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Cascading failures in the Internet have attracted recent attention due to its unpredictability
and destructive consequences. Exploring the failure behavior patterns is necessary because it can
provide effective intervention approaches to prevent huge network disasters. To analyze Internet flow
behaviors during cascading failures (chain reactions in router and link failures), we characterize the
Internet as two coupled networks, the router network and the flow network. Here, flow network is an
abstract representation of data correlations obtained from the router network. We use this coupled
network to build a cascading failure model for studying flow transmission and competition, which
reflects in bandwidth competition given by limited link capacity. We first study the dependency
between routers and flows to explore the flow transmission efficiency when a failure event occurs.
What’s more, we find that rerouting enables flow competition area (the number of flows that one
flow has competitive relationship with) to initially remain stable during a failure episode, but that it
then quickly drops due to poor physical network connectivity. Additionally, in the early stage after
the failure event, the degree of flow competition sharply increases because of the growing number
of the flows and congestion. Subsequently, the flow competition decreases due to the failure of flow
transmission.

PACS numbers: 89.20. Hh, 89.70. Hj, 89.75. Fb.

I. INTRODUCTION

Cascading failures in complex systems have attracted
much attention in recent years [1–12] due to its destruc-
tive consequences.Failure propagations are hard to pre-
dict because system components are highly interdepen-
dent. But small random attacks [13] can destroy such
systems as power grids [14–17], communication networks
[18–20], and transportation systems [21–26]. Because the
Internet is highly interdependent and an essential part of
the social infrastructure, it is particularly vulnerable to
network failure. A small initial shock, such as a flow
burst or the breakdown of an Internet router, can trigger
cascading failure. Understanding the response of Internet
flow to the occurance of failure is essential, because it di-
rectly affects the quality of Internet service [27, 28]. The
number of Internet flows is huge, and its relationship with
network components (routers and links) is complicated;
thus, analyzing flow behavior is extremely difficult.
Failure will happens in routers and links if they are

heavily overloaded, which means that the routers or
links are no longer able to forward upcoming data flows.
Therefore, cascading failures will bring devastating in-
fluence by destroying network structures and functions.
We describe these consequences as macroscopic behav-
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iors, because they are happening on real physical enti-
ties. Learning macro-level behavior during a failure is
an efficient and direct approach to trace the reason be-
hind, and many researchers did a lot of work on this topic
recent years. Crucitti et al.[29] propose a cascading fail-
ure model based on dynamic flow redistribution. They
find that, if a single node is carrying a load above a cer-
tain high threshold, its failure can cause system collapse.
The resiliance of the Internet has been described as “ro-
bust yet fragile (RYF) [30–32]. Guo et al.[31] propose
a load-capacity model based on network dynamic proto-
cols and flow load patterns to analyze the RYF phase
transformation of network damage during failure. Simu-
lation results show that the RYF behavior in the Inter-
net is similar to an abnormal network load pattern. Liu
et al. [33] discover that the router failure can increase
the flow load pressure of related routers and cause cas-
cading failure in the router network. Note that all of
these research findings focus on how failure affects In-
ternet macro-level behaviors, e.g., network efficiency and
network phase transition [34]. An adequate analysis of
micro-level behaviors, such as flow behaviors, has not yet
been carried out.
In this paper we model the Internet as two coupled

networks, the physical network of routers and links and
the flow network of individual Internet flows. We use
this model to analyze the flow dynamic behavior in cas-
cading failure, taking flow rerouting capacity and dy-
namic network resource allocation into consideration. As
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to network resource allocation, bandwidth is one of the
most concerned network resources in the Internet, flows
with different priorities take up different bandwidth re-
source following specific rules, and this is called network
resource allocation.
Based on the cascading failure model established, we

study the dynamic dependency between routers and the
flows during failure. We also examine flow competition
behaviors, including flow competition areas and competi-
tion degrees during the failure process. Flow competition
usually reflects in bandwidth competition due to the lim-
ited link capacity, and flow competition area refers to the
number of flows that one flow has competitive relation-
ships with. The behaviors mentioned above indicate how
cascading failure affects Internet flow patterns, and en-
able us to increase Internet robustness.
We organize the paper as follows. Sections II and III

describe the coupled network and cascading failure mod-
els, respectively. Section IV explains the transmission
and competition behaviors of the Internet flows during
failure. Section V is a summary and provides some con-
clusions.

II. COUPLED NETWORK MODEL

To start with, we define what flow is. The Internet
flow is not a single data packet. It is a continuous packet
flow where packets have the same source and destination
address, belonging to the same service request.
Since flows compete for the finite network resources,

such as bandwidth resource, we construct a flow network
to characterize the competitive relationships among flows
(see Fig.1(b)). In the flow network Gf = (Vf , Ef ), node
set Vf represents the flows in the Internet and edge set Ef

competitive relationships between flows. Wf = {wf} is
the node weight matrix of Gf = (Vf , Ef ) that quantifies
the degree of flow congestion. wf = (df − bf)/df , where
df and bf represent the flow bandwidth demand and the
actual transmission bandwidth, respectively.
When two flows share links in the Internet, there is po-

tential competition between them, and we connect them
in the flow network. For example, fig.1(a) shows a small
mesh network with six routers. Packet flows, numbered
1-5, are transmitted in this network. Flow 3 and flow 4
share two links in fig.1(a), so there is an edge between
node/flow 3 and node/flow 4 in fig.1(b). However, there
is no connection between flow 2 and flow 4 because they
do not share links. The flow network reflects the com-
petitive relationships between Internet flows, and also
we could better observe the competition degree and its
trends during cascading failures by applying this flow net-
work.
Furthermore, to clearly show how flows and routers

interact with each other, we model the Internet as two
coupled networks (see fig.2), the top layer is the flow
network, the bottom layer is the router network. We
use Gr = (Vr, Er) to describe the router network, where

FIG. 1. (Colour online) An example of the Internet and the
corresponding flow network. Fig.1 (a) shows an example of
the Internet. Nodes represent routers, edges represent links.
Flows numbered 1-5 are transmitted in this network; flow
paths are showed with different colors. Fig.1 (b) shows the
corresponding flow network. In the flow network, each node
represents a packet flow, node number in fig. 1(b) are in
accord with the flow number in fig.1 (a). Connections between
flows represent the competitive relationships.

Vr represents routers and Er represents links between
routers. Wr = {wr} is the edge weight matrix of
Gr = (Vr, Er) that quantifies the transmission capac-
ity l of links, wr = l. The dependencies between the
flow network and the router network are established by
the following rule. When a flow passes through a router,
there is a connection between flow and router. For ex-
ample, flow 3 passes through routers A, B, C and D (see
Fig.1 (a)), so we connect flow 3 with routers A-D (see
dotted lines in Fig.2). In return, we could locate one of
the possible transmission paths of a flow by tracing the
dependent connections in the coupled networks.
Cascading failure process is usually described by the

chain reaction in node and link failure. During this fail-
ure process, flow interactions and the dependencies be-
tween flows and routers change because of the re-routing
rule, thus the coupled network established above is also
dynamic.

III. CASCADING FAILURE MODEL

In previous work, the cascading failure is usually mod-
eled by the chain reaction in node failure, where an over-
load condition destroys a node as a whole[21–26]. How-
ever, this may not match the real Internet. In fact,
routers have multiple ports working in parallel, and link
capacity determines the maximum forwarding packets in
each port. If more packets arrive at router port than the
port capability, the overload packets will have to wait in a
buffer, resulting in link congestions. When the congestion
reaches a certain level, the port stops working normally,
resulting in the functional failure in the attached links.
Therefore, in the real Internet congestions will cause fail-
ures of the corresponding links, not directly in the whole
router.
Based on the failure principles of ports and links men-
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FIG. 2. (Colour online) The coupled networks of the Internet.
The top layer is the flow network. The bottom layer is the
router network. Connections between the two networks reveal
the dependencies between flows and routers.

tioned above, we abstract the cascading failure process
as follows: in our model of cascading failure, overloaded
ports cause failures in the attached links by losing their
ability to transfer flows, and subsequent flows bypass
these failed links and choose alternate paths. This causes
a redistribution of flows, which can cause overloads and
failures in other links. As this process continues, cas-
cading failures occur. Recovery is possible during an
overload failure, but it is often slowed by such complex
congestion relief mechanisms, such as buffer management
and queue scheduling [35, 36]. Thus, we do not consider
device recovery in our model.
Bandwidth allocation algorithm is introduced to un-

derstand how flow load distributes and overload failure
occurs. In the router network, L = {l} is the transmis-
sion capacity of the link. In the flow network, D = {d}
is the flow bandwidth demand. The B = {b} value is
the actual flow transmission bandwidth. (d − b) is the
number of packets waiting in the buffer per unit time.
Obviously, the transmission bandwidth is no more than
the bandwidth demand, i.e., b ≤ d. The Φ = {φ}denotes
the flow priority. Higher priority services can be trans-
mitted preferentially. In general, the flow transmission
bandwidth is in proportion to its priority [37, 38].
For each flow, once its source and destination are

determined, a path from the source to the destina-
tion is chosen based on a specific routing algorithm.
If there are multiple paths, we choose one randomly.
Suppose the path of flow fo is represented by link set
{er,1, er,2, ..., er,i, ...er,N}. Using the proportional alloca-
tion algorithm [37, 38], the transmission bandwidth of
flow fo allowed by link er,i is

bfo,er,i = min{ler,i
φfo∑

fo∈Fer,i
φfo

, dfo}, (1)

here ler,i is the transmission capacity of link er,i, φfo and
dfo are the priority and the bandwidth demand of flow

fo, respectively, and Fer,i is the set of flows that pass
through link er,i.
The transmission bandwidth of flow fo is also affected

by the other links that support its transmission. Since
the bandwidth is continuous on the whole path, the final
transmission bandwidth of flow fo on every link of its
path is decided by the minimum bandwidth.

bfo = min{bfo,er,1 , bfo,er,2 , ...bfo,er,i , ...bfo,er,N}. (2)

For link er,i, the transmission load is

l
′

er,i
=

∑

fo∈Fer,i

bfo , (3)

In the same way, we can calculate the transmission band-
widths of all flows and transmission loads of all links.
Thus far we have obtained the initial flow load distri-

bution in the network, and we can use this quantity to
further study link overload failures.
In the Internet, if more packets arrive at router ports

than they are able to process per unit time, the extra
packets wait in buffer and build up queues. According
to TCP/IP protocol [39], the buffer size is determined
by the link capacity and the Round-Trip Time (RTT) of
packets. We use parameter β to reflect the Round-Trip
time, then the buffer size is described as

Qer,i = βler,i . (4)

If the congested packets in link er,i are larger than the
buffer size Qer,i , i.e., when

∑

fo∈Fer,i

dfo − l
′

er,i
> Qer,i , (5)

an overload failure occurs in link er,i. Otherwise, link er,i
works normally.
Using the initial flow load distributions of Eq. (1) and

the link failure criterion of Eq. (5),we found the failed
links and temporarily removed them from the network.
Flows will then reroute and find alternate paths based
on the new network structure. Through flow rerouting,
flow loads are redistributed according to the proportional
bandwidth allocation algorithm provided by Eq. (1) and
(2), and can cause failures in other links. As this process
continues, cascading failures occur.
Based on the failure model established, we further

model the flow behaviors during a failure process.
In the coupled networks of Internet (see Fig.2), cross-

layer connections between flows and routers reflect the
transmission paths of flows. So we quantify the depen-
dency connections to reflect the flow transmission effi-
ciency. ρ is the dependency intensity, which is described
as

ρ(t) =
µ(t)

NRouterNFlow

, (6)

where t is the flow load redistribution time, revealing
the failure process. NRouter is the number of routers,
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NFlow is the number of flows. NRouterNFlow denotes all
the possible dependency connections. µ is the actually
existing interconnections, which may change during the
cascading failure. For each flow, the connections with
routers is one more than its path length. Thus,

µ(t) =
∑

fi∈NFlow

(len(fi, t) + 1), (7)

len(fi, t) is the path length of flow fi. ρ then equals

ρ(t) =

∑
fi∈NFlow

(len(fi, t) + 1)

NRouterNFlow

. (8)

When the flow number is large enough, we can use
average path length s̄ to further obtain the theoretical
value of ρ .

ρ∗(t) =
(s̄(t) + 1)NFLow

NRouterNFlow

=
s̄(t) + 1

NRouter

, (9)

here s̄(t) is the average path length of flows. Usually, a
lower value of ρ∗ means a shorter average path length of
flows, implying a higher flow transmission efficiency.
In addition to flow transmission behaviors, we also

model flow competition behaviors. The giant component
in a network is often used to measure the effect of cas-
cading failures [40–43]. In a flow network, gF reflects the
maximum competition area.

gF =
N

′

Flow

NFlow

, (10)

N
′

Flow is the number of flows in the giant component of
flow network.
Further, the flow competition degree γ is described as

γ =
1

NFlow

NFlow∑

i=1

ki(t)

kmax

wfi(t), (11)

where ki is the degree of flow fi, kmax is the initial maxi-
mum degree of flows. ki/kmax quantifies the competition
density of fi . wfi is the congestion degree of fi that
quantifies the competitive strength. According to the
definition of wfi ,

γ =
1

NFlowkmax

NFlow∑

i=1

ki(t)(1 −
bfi(t)

dfi
). (12)

The maximum value of γ equals

γmax =
1

NFlowkmax

(1−
bmin(t)

dmax

)

NFlow∑

i=1

ki(t)

=
k̄(t)

kmax

(1 −
bmin(t)

dmax

),

(13)

where k̄(t) is the average degree of flows, bmin(t) is the
minimum transmission bandwidth of flows, dmax is the
maximum bandwidth demand of flows.
Now, we have modeled flow behaviors from perspec-

tives of flow transmissions and flow competitions. In the
next section, simulations are conducted by utilizing our
model.

IV. SIMULATION AND ANALYSIS

To generate the router network, Barabási-Albert (BA)
network and the Erdős-Rényi (ER) random network are
taken into consideration. For BA scale-free networks,
the network size is NBA = 2000 with exponent λ = 2.6.
For ER random networks, NER = 2000 and the average
degree is k̄ = 10. α is to adjust the link transmission
capacity.

l = αl0, (14)

where l0 = 10(Gps) is the basic capacity. β = 0.1(s) to
measure the average Round-Trip Time of packets.
To initially trigger cascading failures, we randomly and

intentionally select 5% routers for attack respectively,
induce a redistribution of flow load, and create a con-
gested network environment. Both attacked routers and
attached links are removed. When the attacks are ran-
dom, the routers are removed indiscriminately. When
they are intentional, the higher degree routers are re-
moved. 100,000 flows are randomly distributed in the
router network, which means the source-destination pairs
are randomly chosen. The paths are assigned through Di-
jkstra shortest path algorithm. Flows are endowed with
random priorities Φ ∈ {1, 2, 3, 4, 5}, and flow bandwidth
demands obey a normal distribution d∼N(0.2, 0.4) .
Fig.3 shows the dependency intensity ρ in several cou-

pled networks under different attacks when α = 1 . The
x-axis (t) is the flow load redistribution time, revealing
the failure process. In the rest of the paper, for simplic-
ity, the coupled networks derived from the BA scale-free
Internet is called a BA coupled network, and the coupled
networks derived from ER random Internet is called ER
coupled network. From fig.3 we can see ρ and ρ∗ have
almost the same trendency, which means ρ does have a
positive correlation with the average path length of flows
s̄. Utilizing this, we can measure the flow transmission
efficiency by ρ . For example, BA networks are more ef-
ficient in packets delivery than ER networks because of
lower values of ρ when t = 0 (no attack).
When a failure occurs, some links will fail and be re-

moved from the network, the affected flows will choose
other paths. Since the network is now less dense, the
alternative paths are usually longer. Thus ρ increases at
the beginning of the failure, and the flow transmission
efficiency becomes progressively lower. The length of the
rising period of ρ also reflects the network resilience. Dur-
ing this period, the router network is able to carry the
flow load, although the flow transmission efficiency de-
clines. The longer the rising period, the better the net-
work resilience. In BA coupled networks the rising period
is shorter than in ER coupled networks, which means that
when there is a cascading failure, the resilience of the BA
scale-free Internet is poorer.
As the failure progresses, ρ and ρ∗ decreases. To ex-

plain this phenomenon, we further calculate the propor-
tion of flows that are failed to be transmitted during the
failure process (see subfigures p(len = 0) in Fig.3). The
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FIG. 3. (Colour online) Dependency intensity when ρ when
α = 1. t is the load redistribution time, revealing the failure
process. For BA coupled network and ER coupled network,
the router number is NRouter = NBA = NER = 2000 . 5%
routers are initially attacked. β = 0.1 to measure the average
RTT of packets. 100,000 flows are randomly distributed with
random priorities Φ ∈ {1, 2, 3, 4, 5}. The paths are assigned
through Dijkstra shortest path algorithm. The flow band-
width demands obey a normal distribution d∼N(0.2, 0.4) .
Simulation settings are the same below.

turning point of ρ from increase to decrease is where there
is a fair amount of untransmitted flows. The path lengths
of untransmitted flows equal zero, leading to the decrease
of ρ and ρ∗ . Also, the decreasing trend indicates that
there is a deteriorative connectivity of router network.
For example, in BA coupled networks under intentional
attacks (see Fig.3 (a)), the value ρ drops approximately
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FIG. 4. (Colour online) Competition area gF of flows. gF
reflects the maximal flow competition area. The decreasing
trend of during failures in BA flow networks is much more ob-
vious than that in ER flow networks. α = 1, 2, 4, 8 separately
to adjust the link transmission capacity (l). l0 = 10(Gps).
Simulation settings are the same as Fig.3.

80%, and nearly 90% flows failed to be transmitted. The
failure effect on network structure and connectivity is
clearly serious. Furthermore, the vertical amplitude of
ρ differs in different coupled networks. In BA coupled
networks, the range of the amplitude is wider, indicating
that more flows are affected by the failure and resulting
in a clear effect on flow rerouting paths, especially when
attacks are intentional.

Figure 4 shows the fluctuations of flow maximum com-
petition area gF during the failure process. When the
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flow redistributes, the connections between flows are re-
built, and we recalculate. For simplicity, the flow net-
works derived from the BA Internet is called BA flow
network, and the flow networks derived from the ER In-
ternet is called ER flow network. Figure 4 shows that
BA flow networks are vulnerable to both intentional and
random attacks. The maximum competition area is ini-
tially gF = 1, then quickly drops as the cascading fail-
ure progresses. Initially, most flows interrupted by the
failure can reroute, find alternate paths, and maintain
their competitive relationship with other flows. As the
failure continues, the connectivity of the router network
deteriorates, many flows become isolated (see subfigures
p(len = 0) in Fig.3), and are no long able to compete for
network resources. Thus, the size of the flow competi-
tion area drops quickly. In ER flow networks, however,
the gF values decrease very little under both random and
intentional attacks, and most flows maintain their ability
to compete for network resources. The competition area
gF in ER flow networks can be as much as 4 times the
size of the competition area in BA flow networks. Fur-
thermore, by increasing link capacity, the flow network
can obviously improve its robustness, much more flows
stay in the giant component and success in transmission.
Figure 5 shows the flow competition degree γ under

different attacks. Note that γ increases at the beginning
of the failure. This is because most of the flows affected
by failure links reroute successfully at the beginning of
the collapse. However, as the number of links and net-
work resources decrease, the degree ki of flow increases
and the transmission bandwidth bfi declines, jointly lead-
ing to an increasing trend in γ . As the failure con-
tinues, γ decreases. Since router network connectivity
deteriorates, an increasing number of flows become iso-
lated. For these flows, the flow degree k = 0 , leading
to a decreasing trend in γ . All in all, the flow com-
petition degree is affected by two factors, flow degree ki
and flow transmission bandwidth bfi . By ignoring the
influence of bfi , we obtain the maximum value γmax

(Eq.13). From figure 5, γ and γmax have the same trend,
and as the failure continues, the difference gets smaller
(see subfigures γmax − γ in fig.5). Since the calculation
complexity of γmax is much smaller, we could use γmax to
roughly evaluate the scale of flow competition degree. At
last, due to the heterogeneous structure of BA network,
flows in BA network are more concentrated. Under this
circumstance, network attacks will influence more flows
compared with ER network. Thus, γ varies much more
obviously in BA flow network.

V. CONCLUSION

We have modeled the Internet as two coupled net-
works. We examine the cascading failure process and
analyze flow dynamic behaviors, including flow trans-
mission and competition. The way in which flow de-
pends on routers indicates the flow transmission effi-
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FIG. 5. (Colour online)Competition degree γ of flows. The
flow competition degree in BA flow networks is more intense
and concentrated. The difference of γ and γmax gets smaller
as the failure continues. Simulation settings are the same as
Fig.3.

ciency and network performance. The intensity of this
dependence increases at the beginning of a failure event
because flows are seeking alternative paths, which are in-
variably longer. As the failure intensifies and continues
to spread, an increasing number of flows stop transmit-
ting, and the transmission dependency thus rapidly de-
creases. Because flows are able to reroute, initially the
flow competition area remains stable, but as the router
network connectivity continues to deteriorate, the com-
petition area sharply drops. We also have studied the
flow competition degrees during the failure process. Ini-
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tially the competition degree increases because degree of
flow clustering and congestion both increase. As the fail-
ure progresses, the competition degree decreases due to
the failure transmission of flows.

The cascading failure model and the flow behavior find-
ings supplied in this paper will assist those who develop-
ing ways of improving Internet robustness when it re-
sponds to failure events.

ACKNOWLEDGMENTS

This work was jointly supported by Beijing Natu-
ral Science Foundation under Grant No. 4182040, Na-
tional Natural Science Foundation of China under Grant
No.61871051. The Boston University work was sup-
ported by NSF Grants PHY-1505000, CMMI-1125290,
and CHE-1213217, and by DTRA Grant HDTRA1-14-1-
0017 and DOE Contract DE-AC07-05Id14517.

[1] R. Albert, H. Jeong, and A.-L. Barabási, Nature 406,
387 (2000).

[2] S. M. Chen, Y. F. Xu, and S. Nie, Physica A: Stat. Mech.
Appl. 471, 536 (2017).

[3] D. W. Zhao, Z. Wang, G. X. Xiao, B. Gao, and L. H.
Wang, EPL 115, 58004 (2016).

[4] S. Hong, C. Lv, T. D. Zhao, B. Q.Wang, J. H. Wang, and
J. X. Zhu, J. Phys. A: Math. Theor. 49, 195101 (2016).

[5] D. Q. Li, Y. N. Jiang, R. Kang, and H. Shlomo, Scientific
Reports 4, 5381 (2014).

[6] J. X. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley,
Phys. Rev. Lett. 107, 195701 (2011).

[7] A. E. Motter and Y. C. Lai, Phys. Rev. E 66, 065102
(2002).

[8] P. Dey, R. Mehra, F. Kazi, S. Wagh, and N. M. Singh,
IEEE Transactions on Smart Grid 7, 1970 (2016).

[9] M. A. DiMuro, S. V. Buldyrev, H. E. Stanley, and L. A.
Braunstein, Phys. Rev. E 94, 042304 (2016).

[10] M. Rohden, D. Jung, S. Tamrakar, and S. Kettemann,
Phys. Rev. E 94, 032209 (2016).

[11] I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, and
D. Helbing, Phys. Rev. Lett. 100, 218701 (2008).

[12] Y. Yang, T. Nishikawa, and A.E. Motter, Phys. Rev.
Lett 118(4), 048301 (2017).

[13] A. Moussawi, N. Derzsy, X. Lin, and B. K. Szymanski,
Scientific Reports 7, 11729 (2012).

[14] Y. Yang, T. Nishikawa, and A.E. Motter, Science 358,
3184 (2017).

[15] D. P. Nedica, I. Dobsonb, D. S. Kirschena, B. A. Car-
rerasc, and V. E. Lynchc, International Journal of Elec-
trical Power & Energy Systems 28, 627 (2006).

[16] R. V. Sole, M. Rosas-Casals, B. Corominas-Murtra, and
S. Valverde, Phys. Rev. E 77, 026102 (2008).

[17] I. Dobson, and P. Rezaei, IEEE Transactions on Power
Systems 32, 958 (2017).

[18] S. Sreenivasan, R. Cohen, E. Lopez, Z. Toroczkai, and
H. E. Stanley, Phys. Rev. E 75, 036105 (2007).

[19] Y. Cai, Y. J. Cao, Y. Li, T. Huang, and B. Zhou, IEEE
Transactions on Smart Grid 7, 530 (2016).

[20] E. J. Lee, K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev.
E 71, 056108 (2005).

[21] P. Zhang, B. S. Cheng, Z. Zhao, D. Q. Li, G. Q. Lu, Y. P.
Wang, , and J. H. Xiao, EPL 103, 68005 (2013).

[22] F. Tan, Y. X. Xia, W. P. Zhang, and X. Y. Jin, EPL
102, 28009 (2013).

[23] S. Hong, B. Q. Wang, X. M. Ma, J. G. Wang, and T. D.
Zhao, J. Phys. A: Math. Theor. 48, 485101 (2015).

[24] Z. Su, L. X. Li, H. P. Peng, J. Kurths, J. H. Xiao, and
Y. X. Yang, Scientific Reports 4, 5413 (2014).

[25] J. Lehmann and J. Bernasconi, Phys. Rev. E 81, 031129
(2010).

[26] S. Mizutaka and K. Yakubo, Phys. Rev. E 92, 012814
(2015).

[27] X. Y. Wu, R. T. Gu, and Y. F. Ji, Physica A: Stat.
Mech. Appl. 462, 341 (2016).

[28] X. Y. Wu, R. T. Gu, and Y. F. Ji, EPL 116, 18005
(2016).

[29] P. Crucitti, V. Latora, and M. Marchiori, Phys. Rev. E
69, 045104 (2004).

[30] J. C. Doyle, D. Alderson, L. Lun, S. Low, M. Roughan,
S. Shalunov, R. Tanaka, and W. Willinger, Proceedings
of National Academy of Sciences of the United states of
America 102, 14497 (2005).

[31] C. Guo, L. N. Wang, F. R. Zhou, L. N. Huang, and
Z. Peng, the 9th International Conference for Young
Computer Scientists (ICYCS, Zhangjiajie 2008) , pp.
2149.

[32] F. Tan, Y. X. Xia, and Z. Wei, Phys. Rev. E 91, 052809
(2015).

[33] X. H. Liu and Y. F. Ji, the 1st International Conference
on Communications and Networking in China (IEEE,
Beijing,2006) , pp. 1.

[34] Y. Yang, and A.E. Motter, Phys. Rev. Lett 119(4),
248302 (2017).

[35] K. M. Kobayashia, S. Miyazakib, and Y. Okabeb, The-
oretical computer science 675, 27 (2017).

[36] W. Choi, R. Sekhon, and W. Seok, Science China Infor-
mation Sciences 59, 069301 (2016).

[37] E. C. Park and C. H. Choi, Proceedings of 23rd IEEE
International Conference on Computer Communications
(INFOCOM) 3, 2038 (2004).

[38] X. B. Zhou and C. Z. Xu, IEEE transactions on parallel
and distributed systems 15, 835 (2004).

[39] C. Villanmizar and C. Song, Acm Sigcomm Computer
Communication Review 24, 45 (1994).

[40] S. V. Buldyrev, N. W. Shere, and G. A. Cwilich, Phys.
Rev. E 83, 016112 (2011).

[41] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and
S. Havlin, Nature 464, 08932 (2010).

[42] J. X. Gao, S. V. Buldyrev, H. E. Stanley, X. M. Xu, and
S. Havlin, Phys. Rev. E 88, 062816 (2013).

[43] J. X. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley,
Phys. Rev. E 85, 066134 (2012).


