant fields must be on the
order of 1 kV/m. Here we only consider traditional elec-
tromagnetic interaction, ignoring more exotic effects such
as stochastic resonance at the receiver which could allow
for the reception of weaker signals.

A. Electric Field from Different Vibration Types

The vibration types studied here are axial, bending,
flexing, and twisting modes, as well as optical branch ax-

Figure 4. The three different lines along which we plot the E
field.

ial vibrations. These are typical normal modes for hollow
cylinders and the modes identified in previous compu-
tational studies [17]. Any microtubule vibration would
consist of some superposition of these modes. Numerical
studies suggest all modes have lower resonant frequen-
cies for longer microtubules, except for the flexing mode
which has been identified to have a resonant frequency
independent of length at about 100 GHz, presumably be-
cause the relevant length scale is the microtubule diam-
eter [7]. At these frequencies our model may slightly
underestimate the electric fields because the dielectric of
cytosol will become frequency dependent.

For comparison of vibration type, we simulate the elec-
tric field strength as a function of distance perpendicular
to the microtubule axis from its middle and end, and dis-
tance parallel to the end of the microtubule (illustrated
in Fig. 4). All simulations are performed for 1 µm long
microtubules with 0.1 nm amplitude vibrations (a typi-
cal vibration amplitude according to molecular dynamics
works [7]). All vibrations are of the first order (n = 1).
The dielectric of the media is 80. These results are plot-
ted in Fig. 5. Interestingly, the flexing vibration, which
has not been electrically modeled in past works, produces
the strongest fields.

B. Electric Field from varying Mode Order

As the flexing mode produces the strongest fields, we
also examine the strength of the E fields for varying
mode order in Fig. 6. It has been observed in simulation
that mode number was not length dependent for bend-
ing and twisting modes, while axial mode number de-
creased with increasing length, and flexing mode number
increased with increasing length [7]. It can be seen that
increasing the mode order increases the field strength at
close distances, but tends to decrease the field strength
at distances that are larger than the scale of the mi-
crotubule (1 µm). This trend holds for most other vibra-
tional modes. See Supplemental Figures 1-4 at [URL will
be inserted by publisher] for the electric fields of other vi-
brational modes as a function of mode order.
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Acoustic Axial
Bending

(a)

R [�m]

(b)

R [�m]

(c)

R [�m]

Figure 5. The magnitude of the time varying E fields coming
from different vibration types for different orientations labeled
in 4. (a) The electric field from the middle of the microtubule.
(b) The electric field from the end of the microtubule. (c) The
electric field parallel to the microtubule. The black dotted line
shows the surface of the microtubule. For all plots, L = 1 µm,
n = 1, and A = 0.1 nm.

C. Electric Field as a function of Amplitude

The previous results were simulated with a vibration
amplitude of 0.1 nm, on the order predicted by molecu-
lar simulation [7]. The same molecular simulations make
the intuitive conclusion that amplitude would decrease
as vibrational frequency increases, and increase as mi-
crotubule length increases. An extrapolated model re-
lating microtubule resonant frequency to length suggests
that at lengths larger than 20 µm, the resonant frequency
begins to dip below the Maxwell frequency of 250 MHz

(a)

R [�m]

(b)

R [�m]

(c)

R [�m]

n=1

n=2

n=3

n=4

n=5

Figure 6. The magnitude of the time varying E fields from
a flexing microtubule from different orders of vibration (n =
1, 2, ...5) for different orientations labeled in 4. (a) The electric
field from the middle of the microtubule. (b) The electric field
from the end of the microtubule. (c) The electric field parallel
to the microtubule. The black dotted line shows the surface
of the microtubule. The black dotted line shows the surface
of the microtubule. For all plots, L = 1 µm and A = 0.1 nm.

[17].

To investigate the effects of the amplitude, we plot the
electric fields for different amplitudes of the flexing mode
from 0.1 nm - 1 nm in Fig. 7. See Supplemental Figures
5-8 at [URL will be inserted by publisher] for the electric
fields of other vibrational modes as a function of vibra-
tional amplitude. While longer microtubules should be
able to sustain larger amplitudes, vibrations larger than
1 nm seem unlikely without damaging the microtubule.
Additionally, we plot the E field at a single point 1 µm
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(a)
R [�m]

(b)
R [�m]

(c)
R [�m]

A=2 Å
A=4 Å
A=6 Å
A=8 Å
A=10 Å

Figure 7. The magnitude of the time varying E fields from a
flexing microtubule from varying vibration amplitudes (A =
200 fm, 400 fm, 600 fm, 800 fm, 1000 fm,) for different orienta-
tions labeled in 4. (a) The electric field from the middle of
the microtubule. (b) The electric field from the end of the mi-
crotubule. (c) The electric field parallel to the microtubule.
The black dotted line shows the surface of the microtubule.
For all plots, L = 1 µm and n = 1.

from the middle of flexing microtubule as a function of
vibrational amplitude Fig. 8. As expected from Eq. 9,
the magnitude of the E field increases linearly with am-
plitude.

D. Potential Energy between Two Microtubules

The previous results suggest it would be difficult for the
electric fields from a single vibrating microtubule to have

Figure 8. The magnitude of the time varying E fields the
middle of a flexing microtubule as a function of vibration
amplitude. L = 1 µm and n = 1.

Figure 9. Illustration showing two 100 nm microtubules in
parallel (a) and in series (b).

significant long range interactions on other biomolecules.
To address the question of whether mechanical vibrations
in one microtubule could induce vibrations in a neigh-
boring microtubule, we evaluate the potential energy be-
tween two microtubules using the process described in
section II C. We simulate the potential energy between
two shorter microtubules (100 nm long) because the sim-
ulation time of our potential energy simulation increases
as a function of L2.

We consider two different orientations: two micro-
tubules side by side, and two microtubules along the same
axis, as illustrated in Fig. 9. Results are shown for the
case of a first order flexing mode with 0.1 nm amplitude
vibrations in Fig. 10.
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Figure 10. The interaction energy between two microtubules
in parallel as a function of distance. L = 100 nm, n = 1, and
A = 0.1 nm.

Figure 11. The interaction energy between two microtubules
in series as a function of distance. L = 100 nm, n = 1, and
A = 0.1 nm.

IV. DISCUSSION AND CONCLUSIONS

A. Different Vibration Types

Earlier we discussed that if an electric field was to in-
teract with biomolecules in any conventional fashion, it
would need to be on the order of 1 kV/m to overcome
thermal energy. In Fig. 5 we see that none of the dif-
ferent vibration types achieve fields of that strength for
any distance from the microtubule surface. Interestingly,
we see the flexing mode is the most electromagnetically
active, which has not previously been simulated. This
makes sense when noting in table I that the radial com-
ponent of tubulin’s dipole moment is strongest.

Previous works have noted that the axial vibration
types are considered the most mechanically likely because
they would displace the least fluid and are less likely to be
damped [2]. It is also interesting to note that the acoustic
axial vibration produces fields stronger than the optical
branch axial vibration. Conventional wisdom holds that
optical branch vibrations should be more electrically ac-
tive, and this is true when the constituent particles in

the lattice are positive and negative charges. The α and
β tubulin monomers, however, are dipole moments both
with positive z components, instead of opposing charges.

B. Varying Mode Order and Vibrational
Amplitude

Because the flexing mode produced the strongest fields,
we evaluated it for different mode orders in Fig. 6.
In general we see increasing the mode order results in
stronger fields close to the surface of the microtubule, but
weaker fields at distances larger than the length of the
microtubule. This suggests that the higher order modes
would not be useful for long distance interactions.

A physical interpretation of these results is that as the
mode order increases, the moment of the effective mul-
tipole increases. At distances larger than the length of
the microtubule, the vibration should look like a point
multipole with some moment proportional to the order
of the vibration. As this moment increases, so too will
the power at which the fields decay over distance, result-
ing in weaker fields at distances larger than the length
of the microtubule. We also see some dips in the E field
around the 1 µm distance only for higher mode orders in
the top plot of Fig. 6. We infer this is a location where
the field contributions from out of phase oscillations be-
comes destructive and results in a weaker field.

In Fig. 7 and 8, we swept the vibrational amplitude
of the flexing microtubule. As predicted by Eq. 9, the
field strength increased linearly with the amplitude. For
both the mode order and amplitude sweep, we start to
see fields approaching 1 kV/m at distances on the order
of 10-100 nm, significantly longer than the Debye length.

C. Potential Energy Between Two Microtubules

In Fig. 10 and 11, we simulated the potential energy
between two small microtubules for separation distances
up to 1 µm. As expected, interactions are strongest for
the flexing mode. Even when the microtubules are in con-
tact, however, the electric potential energy still cannot
surpass the background thermal energy. This suggests
it is unlikely that mechanical vibrations in one micro-
tubule could induce vibrations in a neighboring micro-
tubule through electric field interaction.

One issue with this method of simulation is that the
mutual energy between two microtubules is dependent on
the length of the microtubule. Our simulation method,
however, scales in computation with the square of the
microtubule length, making simulations of larger micro-
tubules time consuming. Instead of simulating longer mi-
crotubules, we derive an analytical model of the potential
energy per unit length between two infinite microtubules.
The details of the derivation are found in Appendix B.
In Fig. 12 we see the models show strong agreement.
Two important trends to note from this are that the po-
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Figure 12. The interaction energy (normalized to thermal
energy) per unit length (nm) between two microtubules in
parallel as a function of separation distance. The transmitting
microtubule is vibrating in the flexing mode. The numerical
simulation is from simulating 100 nm long microtubules, while
the analytical model assumes the infinite case (see Appendix
B for more information on the analytical model).

tential energy decays as a function of r−4, and that po-
tential energy between two microtubules scales linearly
with length. We see that in order for two microtubules
about 50 nm apart to interact above thermal energy in
these conditions, the microtubules would have to be ap-
proximately 10 µm long.

D. Summary

We have presented a new method for simulating the
electric fields from vibrating microtubules. Our method
is capable of simulating any vibrational mode and sweep-
ing a variety of parameters. Based on conventional defi-
nitions of interaction, we did not identify any cases where
the fields produced by the microtubule could interact
with biomolecules at large distances (> 100 nm), though
there are cases with high vibrational order and amplitude
that could achieve fields exceeding 1 kV/m on distances
that are at least larger than the Debye length. If these
fields were to have any biological significance, they would
more likely be for short distance, intracellular regulation,
instead of inter-organism communication. Other factors
such as multiple coherent microtubules, stochastic reso-
nance at the receiver, or atypical interactions with the
media are left outside the scope of this work.
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Appendix A: Effects of Media on Endogenous
Electric Fields

Electrostatic fields are not often considered as long
range interactions in cellular systems because of the sur-
rounding ionic medium, such as cytosol. The exponential
attenuation of electrostatic fields by the dielectric proper-
ties of water and the presence of free charges is typically
described as electrostatic screening. Charged or polar
molecules will attract an ion cloud around them, cancel-
ing out their fields after a few molecular layers. The size
of the cloud is characterized by the Debye length of the
medium, which is about 1 nm for cytosol [21].

Time varying fields, however, can overcome screening
from conductive media at sufficiently high frequencies.
Electric fields in dielectrics are attenuated by a factor of
1/ε, where ε is the dielectric constant of the medium. In
conductive media, this dielectric constant becomes com-
plex and is given by ε = ε − iσ/ω where σ is the con-
ductivity of the medium, ω is the angular frequency of
the field, and i =

√
−1. The ratio of the lossless and

lossy dielectric constants gives the attenuation factor of
the conductive media.

A =
1/ε

1/ε
=

εω

εω − iσ
=

ω

ω − iω0
(A1)

ω0 =
σ

ε
(A2)

This attenuation factor given by Eq. A1 implies
that for moving charge assemblies, the media acts as a
high pass filter with a cutoff around ω0, also called the
Maxwell, or plasma, frequency [22].

For biological solutions such as cytosol, the conductiv-
ity is approximately 1.1 S/m and the relative permittiv-
ity is about the same as water, which is approximately
80 [23]. This means the Maxwell frequency is approx-
imately 250 MHz [23]. This attenuation is plotted vs.
frequency in Fig. 13. For microtubules to be effective
sources of electromagnetic fields, we expect them to vi-
brate near or above the Maxwell frequency. In this work,
we assume that vibrations are occurring at a high enough
frequency regime where attenuation from conductivity is
negligible, other than to remove the DC fields. Given
that many computational studies calculate resonant fre-
quencies between 1 to 100 GHz, ignoring the conductivity
of the medium other than for the purposes of screening
should be a valid assumption [7, 17].

Appendix B: Analytical Model of Potential Energy
Between 2D Microtubules

To give some understanding on the relationship be-
tween microtubule length and mutual energy, we derive
an analytical model of the mutual energy per unit length
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Figure 13. Attenuation factor (given by Eq. A1) of quasi-
static electric fields by conductive media when εr = 80 and σ
= 1.1 S/m.

Figure 14. Diagram of the 2D microtubule. Blue arrows rep-
resent the radial component of the tubulin dipole. Micro-
tubules have a diameter of a and a separation distance of d.

between two infinite, 2D microtubules. A sketch of the
problem is shown in Fig. 14.

As discussed in section II D, a dipole moving up and
down along its axis creates time varying fields that look
like a linear Hertzian quadrapole with a quadrapolar mo-
ment given by Q = Ap where A is the amplitude of os-
cillation and p is the dipole moment. We will model the
source as two infinite linearly distributed quadrapoles,
where the periodic time dependence is considered im-
plicit. The electric potential from a quadrapole aligned
is given by B1.

V =
Q

4πεr3
(3 cos2 θ − 1) (B1)

Assuming that the microtubule on the left of Fig. 14
is vibrating in the flexing mode (i.e. the dipoles are oscil-
lating along the x axis), we can integrate along the length
of microtubule to find the field contribution. Unlike in

our numerical simulation, the ends of these microtubules
are not fixed, since that would not be meaningful for the
infinite case. We can replace Q in B1 with a differential
quadrapole moment per unit length given by λ = Ap/h.
Here h is the height of the dipole, in this case 8 nm. The
total potential from one side is therefore given by the
integral shown in B2.

Vi =

∫ ∞
−∞

λ

4πεr3i
(3 cos2 θi − 1)dz, i = 1, 2 (B2)

cos θ1 =
x− a
r1

, cos θ2 =
x+ a

r2
(B3)

r21 = (x− a)2 + z2, r22 = (x+ a)2 + z2 (B4)

The total potential is simply the sum of the two
sides, VMT = V1 + V2. The electric field is given by
~E = −∇VMT and has only an x component.

Ex(x) =
λ

4πε

8x(x2 + a2)

(x2 − a2)3
(B5)

Using 7 as an expression for the potential energy, we
can determine the potential energy per unit length for
two neighboring microtubules by summing the potential
experienced by the left and right side of the microtubule.

Ū =
[
Ex(d− a)− Ex(d+ a)

]
p/h (B6)

After using B5 to solve B6 and recalling our earlier
definition of λ, we can solve for the potential energy per
unit length from an infinite vibrating microtubule as a
function of separation distance.

Ū =
1

4πε

Ap

h

16p(3ad2 + 4a3)

h(d2 − 4a2)3
(B7)

We observe that for cases where d � a, the poten-
tial energy is decaying to the power of d−4, similar to
what was predicted by our numerical case. We expect in-
teraction energy to increase approximately linearly with
microtubule length. When plotting B7, we use the nu-
merical values of p = 1669 Debye, h = 8 nm, A = 0.1 nm,
ε = 80ε0, and a = 23 nm.
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