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Estimation of mutual information between (multidimensional) real-valued variables is used in
analysis of complex systems, biological systems, and recently also quantum systems. This estima-
tion is a hard problem, and universally good estimators provably do not exist. We focus on the
estimator introduced by Kraskov et al. (PRE, 2004) based on the statistics of distances between
neighboring data points, which empirically works for a wide class of underlying probability distri-
butions. First, we illustrate pitfalls of naively applying bootstrapping to estimate the variance of
the mutual information estimate. Then we improve this estimator by (i) expanding its range of ap-
plicability, and by providing (ii) a self-consistent way of verifying the absence of bias, (iii) a method
for estimation of its variance, and (iv) guidelines for choosing the values of the free parameter of
the estimator. We demonstrate the performance of our estimator on synthetic data sets, as well as
on neurophysiological and systems biology data sets.

I. INTRODUCTION

Much of 20th century statistical physics was built
by studying dependences among physical variables ex-
pressed through their variances and covariances. How-
ever, in recent decades, physicists have started to explore
systems (particularly those far from equilibrium), where
correlation functions, which are the most useful in the
context of small fluctuations and perturbative calcula-
tions, do not tell the whole story about the underlying
systems, which exhibit large, nonlinear fluctuations. A
related problem is that correlation functions depend on
the choice of a parameterization used to measure observ-
ables, so that, for example, for large fluctuations, the
correlation between x and y can be very different from
that between log x and log y, making it harder to inter-
pret the data.

A common solution to these problems is to use the mu-
tual information between two variables instead of their
correlation to quantify dependence [1, 2]. Mutual infor-
mation between variables x and y is distributed according
to a joint distribution P (x, y) is defined as

IP [X,Y ] =

∫
dx dy P (x, y) log2

P (x, y)

P (x)P (y)
, (1)

where the integral should be interpreted as a sum for
discrete variables, and as a multi-dimensional integral
for multi-dimensional real-valued variables. Mutual in-
formation quantifies all, and not just linear dependences
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between the two variables: it is zero if and only if the vari-
ables are completely statistically independent [2]. Fur-
ther, mutual information does not change under invert-
ible transformations (reparameterizations) of x and y [2].
These properties make mutual information the quantity
of choice for analysis of dependences between real-valued,
nonlinearly-related variables, especially in modern bio-
physics (see Refs. [3–5] for just a few examples).

An important complication that prevents an even
wider adoption of information-based analyses is that mu-
tual information and related quantities are notoriously
difficult to estimate from empirical data. Mutual in-
formation involves averages of logarithms of P , the un-
derlying probability distribution. Since, for small P ,
− log2 P → ∞, the ranges of x, y where P is small and
hence cannot be sampled and estimated reliably from
data contribute disproportionately to the value of infor-
mation. In other words, unlike correlation functions, in-
formation depends nonlinearly on P , so that these sam-
pling errors result in a strong sample size dependent and
P -dependent bias in information estimates. In fact, even
for discrete data, there can be no universally unbiased
estimators of information until the number of samples,
N , is much larger than the cardinality of the underly-
ing distribution, K [6]. This means that, for continu-
ous variables, universally unbiased information estima-
tors do not exist at all. These simple observations have
resulted in a lively field of developing entropy / infor-
mation estimators for discrete variables, which work un-
der a variety of different assumptions (see [6–13]). Such
discrete-valued data estimators often use one of the fol-
lowing ideas. First, for N � 1, when most possible out-
comes have been observed in the sampled data, one may
hope that the bias of an estimator can be written as a
power series in 1/N , and then the first few terms of the
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series can be calculated analytically, or estimated directly
from data by varying the size of the data set. Second,
coincidences start happening in data at much smaller N
than it takes to sample every possible outcome [14]. One
can then use the statistics of such frequently occurring
outcomes to extrapolate and learn properties of the large
low-probability tail of the distribution P , estimating con-
tributions of the tail to the information. Third, one can
estimate the bias of an estimator by applying it to a shuf-
fled data set, where the mutual information is zero by
construction. Some of these ideas can be applied to con-
tinuous variables as well, by soft or hard discretization of
the data.

However, for many experiments dealing with continu-
ous variables, such as when studying motor control, some
of these bias correction approaches are not easily appli-
cable [15, 16]. First, the observed variables may be very
large dimensional, which makes good sampling nearly im-
possible. Second, when focusing on mutual information
between just two variables that are projections of very
large dimensional variables, shuffling may not work as
a way to check bias. Indeed, for any finite N , shuf-
fling is not guaranteed to remove statistical dependences
among all data dimensions simultaneously, and random-
izing along one set of projections may leave residual
mutual information due to statistical dependences along
the others. Thus developing information estimators that
use continuity of real-valued data to help with under-
sampling, estimate information without resampling, and
work for large-dimensional data is crucial. Several such
estimators exist [17–19], but we will focus on one of the
most successful such estimators, proposed by Kraskov,
Stögbauer, and Grassberger [20], which we will refer to
as KSG. It uses distances to the k-th nearest neighbors
of points in the data set to detect structures in the un-
derlying probability distribution. If some points cluster,
then the x coordinate of a point can be used to predict its
y coordinate, resulting in a nonzero mutual information.
This can be detected by the statistics of the k-th nearest
neighbor distances. Further, by varying k, one can vary
the spatial scale on which structures are detected.

While successful, KSG cannot be a universally good for
all underlying probability distributions. In fact, even the
original Ref. [20] pointed out that there are probability
distributions for which the estimator does not converge
to the right answer even at very large N . However, we are
not aware of any published methods for self-consistently
detecting if the estimator is unbiased on specific datasets.
Our goal here is to make KSG more broadly useful by en-
dowing it with the abilities (i) to estimate its own error
bars, (ii) to detect existence of a sample-size dependent
bias. We also provide (iii) heuristics to choose the hy-
perparameter k most appropriate for the current data,
and (iv) we directly expand the range of probability dis-
tributions for which the estimator remains unbiased, by
using the reparameterization invariance property of the
mutual information.

Some of the methods presented in this paper were

first tried in Ref. [16], but here we test them more thor-
oughly, introduce additional changes, and formalize the
approach. We start this paper with a brief review of
the KSG estimator. We then progressively introduce our
modifications of the method. Finally we give examples
of performance of the modified method on simulated and
real-life data sets.

A. The KSG estimator

Mutual information can be written down as the differ-
ence of marginal and joint Shannon entropies [2]:

I(X,Y ) = H(X) +H(Y )−H(X,Y ). (2)

KSG uses the Kozachenko-Leonenko (KL) kth nearest
neighbor entropy estimator [21] for each one of the dif-
ferential entropy terms:

ĤKL(X) = −ψ(k) + ψ(N) + log(cd) +
d

N

N∑
i=1

log ε(k)(i).

(3)
Here ψ is the digamma function, d is the dimensionality
of x, N is the total number of samples, cd is the volume
of a unit ball with d dimensions, and ε(k)(i) is twice the
distance between the i’th data point and its k’th neigh-
bor. The meaning of this expression is clearly explained
in Ref. [21], which is certainly worth reading. Briefly, the
intuition is that, if the distances ε(k)(i) are small, then
the underlying probability distribution is concentrated,
and the corresponding differential entropy is also small.
Notice that the metric for calculating distances has to be
defined a priori to apply this estimator, and the metrics
can be very different in the x and the y spaces.

One could plug in Eq. (3) for each one of the three
differential entropies in Eq. (2), but then the biases in the
estimates of the marginal and the joint entropies likely
will not cancel – if the ball with the radius ε(k)(i) includes
the kth nearest neighbor of the ith data point in the
d(x) + d(y) dimensional space, then the ball of the same
radius will include a lot more data points in just d(x)
or d(y) dimensions. Reference [20] argued that keeping
the ball size rather than k constant for the marginal and
the joint entropy would result in the decrease of the total
mutual information bias. To implement this, KSG uses
the max(∆x,∆y) metric to define the distance between
two points that are (∆x,∆y) away from each other. It
then defines the smallest rectangle in the (x, y) space
centered at a point i that contains k of its neighboring

points. One then denotes by ε
(k)
x (i) and ε

(k)
y (i) the x and

y extents of this rectangle, and by n
(k)
x (i) and n

(k)
y (i) the

number of points such that ||xj − xi|| ≤ εx(i)/2 or ||yj −
yi|| ≤ εy(i)/2, respectively. Then the mutual information
is estimated as [20, 22]

Î
(k)
KSG(X,Y ) = ψ(k)− 1/k − 〈ψ(n(k)

x ) + ψ(n(k)
y )〉+ ψ(N),

(4)



3

where averaging is over the samples. Note that, if

〈ψ(n
(k)
x )〉 and 〈ψ(n

(k)
y )〉 increase, the mutual information

estimate drops. This can be understood intuitively as
follows. First, recall that ψ(n) → log n for large values
of the argument, and thus grows with n. Since ψ(n) is

convex up, 〈ψ(n
(k)
x )〉 is large when n

(k)
x (i) are narrowly

distributed (and the same for y, respectively). But if val-

ues of n
(k)
x (i) (or n

(k)
y (i)) are nearly the same for all is,

then the underlying probability distribution has no struc-
tural features in the x (or y) direction, and the mutual
information must be low, which is exactly what Eq. (4)
suggests.

Empirically, KSG is one of the best performing mu-
tual information estimators for continuous data. It has
been used widely, with over 1700 citations to the original
article according to Google Scholar as of the writing of
this article. KSG and KL-style methods, including ear-
lier incarnations of the ideas we describe here, have also
been applied to cases with more unusual structures, such
as spike trains, which have both discrete and continuous
components [16, 23–26]. However, we will focus here only
on KSG as applied to the continuous case. Crucially, even
with this broad acceptance of the estimator, some basic
questions about it remain unanswered. Foremost is that
k is a free parameter, which needs to be chosen before
applying the estimator to data. Varying k allows one to
explore features in the probability distribution across dif-
ferent spatial scales, resulting in the usual bias-variance
tradeoff. For example, k = 1 will pick up even very fine

features, but at the same time n
(k)
x (i) and n

(k)
y (i) will be

small, resulting in large fluctuations. On the other hand,
large k may miss fine-scale features and hence underes-
timate the information, but statistical fluctuations will
be smaller. One can expect that the optimal value of k
depends on the structure of the spatial features in the
data, which may be nontrivial and may exist on multi-
ple spatial scales. In addition, the optimal k should also
depend on N , since fine features can only be observed at
high sampling density. Thus choosing the best k is not
a simple task. The original KSG analysis focused largely
on N → ∞ and on probability distributions with large,
uniform spatial features, for which k ∼ N was often use-
ful (though k = 2 . . . 4, which is small but not 1, was also
recommended). See also [19] for a discussion of problems
with the choice of k ∼ N . In contrast, real life problems
often have N ∼ 102 . . . 104 and many heterogeneous spa-
tial features, so that only k ∼ 1 may have a chance of
working. In this article, in addition to other modifica-
tions, we propose a way of estimating an optimal value
of k for KSG. Crucially, in order to do so, we first solve
two other problems: estimating the standard error of the
estimator and its bias directly from data.

II. RESULTS

A. Estimating the variance of KSG

We first focus on estimating the standard deviation
of KSG. For this, we start with bivariate normally dis-
tributed data as a test case since, for such data, the choice

of k has only a small effect on Î
(k)
KSG [20]. Additionally,

for a bivariate Gaussian, the true value of mutual in-
formation is related to the correlation coefficient ρ as
Itrue = − 1

2 log2(1 − ρ2), which allows for an easy deter-
mination of the actual error of the estimator. Specifically,
for the rest of this section, we will frequently use ρ = 0.6
as an example, where Itrue ≈ 0.32 bits.

For a single data set taken at random from this bivari-
ate Gaussian, KSG will produce an estimate, e. g., 0.2802
bits for N = 1000. However, since we do not know the
standard deviation of the estimator (its “error bars”),
we do not know how many of these digits are significant,
and whether the estimate is biased. Calculating the er-
ror bars is not simple since standard methods, such as
bootstrapping, only work for quantities that are linear
in the underlying probability distribution [27], while in-
formation is not. This is easy to understand intuitively:
resampling data with replacements – a key step in boot-
strap – creates duplicate data points. These will be inter-
preted by KSG as fine-scale, high-information features,
leading to overestimation of the mutual information in
the bootstrapped samples.

To illustrate the inadequacy of bootstrap for this prob-
lem, we generate 20 independent sets of data of size
N = 200 from a bivariate Gaussian with ρ = 0.6. We

then estimate Î
(1)
KSG for each set, and finally calculate the

mean and the standard deviation of these 20 KSG es-
timates. The result is Î

(1)
KSG = 0.32 ± 0.12 bits, which

matches well with the analytical value of ≈ 0.32 bits. On
the other hand, if we take the single data set of N = 200
and then bootstrap it and calculate the mean and the
standard deviation of the KSG estimates of the boot-
strapped data, we get Î

(1)
KSG = 1.32±0.21 bits. The mean

is wrong by a factor of about 4, and even the standard
deviation is twice as large as it should be (and the scale
of both errors certainly depends on N and the underlying
distribution). We emphasize this again: bootstrapping, at
least in its simple form, should not be used in estimation
of mutual information or its error bars!

Instead of using resampling (bootstrap) for estimating
the error of KSG, we propose to use subsampling (related
to jackknife) [28], and the fact that variance of essentially
any function that, like Eq. (4), is an average of N random
i. i. d. contributions scales as 1/N for sufficiently large
N . Indeed, as seen in Fig. 1, this scaling holds, for ex-
ample, for bivariate Gaussians with different correlation
coefficients for at least, N > 50.

Thus we write for the variance of KSG

σ2
KSG(N) =

B

N
, (5)
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FIG. 1. Dependence of the variance of KSG on the
sample set size. For bivariate Gaussians with three differ-
ent correlation coefficients ρ = 0.3, 0.6, 0.9, we generate 100
independent sample data sets of different sizes N . For each

N , we calculate σ2
KSG(N) as the empirical variance of all Î

(1)
KSG

with this N . The variance is plotted vs. 1/N . The shown lin-
ear fit illustrates that the variance, indeed, scales as 1/N for
N � 1. Empty symbols were not used to fit the linear rela-
tion.

where the value of B will depend on the particular dis-
tribution. To estimate B for specific data, we subsample
(not resample!) the data. Specifically, for a small integer
n, we partition the data set of size N at random into n
non-overlapping subsets of as close to equal sizes as pos-

sible. We calculate Î
(k)
KSG for each such subset. Then the

sample variance of these n values of Î
(k)
KSG is our estimate

of σ2
KSG(N/n). Once we know σ2

KSG(N/n) for many val-
ues of n, we fit the model, Eq. (5), to these values and
estimate B empirically. Finally, knowing B, we calculate
σ2

KSG(N) from Eq. (5) directly. Combining these steps,
we get expressions for the estimate of the variance of the
estimator, as well as the standard error of the variance
itself, which can be found in the Appendix, Eqs. (9) and
(10), respectively.

We finish the Section with a few observations. First,
one might be tempted to generate many different non-
overlapping partitions of the data at the same n, hoping
to average over the partitions and hence decrease the
variability observed in Fig. 2. This should be avoided
since such different permutations of data would not pro-
duce independent samples of the variance. For the same
reason, one should avoid any overlaps among partitions,
so that the number of samples in each partition is N/n
with an integer n. Finally, the 1/N scaling of the vari-
ance only works for large N . Thus it may not hold for
n � 1, limiting the maximum value of n in realistic ap-
plications. For all plots shown here, we use n = 1 . . . 10,
which we generally find to be sufficient.
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FIG. 2. Calculating the variance of KSG. For a bivariate
Gaussian with ρ = 0.6, we sample N = 1000 data points from
the distribution. We calculate the variance of KSG with k = 1
for N/n data points by partitioning the data into n nonover-
lapping subsets and estimating the mutual information for
each subset, as described in the main text (blue dots). An
unweighted linear fit with the slope of 1 is shown as a guide
to eye, illustrating extrapolation of the variance of the esti-
mator to the full data set size. An estimate of the variance
of the estimator, with its own expected error, is performed
using the analysis in the Appendix and is denoted by a black
square with an error bar. For comparison, the horizontal line
denotes the variance of the estimator calculated from apply-
ing it to 100,000 independent samples of size N = 1000 from
the Gaussian, illustrating a near perfect agreement.

B. Detecting the estimation bias and choosing k

Most common mutual information estimators, includ-
ing KSG, are asymptotically unbiased for sufficiently reg-
ular probability distributions at N → ∞. At the same
time, all are typically biased at finite N , as discussed in
the Introduction. As a result, the bias is sample size de-
pendent. Thus while it may be hard to calculate the bias
analytically for specific data and estimators, one may be
able to estimate it empirically by varying the size of the
data set [8, 15, 16, 29]: if the estimated mutual infor-
mation drifts with changing N , there are reasons to be
concerned about the bias. Here we will use this strategy
to ascertain the existence of a sample size dependent bias
for KSG.

We note that, unlike Ref. [8], we are not interested in
estimating the bias at finite N and then subtracting it

out (equivalently, extrapolating Î
(k)
KSG to N → ∞). This

is possible only when the form of the bias as a function of
N is known, leaving only a small number of coefficients
to be characterized from data themselves, such as for the
classical ∼ 1/N Miller-Madow correction to the maxi-
mum likelihood information estimator [30]. For KSG,
the asymptotic scaling of the bias is unknown, making
this approach currently infeasible. Further, any estima-



5

0 0.5 1 1.5 2 2.5

10 -2

0

0.5

1

M
I (

bi
ts

)
A

0 0.5 1 1.5 2 2.5

10 -2

0

0.5

1

M
I (

bi
ts

)

B

0 0.5 1 1.5 2 2.5

10 -2

0

5

10

M
I (

bi
ts

)

C

tor would exhibit statistical fluctuations when applied to
real data. Unless the standard deviation of the estimator
is known, one cannot say whether the observed sample
size dependent drift is due the bias or to the fluctuation:
only if the systematic drift over a reasonable range of N
is much larger than the standard deviation, would one
consider this an evidence of the bias. Thus detecting the
bias of KSG (or any other estimator) by varying N is
impossible without a careful consideration of how σ2

KSG
behaves.

The question of detecting the bias is intimately re-
lated to choosing k, the number of nearest neighbors
considered by the estimator: we expect the bias to be k-
dependent. Specifically, for large k, fine-scale features in
the underlying probability distribution will be missed by
KSG, and the mutual information will typically be under-

estimated. At the same time, because n
(k)
x and n

(k)
y grow

with k, we expect the standard deviation of the estimator
to be smaller at larger k. In contrast, for smaller k, statis-
tical fluctuations will be much larger, while two different
effects will affect the bias. First, the downwards informa-
tion bias is expected to be smaller at small k since finer
scale features will be explored. Second, larger fluctua-

tions in n
(k)
x and n

(k)
y will lead to a larger N -dependent

FIG. 3. Bias of KSG as a function of N and k. Start-
ing with N = 400 samples from a bivariate normal distri-
bution with ρ = 0, 0.6, and 1, we partition the data into
n non-overlapping subsamples (without replacements), each

with N/n data points. We estimate Î
(k)
KSG for each subsample

using Eq. (4). Means and standard deviations of the estimates
for each set of n partitions are shown for three different val-
ues of k. The leftmost point (on pink background) for each
line has error bars representing our estimate, following the
methods we discussed in the previous section, and where the
true information is not infinite (ρ < 1) we indicate it with a
black horizontal line. For ρ = 0 (A), which is an extreme case
where the true information is 0, all values of k are success-
ful and do not show evidence of bias. Note that symbols for
different values of k are slightly shifted relative to each other
for visibility, but are actually evaluated at the same n/N for
all k. For ρ = 0.6 (B), which is the most generic case of the
three presented here, the true mutual information of 0.322
bits is shown as a black horizontal line. For the data set sizes
explored here, k = 20 clearly leads to a statistically signifi-
cant negative bias (this is clear from the negative slope), while
k = 1 gives an unnecessarily high variance, sometimes dipping
into mathematically impossible negative values. k = 4 shows
a low-bias, low-variance behavior for these N/n. The case of
ρ = 1 (C) is unusual, in that the true information is infinite,
but we include it for completeness. As expected for infinite
information, our estimator is not able to accurately estimate
it. However, the obvious – and expected – negative bias at
finite n/N (curves for all k grow near zero), is a clear indi-
cation that the information is being underestimated, which is
the best outcome one can hope for in this case.

upwards bias in −〈ψ(n
(k)
x )〉 and −〈ψ(n

(k)
y )〉 in Eq. (4).

Overall, the bias at small k may be of an arbitrary sign.
In any case, one can explore the drift as a function of
N for different values of k and choose to work with the
value (if one exists), for which (a) there is no sample-
size dependent drift compared to the estimator standard
deviation, and (b) the standard deviation is the small-
est. We also note that the actual estimated value of the
mutual information can be strongly k-dependent; we will
discuss this further below, but we note here briefly that
it is important for the estimated value of the information
to be stable across a range of k’s.

We illustrate this analysis in Fig. 3 for the bi-variate
normal distribution with ρ = 0, 0.6, and 1, where 0.6 il-
lustrates the generic behavior of the estimator. Note that
ρ is easily tunable in the online demos that we provide
(see below), and the readers can see for themselves that
conclusions based on this Figure hold for other values of
ρ. Here we work with smaller data sets than in the pre-
vious figures to better explore the effects of k. For ρ = 0,
all values of k are unbiased, and k > 1 works better to
control statistical fluctuations. For ρ = 0.6, of the three
values of k shown in the Figure, k = 4 shows the best
combination of no sample size dependent drift and low
variance. Correspondingly, as this drift analysis predicts,

Î
(4)
KSG remains unbiased compared to the true mutual in-

formation value over the entire range of data explored.
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FIG. 4. Marginally normalizing the data
decreases the KSG bias. (A) For a bi-
variate log-normal distribution, P (x, y) ∼
exp (−((ln 3x)2 + (ln 5y)2 − 2ρ ln 3x ln 5y)/(2(1− ρ2))),
with x and y being standard normal, ρ = 0.6, and the true
mutual information of 0.322 bits, we repeat the analysis from

Fig. 3 and plot the dependence of Î
(k)
KSG(X,Y ) on k and n/N

for N = 104. As always, the error bars on the leftmost points
(full data set, pink background) are estimated as discussed
above. The true value of information is shown as a black
horizontal line. KSG does not give a consistent estimate of
the information, and any estimate would be a function of k.
No value of k gives the correct mutual information. (B) After
reparameterizing each marginal into a standard normal, we

investigate the dependence of Î
(k)
KSG(X ′, Y ′) on k and n/N .

Here KSG does not show a sample sign dependent drift and
is, therefore, largely unbiased for all tested values of k. Here
we also have an estimate that is independent of the choice of
k.

We also verified that the estimator is relatively stable
to the choice of k, so that other values near k = 4 give

similar Î
(k)
KSG, and the estimator remains unbiased (not

shown). Finally, for ρ = 1, the true information is in-
finite. The KSG estimates instead are finite, but they
show a negative bias at finite N for all values of k, as one
would expect.

We note that Ref. [20] explored, in particular, k ∝ N ,
and N →∞. In contrast, our approach often gives k ∼ 1
for N ∼ 102 . . . 104. We expect that k ∝ Nη for some
distribution-dependent η < 1 to be asymptotically opti-
mal since it would lead to both (i) exploring progressively

finer features and (ii) smaller relative fluctuations in n
(k)
x

and n
(k)
y as N → ∞. However, here we are interested

in applications to real experimental data sets. These are
usually far from the asymptotic regime, so that the avail-

able range of N is too small to meaningfully think about
different scalings of k.

C. Decreasing the KSG bias

Empirically, KSG exhibits large biases for distributions
that have very heavy tails, have structural features on
multiple length scales, or are severely skewed. All of
this can be traced to the non-symmetric distribution of
data points in the ε-balls. As an example, Fig. 4 (A)
shows application of KSG for different values of k to a
bivariate log-normal distribution. Even for a very large
N = 10000, KSG is severely negatively biased for all ks.
In specific realizations, we often see the bias increasing as
N grows, so that the KSG estimate turns negative, while
mutual information must always be positive. We note
that small negative values of information would not be a
concern generally: in order to estimate information near
zero bits with error bars, one needs to have it be negative
sometimes — negative estimates that fall within error
bars of zero are acceptable. Here, however, the estimates
can be consistently and significantly negative, indicating
a serious problem.

However, as we mentioned above, mutual information
is invariant under invertible marginal reparameteriza-
tions. Thus one can hope to increase the range of distri-
butions for which KSG is unbiased, by reparameterizing
the data to distributions that KSG is better equipped to
handle. Specifically, since KSG works extremely well for
normal variables, we follow a suggestion in the original
KSG paper [20], and suggest to transform each marginal
variable x and y into a standard normal variable. For
example, if we define ri = 1 . . . N as the rank of the cor-
responding xi, then its reparameterized version is

x′i =
√

2 Erf−1 (2ri − (N + 1)) , (6)

where Erf−1 is the inverse of the error function. Indeed,
as illustrated in Fig. 4 (B), this transformation removes
the bias for many cases. Note that we did not use the
fact that the distribution is bivariate log-normal during
the reparameterization: Eq. (6) will transform any data
into marginally normal variables.

In some sense, the log-normal example is trivial, since
marginal reparameterizations transform it not just into
marginally normal, but into jointly normal distribution,
which would not be expected generically. However,
since KSG depends largely on marginal neighborhoods,
cf. Eq. (4), one would expect that joint normality after
reparameterization is not necessary, and marginal nor-
mality alone is sufficient for the bias to be decreased. Be-
low we illustrate this on two real experimental datasets.

However, before that, we need first to show that our
procedure for estimating the variance of the estimator
can be used for reparameterized data, where biases may
exist, and where the original distribution is non-gaussian.
For this, we repeat the analysis of Fig. 1 for reparame-
terized data: Figure 5 shows scaling of the KSG variance
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FIG. 5. Dependence of the variance of KSG on the
sample set size for non-normal data. We repeat the
analysis of Fig. 1 for the reparameterized log-normal data
of Fig. 4(B), as well as a few other log-correlation coeffi-
cients. Here, we have reparameterized from a skewed, heavy
tailed distribution, which had biased information estimates.
Nonetheless, the scaling σ2

KSG ∝ 1/N still holds, as illustrated
by straight line fits, which have slopes of exactly 1. Empty
symbols were not used to fit the straight lines.

as a function of N for the reparameterized log-normal
data, cf. Fig. 4(B). While the mutual information
estimate on the underlying distribution is severely
biased, with our reparameterization we are able to not
only return to a regime where we can make unbiased es-
timates, but also where we have the 1/N variance scaling.

A similar reparameterization prescription works for es-
timating mutual information between higher dimensional
variables, although the problems of undersampling are
amplified in this case. We first transform each compo-
nent of the data into a standard normal variable using
Eq. (6). We then estimate the estimator variance by per-
forming a linear fit to variances of partitions and then ex-
trapolating to the full data set size. Finally, we check for
the N -dependent drift for various k, and hence choose a
good value of k, if one exists. Figure 6 shows application
of the approach to a 6-dimensional multivariate normal
distribution (three dimensions each for x and y). As in
the one-dimensional case, the estimator does not work
without reparameterization (not shown), but it performs
quite well for the marginally normalized data despite hav-
ing to deal with more dimensions.

III. PRACTICAL GUIDE

MatLab package for performing all of the analyses de-
scribed above are available from https://github.
com/EmoryUniversityTheoreticalBiophysics/
ContinuousMIEstimation. In this section, we de-
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FIG. 6. KSG for multivariate data. While other
choices could be explored, we chose to start with the same
log-normally distributed data as in Fig. 4. We then ro-

tate x into three components, (x
(1)
i , x

(2)
i , x

(3)
i ) = xi ×

(cosφ cos θ, sinφ cos θ, sin θ), where φ = π/6 and θ = π/3. We
similarly make y three dimensional with the same φ and θ.
Now KSG needs to find the information between two three-
dimensional log-normal variables. For these data, KSG is
biased (not shown). However, performing marginal reparam-
etereizations for each of the six involved variable components
independently, we recover the unbiased performance statisti-
cally indistinguishable from Fig. 4: the KSG estimate does
not show sample size dependent drift, is consistent for many
ks, and matches the analytical information value (black hori-
zontal line) for the full data set (pink background).

scribe functions in this package, list our specific
recommendations for using it to estimate mutual infor-
mation for continuous variables, and demonstrate how
to do so using two experimental data sets.

A. Functions in the software package

MIxnyn.m We distribute the original KSG software
(written in C and MatLab) together with our modifi-
cations of it. Details for compiling and installing the
package are available in the README file. This function
provides the MatLab interface to the C implementation
of KSG. It takes two vectors of samples xi and yi as input,
where either or both can be multi-dimensional, assumes
the max-norm metric on both the X and the Y space,
and produces a single estimate of the mutual information
between the two variables.
findMI_KSG_subsampling.m This function calculates

Î
(k)
KSG for the full data and its nonoverlapping subsets.

It takes two vectors of (potentially multi-dimensional)
samples xi and yi on the input, as well as a single value of
k and the vector of n, the number of subsets to divide the
data into. For each value in the vector n, it partitions the
data into this many nonoverlapping partitions at random,

calculates Î
(k)
KSG for each subset, and outputs results of all

of these calculations. It can additionally make a figure
similar to Fig. 3 for a single value of k, which allows the
user to check for the sample-size dependent drift visually.
findMI_KSG_stddev.m This function calculates
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FIG. 7. Application of KSG to systems biology data.
Mutual between NF-κB and p-ATF-2 activation in mouse fi-
broblasts 30 min after activation with TNF at 1.3 ng/mL
is shown. Data has been marginally reparameterized to a
standard normal for this plot (without the reparameteriza-
tion, estimates are biased). For the full data set size (pink
background), standard deviations are extrapolated as detailed
above. k = 20 shows downwards bias for, at least, large num-
ber of partitions. k = 1 is unnecessarily noisy. k = 4 exhibits
a good balance of low drift (bias) and low variance.

the variance σ2
KSG for the full data set, as de-

scribed above. For this, it takes the output of
findMI_KSG_subsampling.m (the mutual information
values for different subsamples of the data) as well as
the data set size N as the input. It then calculates

the sample variance of n values of Î
(k)
KSG(N/n) for all

available n and extrapolates the variance to the full data
set size of N . If requested, the function can produce a
figure similar to Fig. 2, illustrating the procedure and
allowing for a visual inspection of whether the variance
of subsamples is ∝ 1/N , as expected.
findMI_KSG_bias_kN.m This is the wrapper function

that performs our analysis for different values of k. It
takes the xi and yi samples, the list of ks to try, and
the list of the number of data partitions n as the input.
It calls the two previous functions sequentially and es-

timates Î
(k)
KSG(N) with error bars for every value of k.

The function can additionally make a figure similar to
Fig. 3 for all values of k to help find the value k for
which KSG has the smallest sample size dependent drift
and the smallest variance. The function outputs a list
of mutual information values with error bars, each corre-
sponding to a specific value of k.
reparamaterize_data.m The function reparameter-

izes the data to a standard normal distribution, which, if
performed before other estimation steps, should increase
the range of applicability of KSG. It takes a vector of
samples xi, which must be one dimensional, as the input
and returns the reparameterized data as the output.

B. Application notes

1. Transform each of the components of both X
and Y into the standard normal form using

reparamaterize_data.m. We have not seen cases
where this step had any negative effects on the esti-
mation, and it often turns out to be extremely ad-
vantageous. In principle, there probably are situa-
tions where reparameterization is detrimental (pos-
sibly when the data are multiscale), so the users
should exercise judgement.

2. Do not use bootstrapping and related techniques to
estimate variance of the estimator.

3. For a few values of k, explore the dependence of
the estimates on k and the data set size using
findMI_KSG_bias_kN.m or other functions in the
package. Look for a signature of the estimator
drift for smaller data set sizes (many partitions),
and similarly look for a signature of deviation from
∼ 1/N scaling for the variance. These deviations
and drift will set the maximum number of data par-
titions one can explore, and hence will limit the
ability to verify whether the estimator is unbiased.

4. Choose the value of k for which the estimator shows
no statistically significant drift over the largest
range of the data set size. If many such ks ex-
ist, choose the value for which the estimator error
bars are the smallest over the range. Note that
the estimator should be stable in some range of k
around the optimal value, but one cannot expect
the estimate to be fully independent of k.

5. Resist the temptation of subtracting the bias (ex-
trapolating the estimator to N →∞), or declaring
the estimator unbiased based only on a small range
of N . Empirically, about a decade of stability in
N is needed for this determination. Recall that no
estimator is universally unbiased, and so it might
be impossible to estimate the information reliably
from your data using KSG.

6. If no unbiased k is found, try to reduce the dimen-
sionality of your data by any available dimension-
ality reduction approach. Biases decrease rapidly
when the dimensionality decreases. On the other
hand, performing any manipulations with data can-
not increase the information (by the Data Process-
ing Inequality), and thus one may be able to esti-
mate the lower bound on the true information re-
liably, with little bias, which may be sufficient for
some applications.

C. Examples

Our software package includes two experimental data
sets, showing the utility of the method and allowing one
to practice estimation for realistic data.

The first data set comes from the systems biology lit-
erature and can be found in NFkappaBData.mat. These
data were taken with permission from Ref. [31]. The data
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describe the joint activity of two transcription factors
NF-κB and p-ATF-2 measured in 335 individual wild-
type mouse fibroblast cells 30 min after exposure to the
tumor necrosis factor (TNF) ligand at the concentration
of 1.3 ng/mL. The two transcription factors are activated
downstream of the same TNF receptor, and hence their
activity is correlated. The mutual information between
these two sets quantifies this relation. Figure 7 shows
application of our method to these data. The figure can
be generated by NFkappaBDataExample.m, which is in-
cluded in the distribution.

The second data set illustrates application of
KSG to neurophysiology data and can be found in
BirdSpikingData.mat. The data have been taken with
permission from Ref. [16]. They represent recordings of
neural activity from anesthetized Bengalese finches, mea-
sured in the motor neurons that control breathing. Here
we are analyzing the structure of the spike train itself.
The recorded neurons fire only during a particular phase
of the breathing cycle, and we are looking at the inter-
spike intervals within such bursts. Specifically, we are
estimating the mutual information between two subse-
quent interspike intervals as one variable, and the follow-
ing two interspike intervals as the other. Importantly,
this is high-dimensional (two dimensions for both x and
y) and non-Gaussian real data. Without reparameteriza-
tion, questions would remain about the persistent bias of
the estimator. However, the marginally reparameterized
data in Fig. 8 show no residual bias and a stable estima-
tion for many values of k and N/n. The figure can be
generated by finchDataExample.m included in the dis-
tribution.

In the software distribution, we have also included
scripts to run on synthetic data, specifically the bivari-
ate Gaussian case, gaussianExample.m, and the heavy-
tailed case, heavyTailExample.m. These will create fig-
ures equivalent to Fig. 3 and Fig. 4 respectively.

IV. DISCUSSION

While mutual information is being used routinely in
analysis of modern experimental data sets, high qual-
ity, unbiased estimation remains an open problem. In
this article, we described our modifications to the well-
known Kraskov, Stögbauer, and Grassberger [20] k near-
est neighbors estimator of mutual information for real-
valued data. Our contributions include developing a
method for estimating the variance of the estimator, for
detecting the presence of bias, and for choosing the op-
timal value of k. Further, we suggest that transforming
each marginal data dimension into the standard normal
form improves the range of applicability of the estima-
tor, allowing its use even for high-dimensional data sets.
We substantiate our choices with extensive numerical in-
vestigations. Finally, we provide a MatLab package im-
plementing these modifications to the KSG estimator,
as well as a few examples and a practical guide for the
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FIG. 8. Application of KSG to neurophysiological
data. Mutual information between a pair of interspike in-
tervals and the following pair of interspike intervals within
a breathing cycle for anesthetized Bengalese finches is be-
ing estimated. Despite the high dimensionality and the non-
Gaussian nature of the data, we are able to find a stable
estimate for the information with 6000 samples. The esti-
mate is stable for many values of k, with similar error bars
for k > 1 (k = 1 again gives unnecessarily large error bars).
The unreparameterized case (not shown) performs markedly
less well.

workflow. We hope that these developments will be of
use to a broad community of physics, quantitative biol-
ogy, and complex systems researchers.Further, while our
work is aimed at KSG specifically, many other estimators
of mutual information may have similar issues, including
parameterization dependence, inability to estimate their
own error bars, and a need to make choices about hy-
perparameters. Thus we believe that similar treatments
may improve other estimators as well.

We end this article with the following observation. As
we mentioned in the Introduction, there are provably no
universally unbiased estimators of mutual information,
and thus every estimator—including the one we have de-
veloped here—will fail for some data sets. Nothing re-
places looking at the data critically and thinking about
whether the estimated values make sense and whether
there are some patterns in the data that can be used
to reduce the dimensionality, to simplify the estimation
problem, or to verify the results. Blind application of any
algorithm for estimation of mutual information in real-
valued data, including application of our modification of
the KSG approach, is likely to lead to a failure precisely
when the data become interesting.
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APPENDIX

We are trying to fit a model for the dependence of the
KSG estimator variance on the sample size of the form

σ2
KSG(N) =

〈
σ2

KSG(N)
〉

+ noise =
B

N
+ noise, (7)

where the angular brackets denote the expectation value.
By subsampling or partitioning the data, we can get
(noisy) samples of the variance at smaller values Ni
than the actual maximum data set size, which we de-
note N . For each of these samples σ2

KSG(Ni) ≡ σ2
KSG,i,

Ni = N/ni, can be evaluated empirically, with ni being
the number of partitions of the data. For example, if we
split the data into ni = 3 parts, we calculate the KSG
mutual information for these 3 subsets, and we then esti-
mate the variance at this Ni, σ

2
KSG(Ni) as the empirical

variance of the three estimated values. Note that there
can be multiple equal values of ni since data can be par-
titioned into the same number of parts in many different
ways.

Since the variable (ni−1)σ2
KSG,i/

〈
σ2

KSG(Ni)
〉

is a sam-

ple variance, it is natural to assume it to obey the χ2

distribution with ni − 1 degrees of freedom, P
(χ2)
ni−1(x) =

1

2(ni−1)/2Γ(ni−1

2 )
x

ni−1

2 −1e−x. Assuming independence of

all σ2
KSG(Ni) at different values of i, and using Eq. (7),

we view the product
∏
i P

(χ2)
ni−1

(
N(ni−1)σ2

KSG,i

Bni

)
as a like-

lihood function for B. Differentiating w. r. t. B, we find
the maximum likelihood (ML) solution

BML =

∑
i
ni−1
ni

Nσ2
KSG(Ni)∑

i(ni − 1)
. (8)

Thus the estimate of the KSG variance at the full data
set size N is

σ2
KSG(N) =

B

N
=

∑
i
ni−1
ni

Nσ2
KSG(Ni)∑

i(ni − 1)
. (9)

We then calculate the standard error of B and, with
that, of the variance itself as the inverse of the second
derivative of the log-likelihood at the maximum likeli-
hood value:

varσ2
KSG(N) =

2B2
ML∑

i(ni − 1)N2
. (10)

These results are used for estimation of the KSG variance
and its error bars in the main text.
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