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For waves described by the Focusing Nonlinear Schrödinger Equation (FNLS), we present an effective disper-

sion relation (EDR) that arises dynamically from the interplay between the linear dispersion and the nonlinearity.

The form of this EDR is parabolic for a robust family of “generic” FNLS waves, and equals the linear disper-

sion relation less twice the total wave action of the wave in question multiplied by the square of the nonlinearity

parameter. We derive an approximate form of this EDR explicitly in the limit of small nonlinearity, and con-

firm it using the wavenumber-frequency spectral (WFS) analysis, a Fourier-transform based method used for

determining dispersion relations of observed waves. We also show that it extends to the FNLS the universal

EDR formula for the defocusing Majda-McLaughlin-Tabak (MMT) model of weak turbulence. In addition, un-

expectedly, even for some spatially-periodic versions of multi-soliton-like waves, the EDR is still a downward

shifted linear-dispersion parabola, but the shift does not have a clear relation to the total wave action. Using

WFS analysis and heuristic derivations, we present examples of parabolic and non-parabolic EDRs for FNLS

waves, and also waves for which no EDR exists.

PACS numbers: 02.30.Ik, 05.45.Yv, 02.30.Jr

I. INTRODUCTION

The dynamics of many wave-like systems, even those with

weak nonlinearities, tend to be turbulent and chaotic [1].

However, when the nonlinearity vanishes, the limiting dynam-

ics become regular and controlled by the system’s linear dis-

persion relation. This relation singles out a particular tempo-

ral frequency (or a small set of them) corresponding to each

spatial wavelength, or, equivalently, the phase velocity with

which waves with that particular wavelength travel [2]. When

a system’s nonlinearity is weak, it is not much of a surprise

that its linear dispersion relation still features prominently in

its dynamics; after all, such a system comprises a collection

of weakly-coupled plane waves whose dynamics are governed

by this relation on short time scales and only modulate slowly

in response to the weak nonlinear coupling. There is no rea-

son, however, that a similar scenario should persist into the

regime of higher nonlinearities. Yet, in some cases, it does

persist in a statistical sense, provided we broaden our concept

of dispersion relation [3–6].

Nonlinear interaction of modes is known to give rise to a

nonlinear frequency shift [1]: rather than being governed by

the linear dispersion relation, the dynamics of a mode with a

particular wavelength (or wavenumber) at least approximately

oscillate with an effective frequency, which depends on this

mode’s amplitude. A description of this phenomenon at mod-

erate to strong nonlinearities was provided in [3, 4]. In these

works, a renormalized, effective dispersion relation (EDR) for

the β -Fermi-Pasta-Ulam (FPU) chain and its corresponding

renormalized Hamiltonian were established (see also [7, 8]).

In [5], these concepts were extended to the one-dimensional

defocusing Majda-McLaughlin-Tabak (MMT) model of wave

turbulence [9–11]. In both cases, despite the relatively strong

nonlinearity, the respective system was found to behave statis-

tically as a weakly-coupled collection of linear plane waves,

with the dynamical evolution of each of these waves dom-

inated by a frequency that depended on its wavenumber as

described by the corresponding EDR. In [5], the form of the

EDR was predicted for long waves using the Zwanzig-Mori

projection formalism, and confirmed for all wavelengths us-

ing the wavenumber-frequency spectral (WFS) analysis. This

analysis is a Fourier-transform based method used to extract

dispersion relations from satellite images of oceanic and at-

mospheric waves [12–15]. Furthermore, EDRs were found

using the same techniques for two systems that include no lin-

ear dispersion at all: the double-well FPU chain and the fully

nonlinear MMT model [6].

In this paper, we study effective dispersion in a specific case

of the focusing MMT model, namely, the Focusing Nonlinear

Schrödinger Equation (FNLS),

iqt = qxx +α2|q|2q. (1)

In addition to being a ubiquitous model of important nonlinear

natural phenomena [16–22], the Nonlinear Schrödinger Equa-

tion stands out from the MMT family because it is completely

integrable and thus has an infinite number of conserved quan-

tities [23] (see Appendix A). This contrasts with the general

MMT model which only has three [9]. Because the infinity

of conserved quantities strongly restricts the FNLS dynam-

ics, and also because of the presence of the highly coher-

ent soliton waves, one might expect that, even in their most

general features, the FNLS dynamics may deviate from those

of the more general MMT-model cases. Nevertheless, for

the FNLS, as well, we find that a robust family of its waves

obeys the rather universal EDR form directly extended from

the defocusing MMT model [5], and derived in a mathemat-

ically rigorous manner for both the focusing and defocusing

Nonlinear Schrödinger Equations in a limit of small mode-

amplitudes [24]. We also find, however, that other FNLS wave

families obey different forms of EDRs, or none at all.
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We investigate effective dispersion in a robust family of

FNLS waves on a periodic domain using three different ap-

proaches. First, we exploit the modulational instability of the

FNLS plane and standing waves [25–27]. Under perturba-

tion, this instability is known to saturate into waves compris-

ing large collections of nonlinearly-interacting modes. Sec-

ond, we evolve a spatial “white-noise” initial condition. Fi-

nally, we use a set of overlapping soliton-like, sech-shaped

waves as a yet different initial condition. In all three cases,

the resulting waves are governed by the EDR extended from

that of the defocusing MMT model [5] and of the small-mode-

amplitude limit of the Nonlinear Schrödinger Equation [24]:

the quadratic linear dispersion relation, displaced downward

by twice the product of the total wave action of this wave and

the square of the nonlinearity parameter α . We compute this

EDR numerically using WFS analysis, and also derive it in

the limit of small nonlinearity.

The integrable structure of the FNLS gives us easy access

to coherent structures such as solitons. It is not clear that

waves containing such structures can have associated EDRs,

and, in fact, we find evidence that some do and some do

not. The EDR of a soliton can be derived in closed form,

and is represented by a straight line; WFS analysis confirms

that this EDR remains largely undisturbed for spatially peri-

odic FNLS waves with soliton-like initial conditions. Surpris-

ingly, for spatially-periodic versions of well-separated multi-

solitons with equal amplitudes, the EDR is again parabolic.

However, we find its downward shift from the linear disper-

sion relation to differ from that expected from the case of the

robust wave family discussed in the previous paragraph. There

also exist, of course, FNLS waves with no effective dispersion

relation, such as the multi-breather-like waves emerging from

specific sech-like initial conditions [28], as the dynamics of

the modes composing these waves simply do not behave si-

nusoidally. In other words, these waves are not families of

weakly coupled plane waves. Finally, we also find combi-

nations of dispersive waves with coherent structures, which

again lack clearly-defined EDRs.

The remainder of this paper is organized as follows: In

Section II, we introduce the idea of an EDR, first describ-

ing it as a nonlinear analogue to the dispersion relation for

autonomous linear wave systems in Section II A, and then

describing how to measure it using WFS analysis in Sec-

tion II B. In Section III, we discuss the EDRs, or the ab-

sence of an EDR, for a number of different families of FNLS

waves. In particular, in Section III A, we explicitly derive the

EDR in the case of weak nonlinearity and confirm it for a

robust family of waves generated either from the saturation

of weakly perturbed, modulationally-unstable plane waves or

from noise-like spatial initial conditions. In Section III B, we

find some EDRs for waves that comprise or contain coher-

ent structures on a spatially periodic interval, such as a sin-

gle “soliton”-like wave and well-separated, equidistant peri-

odic “multi-soliton”-like waves. We also display waves that

possess no EDR, and waves containing coherent structures

for which the EDRs have unusual or ambiguous shapes. We

present conclusions in Section IV. In Appendix A, we briefly

outline the inverse scattering transform used to find exact so-

lutions of the FNLS equation. In Appendix B, we give details

of the EDR derivation for weak nonlinearity. In Appendix C

we outline the limit of small mode-amplitudes. In Appendix

D, we review the modulational instability of plane waves. In

Appendix E, we describe how we generate two types of ran-

dom initial conditions for FNLS waves. In Appendix F, we

outline the WFS analysis of the single soliton.

II. EFFECTIVE DISPERSION RELATION

In this section, we describe the concept of an EDR, as well

as a method used to measure it in an observation or a numeri-

cal simulation.

A. Effective Dispersion Relation as a Nonlinear Analogue of

Linear Dispersion Relation

The dispersion relation in an autonomous linear wave sys-

tem relates the spatial wavenumber k and the temporal fre-

quency ω of the plane-wave modes, e−i(kx−ωt), that compose

the dynamical states of such a system via linear superposition.

For example, for the linear Schrödinger equation describing a

free particle, iqt = qxx, substituting q ∼ e−i(kx−ωt) yields the

dispersion relation ω = k2. In this case, since ω(k) is real-

valued for k real, the modes evolve as harmonic waves. Since

ω ′′(k) 6≡ 0, the evolution of these waves is dispersive in the

sense that different plane waves travel with different veloci-

ties. The corresponding group velocity of wave packets cen-

tered at the wave number k is Vg = ω ′(k) = 2k [2].

Since nonlinear waves generally need not evolve as har-

monic superpositions of plane waves, the above linear picture

does not usually apply to them. Nevertheless, weakly nonlin-

ear waves typically act as collections of weakly coupled plane

waves. They evolve approximately according to the disper-

sion relation of the limiting linear system on short timescales,

and their amplitudes are modulated by the coupling via the

nonlinearity on long time scales, inversely related to the size

of the nonlinearity.

For highly nonlinear wave systems (such as the FNLS when

the nonlinearity parameter α is large), even the above weakly

nonlinear scenario is implausible. Therefore, in this case, one

must be careful when discussing the possibility of a disper-

sion relation at all: although we can still decompose nonlinear

waves into spatial Fourier modes at any given moment in time,

these modes will not necessarily evolve periodically in time

with any particular frequency, nor will their dynamics only be

weakly coupled. Nevertheless, in a statistical steady state, cer-

tain nonlinear wave systems do generate dynamics that appear

to behave effectively over long time scales as weakly coupled

collections of linear plane waves, and our work suggests that

the FNLS is one of these systems. Of course, the linear dis-

persion relations of their limiting weakly nonlinear systems

cannot be expected to capture these dynamics correctly. In-

stead, for each special nonlinear wave in such a system, we

need to consider a possible EDR that includes the contribu-

tion of the nonlinearity as well. Moreover, one cannot expect
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that any plane-wave modes will evolve periodically in time

even in a system for which an EDR exists; such a periodic

evolution only manifests itself statistically, on very long time

scales, as a dominant temporal frequency of a given mode’s

dynamics. A definition of the EDR which also serves as a

way of measuring it in any wave system is given next.

B. Measuring Effective Dispersion Relation

Since we are looking for a relation between the spatial wave

numbers and the temporal frequencies, it makes sense to study

the Fourier transform of the wave under investigation in both

space and time. For linear waves, this would lead directly to

the dispersion relation. For nonlinear waves, there need not

exist a dominant temporal frequency ω = ω(k) for a given

wavenumber k even in a statistical steady state.

The wavenumber-frequency spectral (WFS) analysis, an

experimental method typically used to extract dispersion re-

lations from measured images of water or atmospheric waves

[12–15], can be used to investigate both the existence and

shape of EDRs. This method finds the peak frequency ω of

the power spectral density (PSD) for each wavenumber k:

ω(k) = argmax
ω

lim
T→∞

1

T

∣

∣

∣

∣

∫ T

0
q̂(k, t)e−iωt dt

∣

∣

∣

∣

2

, (2)

if such a peak exists, where

q̂(k, t) =

∫ ∞

−∞
q(x, t)e−ikx dx. (3)

is the spatial Fourier Transform of the wave q(x, t). We will

use this method to compute the EDRs of all the waves simu-

lated numerically in this paper.

We remark that, in practice, the limit in Eq. (2) is approx-

imated by averaging over a sequence of finite-duration time

windows, ( j−1)Twin < t < jTwin, with j = 1, . . . ,J, and some

appropriately chosen window length Twin. The formula in

Eq. (2) is thus replaced by the approximate equation

ω(k)≈ argmax
ω

1

JTwin

J

∑
j=1

∣

∣

∣

∣

∫ jTwin

( j−1)Twin

q̂(k, t)e−iωt dt

∣

∣

∣

∣

2

. (4)

This approximation can be justified by the fact that the right-

hand-side of the FNLS in Eq. (1) contains no explicit time

dependence and by the ergodic hypothesis, and is employed

to improve the signal-to-noise ratio [29].

III. EFFECTIVE DISPERSION RELATIONS FOR WAVES

OF THE FOCUSING NONLINEAR SCHRÖDINGER

EQUATION

In this section, we present several EDRs for FNLS waves

on a periodic domain, so that the periodic boundary condition,

q(x+L, t) = q(x, t), (5)

holds for a fixed period L and for any solution q(x, t) of the

FNLS model in Eq. (1). We derive EDRs for small non-

linearities, and confirm their validity for a robust family of

numerically-simulated waves using WFS analysis. We also

derive EDRs for periodic versions of solitons and some multi-

solitons, and display some waves for which no unambiguous

EDRs appear to exist.

We simulated FNLS waves numerically using both a

Fourier split-step method [26], which is first-order accurate in

t and accurate to machine error in x [30], and a pseudospectral

approach using Fourier transforms to evaluate spatial deriva-

tives [31] along with classical fourth-order Runge-Kutta time

stepping [32]. The results of these two methods were indistin-

guishable for the results of this paper, so the figures included

here were obtained by the split-step method. In all the figure

captions to follow, we denote the total number of spatial dis-

cretization intervals by Nx, their length by ∆x (= L/Nx), and

the time step by ∆t.

A. Effective Dispersion Relation for a Robust Family of Waves

In this section, we derive an approximate EDR for FNLS

waves in the limit of small nonlinearity, and extend its validity

to arbitrary nonlinearity values within a robust wave family.

1. Effective Dispersion Relation for Weak Nonlinearities

For illustration, we first derive an approximate EDR for

weakly nonlinear FNLS waves, i.e., for the case when the non-

linearity parameter α in Eq. (1) is small. In the next section,

we show numerically that it holds for a robust class of waves

with arbitrary values of α as well.

For α ≪ 1, an FNLS wave can be expanded as

q(x, t) =
∞

∑
n=−∞

akn
(t)e−iknx

=
∞

∑
n=−∞

akn
(0)e−i{knx−[k2

n−α2(2‖aκ (0)‖2
2−|akn (0)|2)]t}+O(α2),

(6)

where kn = 2πn/L is the wavenumber and

‖aκ(0)‖2
2 = ‖aκ(t)‖2

2 ≡
∞

∑
m=−∞

|akm
(0)|2 =

∞

∑
m=−∞

|akm
(t)|2 (7)

is the conserved total wave action. (For a derivation, see Ap-

pendix B.) The expansion in Eq. (6) is valid on time scales

of O(α−2), and shows that the mode with the wavenumber kn

evolves in time with the effective frequency

ω(kn)≈ k2
n −α2

(

2‖aκ(0)‖2
2 −|akn

(0)|2
)

. (8)

Note that the mode amplitudes |akn
(0)| are conserved on

O(α−2) time scales for small values of the nonlinearity pa-

rameter α , which is not the case for moderate or large α . (For

a comment on this fact, see Appendix B.)
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FIG. 1. FNLS wave generated from an initial perturbed standing wave with amplitude A = 72, using α2 = 1/16, leading to approximately

25 unstable modes. The computational domain uses L = 2π with Nx = 210, ∆t = ∆x2/2π , and a final time T = 6π . (a) Three-dimensional

space-time profile of the wave at constant-time slices, where color indicates the wave amplitude |q(x, t)|. In order to avoid diagnosing initial

transient, the wave is depicted from time t = π/2 to t = π . (b) The initial spatial wave profile of a perturbed standing wave in Eq. (12) at t = 0

(red), and an example of the evolved wave profile at a t = π (blue). (c) The wavenumber dependence of the wave’s Fourier amplitude, |q̂(k, t)|
defined in Eq. (3), in logarithmic scale at t = 0 (red) and at t = π (blue). According to Eq. (12), the initial wavenumber dependence of the

wave consists of the standing wave at k = 0 and plane-wave perturbations within the k-interval of width
√

2|A|α . [Cf. Eq. (11)]. Note that the

initial random perturbation is masked in the logarithmic scale. (d) The spatiotemporal PSD of the wave, i.e., the argument on the right-hand

side of Eq. (2), used in the WFS analysis, plotted with a logarithmic color axis. (e) EDR obtained according to the WFS analysis by finding the

peak frequency ω values for each wavenumber k of the PSD in panel (d). Here, all the peaks of the PSD within 1% of the global peak value at

every k were marked with a blue dot. The resulting EDR (blue) is compared with the theoretically predicted parabolic EDR in Eq. (9) (red).

Panels (d) and (e) were computed using the argument in Eq. (4), and employed averaging over 24 windows of width Twin = π/4.

If all the mode amplitudes in the EDR in Eq. (8) are small

compared to the total wave action, this approximate EDR re-

duces to

ω(k)≈ k2 − 2α2‖aκ(0)‖2
2 = k2 − 2α2

L

∫ L/2

−L/2
|q(x,0)|2dx,

(9)

where

1

L

∫ L/2

−L/2
|q(x,0)|2dx ≡ 1

L
‖q(x,0)‖2

2

equals the second moment of the wave profile q(x,0), and

‖q(x,0)‖2
2 is the squared L2 norm of this profile. Because the

total wave action ‖aκ(t)‖2
2 = (1/L)‖q(x, t)‖2

2 is conserved in

time, the initial time t = 0 can be replaced by arbitrary time t

in the EDR in Eq. (9).

We remark that the EDR in Eq. (9) is the FNLS analog of

the EDR expression derived in Ref. [5] for the general de-

focusing MMT model using the Zwanzig-Mori [33] theory.

This latter derivation is valid for long waves, i.e., small wave

numbers k. The same EDR expression was also derived in a

mathematically rigorous fashion for waves of both the focus-

ing and defocusing Nonlinear Schrödinger Equations in the

limit of small mode-amplitudes [24], which, after some trans-

forming, can be seen to include the limit of weak nonlinearity

discussed here. Details of the relation between the two limits

are presented in Appendix C.

As we will see next, numerical simulations strongly indi-

cate that the EDR in Eq. (9) in fact holds for all values of the

nonlinearity in a robust class of FNLS waves.
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FIG. 2. FNLS wave generated from an initial perturbed standing wave with amplitude A = 72, using α2 = 256, leading to approximately

1600 unstable modes. The computational domain uses L = 2π with Nx = 216, ∆t = ∆x2/2π , and a final time T = 3π/211. (a) Three-

dimensional space-time profile of the wave at constant-time slices, where color indicates the wave amplitude |q(x, t)|. In order to avoid

diagnosing initial transient, the wave is depicted from time t = π/216 to t = π/215. Note that in this figure, the spatial domain has been

restricted to x ∈ [−π,−7π/8] to more clearly indicate the increased density of wave crests, in comparison with panel (a) of Figure 1. (b) The

initial spatial wave profile of a perturbed standing wave in Eq. (12) at t = 0 (red), and an example of the evolved wave profile at a t = π/212

(blue). (c) The wavenumber dependence of the wave’s Fourier amplitude |q̂(k, t)|, defined in Eq. (3), in logarithmic scale at t = 0 (red) and at

t = π/212 (blue). According to Eq. (12), the initial wavenumber dependence of the wave consists of the standing wave at k = 0 and plane-wave

perturbations within the k-interval of width
√

2|A|α . [Cf. Eq. (11).] Note that the initial random perturbation is masked in the logarithmic

scale. (d) The spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of Eq. (2), used in the WFS analysis, plotted with a

logarithmic color axis. (e) EDR obtained according to the WFS analysis by finding the peak frequency ω values for each wavenumber k of

the PSD in panel (d). Here, all the peaks of the PSD within 1% of the global peak value at every k were marked with a blue dot. The resulting

EDR (blue) is compared with the theoretically predicted parabolic EDR in Eq. (9) (red). Panels (d) and (e) were computed using the argument

in Eq. (4), and employed averaging over 24 windows of width Twin = π/214.

2. Effective Dispersion Relation for Moderate and Large

Nonlinearities

We sample a robust family of FNLS waves in two differ-

ent ways. First, we exploit the modulational-instability sat-

uration of the FNLS plane and standing waves. Second, we

evolve spatial-white-noise-like initial conditions. Using the

WFS analysis, we numerically compute the EDRs of the re-

sulting waves. We comment on the robustness of this family

at the end of this section.

A plane wave,

q(x, t) = Ae−i[γx−(γ2−A2α2)t], (10)

is an exact solution of the FNLS model in Eq. (1), which ex-

hibits modulational instability [25–27], as discussed in Ap-

pendix D. A special case is the standing wave when γ = 0. As

mentioned above, perturbations of the plane waves in Eq. (10)

give rise to a robust class of spatiotemporally disordered solu-

tions, which we will use to confirm the validity of the EDR in

(9) for broad ranges of wavenumbers and different values of

the nonlinearity parameter α .

When an initial plane wave with amplitude A and nonlinear-

ity parameter α is propagated in the spatial interval |x|< L/2,

the number of modes that will experience exponential growth

due to the FNLS modulational instability is

N ≤
√

2|A|αL

2π
(11)
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(see Appendix D). This growth saturates due to the conserva-

tion of the total wave action, typically into a wave disordered

in space and time. When |A|αL is large, we use WFS anal-

ysis to compute that this wave’s EDR is a parabola, which

extends throughout the wavenumber range of the associated

unstable modes. This result is illustrated in Figures 1 and 2,

where both waves were generated from an initial condition of

a weakly perturbed standing wave with amplitude A = 72 on

the spatial domain with L = 2π . We used the initial condition

q0(x) = A

(

1+
Ñ

∑
−Ñ

εne2π inx/L

)

, (12)

where εn are randomly generated from a uniform distribution

on the interval |εn|< 10−4, and where Ñ is the integer part of

the right-hand side of Eq. (11).

In both Figures 1 and 2, (and in most other figures) (a)

depicts the space-time profiles of the wave, (b) depicts the

wave at t = 0 (red) and at a later time (blue) in x space and

(c) the same in k space, (d) depicts the PSD dependence on

the wavenumber k and frequency ω , and (e) depicts the EDR

obtained using WFS analysis by finding the peak-frequency

ω values for each wavenumber k of the PSD in panel (d).

Here, all the peaks of the PSD within a given percentage of

the global peak value at every k were marked with a blue dot.

The percentage is selected to maximize the signal-to-noise ra-

tio in depicting the EDR, and is listed in each figure caption.

The wave in Figure 1 was computed with nonlinearity param-

eter α2 = 1/16, leading to about 25 unstable modes, while

the wave in Figure 2 was computed with α2 = 256, leading

to about 1600 unstable modes. The dots extending beyond

the parabola for large |k| in panels (e) of both plots are nu-

merical artifacts; in these regions no single frequency domi-

nates, but the power is also extremely small [O(10−2) com-

pared with O(102) around k = 0]. In principle, according to

Eq. (2), increasing the computational time T would yield a

smooth parabolic EDR (blue) in panel (e) and eliminate the

noise. What is of particular interest here is that in both cases

(weak and strong nonlinearity), the WFS analysis produces a

parabola—the exact parabola predicted in Eq. (9)—for which

our derivation was only valid for small nonlinearity α .

An alternative way to find spatially disordered waves is to

consider those that initially appear white-noise-like in space.

(See Appendix E for details.) Such a wave is illustrated in Fig-

ure 3, where the nonlinearity parameter was α2 = 1/16. The

spatiotemporal profile of the wave in Figure 3 appears similar

to its counterparts in Figures 1 and 2, but the distribution of

the mode amplitudes in the wavenumber space is significantly

broader. In fact, all the modes in the available (periodic) range

of wavenumbers appear to be excited. Nevertheless, the cor-

responding EDR is again the parabola predicted in Eq. (9).

We remark that not all the waves discussed in this section

are closely related to the waves in the limit of small nonlin-

earity whose EDR we derived explicitly in Sec III A. In par-

ticular, waves in the limit of small nonlinearity, approximated

by Eq. (6), cannot grow and do not result from any kind of an

instability. If we make the assumption that a linear mode will

become unstable at the latest when its amplitude would trig-

ger the modulational instability of equal-size traveling wave

in Eq. (10), we see that for waves approximated by Eq. (6) to

exist in the assumed form, the nonlinearity parameter α must

satisfy the inequalities

α ≪
√

2π

L|akn
(0)| (13)

for all integer n, which follow from Eq. (11). Nevertheless,

weakly nonlinear waves approximated by Eq. (6) may result

from small spatial white-noise-like initial conditions.

We should also remark that the derivation of the EDR in

Eq. (9), as carried out in Sec III A, should easily generalize

to the defocusing nonlinear Schrödinger model, and even the

defocusing MMT model. This is because waves in these mod-

els do not experience modulational instability [26], and thus

no restrictions on the nonlinearity parameter α of the sort dis-

cussed in the previous paragraph are needed. Nevertheless, we

should recall that, in all cases, the derivation assumes asymp-

totically small values of α .

We finally remark that the exact solutions of the FNLS with

periodic boundary conditions are given in terms of Riemann

theta functions associated with Riemann surfaces of arbitrar-

ily high and even infinite genus [34, 35]. These solutions

can be probed numerically by perturbing plane and standing

waves and exploiting the modulational instability [36–39]. In

this way, using not necessarily infinitesimal perturbations, it

should be possible to access robust solution families of the

FNLS with spatially-periodic boundary conditions, although

any rigorous justification of this claim is far beyond the scope

of this paper. We believe the same should hold for spatial

white-noise like initial waves.

B. Effective Dispersion Relations for Waves Containing

Coherent Structures

FNLS waves on the infinite line can be described exactly

using the Inverse Scattering Transform, and shown to com-

prise solitons and radiation [17, 18, 20, 22, 23], with the

former deemed to be coherent structures. Mathematically,

solitons correspond to the (time-conserved) discrete eigenval-

ues of the scattering problem associated with the FNLS and

the corresponding norming constants, and the radiation arises

from its continuous spectrum and the corresponding reflection

coefficient. (Details are reviewed in Appendix A.)

In this section, we consider several (multi-)soliton-like

FNLS waves, and other FNLS waves containing or compris-

ing coherent structures, on periodic domains. For a single

soliton-like wave, we find a straight-line EDR. For one multi-

soliton family, we find an EDR that is again a shifted quadratic

parabola. We also display multi-soliton-like waves that clearly

possess no EDR. Finally, we discuss waves containing coher-

ent structures for which the existence of an EDR is ambigu-

ous.
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FIG. 3. FNLS wave generated from an initial condition of spatial “white noise.” The nonlinearity parameter is α2 = 1/16, the computational

domain uses L = 2π , Nx = 212, ∆t = ∆x2/2π , and a final time T = π/4. (a) Three-dimensional space-time profile of the wave at constant-time

slices, where color indicates the wave amplitude |q(x, t)|. The wave is depicted from time t = π/8 to t = π/4. (b) The initial spatial wave

profile of “white noise” at t = 0, generated as described in Appendix E. (c) The wavenumber dependence of the wave’s Fourier amplitude

|q̂(k, t)|, defined in Eq. (3), at t = 0. Note that neither the spatial profile or Fourier spectrum of the evolved wave are shown since they appear

similar to the initial profile (in contrast to Figures 1 and 2). (d) The spatiotemporal PSD of the wave, i.e., the argument on the right-hand side

of Eq. (2), used in the WFS analysis, plotted with a logarithmic color axis. (e) EDR obtained according to the WFS analysis by finding the

peak frequency ω values for each wavenumber k of the PSD in panel (d). Here, all the peaks of the PSD within 1% of the global peak value at

every k were marked with a blue dot. The theoretically predicted parabolic EDR in Eq. (9) is nearly indistinguishable from the observed EDR

for this case. Panels (d) and (e) were computed using the argument in Eq. (4), and employed averaging over 4 windows of width Twin = π/16.

1. Effective Dispersion Relation of a Single “Soliton”

A single FNLS soliton is described by the formula

q(x, t) =

√
2A

α
ei[(V 2−A2)t−Vx+ψ] sech [A(x− 2Vt − δ )] , (14)

and corresponds to a single eigenvalue

ζ =
V + iA

2
(15)

of the scattering problem associated with the FNLS, described

in Appendix A. Carrying out the WFS method in Eq. (2) ex-

plicitly on this soliton by taking both its spatial and temporal

Fourier transforms results in the expression for the PSD under

the limit in Eq. (2) being equal to

PSD(k) =
2π2

α2T
sech2 π(V + k)

A

sin2[(Ω(k)+ω)T/2]

(Ω(k)+ω)2/4
, (16)

where

Ω(k) = A2 +V 2 + 2Vk. (17)

(Details are given in Appendix F.) For a given wavenumber

k and any final time T , this expression is clearly the largest

when the frequency satisfies the equation ω = −Ω(k), which

gives the straight-line EDR

ω(k) =−(A2 +V 2)− 2Vk. (18)

When we numerically evolve an initial condition of a sin-

gle soliton-like wave in Eq. (14), restricted to the spatial inter-

val −L/2 < x < L/2, the pulse travels at first like the soliton,

until it reaches an end of the spatial interval at x = L/2 or

x = −L/2, and then the numerical solution reappears at the

opposite end to continue propagation. This is illustrated in

Figure 4, where A = 32, V = 2, δ = ψ = 0, and nonlinearity

parameter α = 1. A fit to the bright line in the results of the
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FIG. 4. Single “soliton” wave of Eq. (14), with parameters: A = 32, V = 2, δ = 0, ψ = 0, and α = 1. The computational domain was L = 2π
with Nx = 29, ∆t = ∆x2/2π , and final time T = π/2. (a) Color contour plot of the wave where the color indicates the magnitude of the wave

amplitude |q(x, t)|. (b) The spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of Eq. (2), used in the WFS analysis,

plotted using a logarithmic color scale. (c) EDR obtained according to the WFS analysis by finding the peak frequency ω values for each

wavenumber k of the PSD in panel (b). Here, all the peaks of the PSD within 1% of the global peak value at every k were marked with a blue

dot. A least-square fit line to this data is ω = −4k−1028, which corresponds to the expected EDR from Eq. (18). Note that the PSD along

the faint parabola visible in panel (b) is four orders of magnitude smaller that that along the line near k = 0. Panels (b) and (c) were computed

using the argument in Eq. (4) over a single time window of length Twin = T .

WFS method in Eq. (2), displayed in panel (b) of Figure 4,

indicates the straight-line EDR ω(k) =−4k− 1028. which is

exactly the line in Eq. (18) with A = 32 and V = 2. In panel

(c) of Figure 4, the two lines appear to be indistinguishable.

Features that do not directly pertain to the EDR also appear

in the spectrum of the numerical solution [panel (b) of Figure

4]. For example, one can observe faint parabola-like curves in

addition to the straight line. All these features repeat periodi-

cally in ω , and only a single period is plotted. (The periodicity

in ω is an artifact of the temporal Discrete Fourier Transform.)

In this example, when |k| is small, the parabola-like curve ap-

proaches the true parabola ω = k2. However, when |k| is large,

this curve approaches the true parabola ω = k2−40.63, which

exactly corresponds to Eq. (9): 2α2‖aκ(0)‖2
2 = 40.66. This

parabola-like curve in panel (b) of Figure 4 is present because

of the boundary effects affecting the “soliton” wave, and cor-

responds to parts of the wave that are radiation-like.

2. Waves without Effective Dispersion Relation

Not every FNLS wave has an EDR associated with it.

For special amplitude values of a single, stationary, sech-like

pulse initial condition, the resulting “breather”-type waves do

not have an EDR. For some other multi-soliton-type waves,

WFS analysis also results in collections of curves that clearly

indicate the absence of an EDR.

As one example, alluded to in the preceding paragraph, we

look at the FNLS wave satisfying the initial condition

q(x,0) =

√
2AM

α
sech(Ax). (19)

As shown in Ref. [28], for positive-integer values of the pa-

rameter M, this wave comprises M solitons and no radia-

tion, with each soliton corresponding to one of the M distinct

eigenvalues ζ j = iA( j − 1/2), j = 1,2, . . . ,M, of the scatter-

ing problem associated with the FNLS. This wave is called

a multi-“breather,” and changes its shape periodically in time

but remains centered about the origin [28], as displayed in

panel (a) of Figure 5. The fact that this wave remains in the

same location can also be gleaned from Eqs. (14) and (15)

and the fact that the eigenvalues ζ j are pure imaginary, from

which one can see that its constituent solitons have vanishing

velocities.

For the single soliton in Eq. (14), we could write the EDR in

Eq. (18) in terms of the corresponding discrete eigenvalue ζ =
(V + iA)/2 in Eq. (15) as ω(k) = −|2ζ |2 − 2(ζ + ζ ∗)k. This

form of the EDR would suggest that in the WFS analysis of

the M-soliton wave emerging from the initial wave in Eq. (19),

we might see M horizontal lines corresponding to the frequen-

cies ω j = −[2A( j− 1/2)]2. Indeed, when A = 4 and M = 4,

as shown in Figure 5, we see ω = −16,−144,−400,−784

(though in this case we also see many other multiples of 128

away from −16, which may be harmonics). In this case, we

cannot find a single-valued function ω(k) signifying a domi-

nant effective frequency for any given mode in the respective

waves. Clearly, these waves are composed of modes whose

temporal harmonics appear to be as prominent as their funda-

mental frequencies, and so they do not undergo time-harmonic

motion.

More generally, the computation of even just the initial

conditions for exact multi-soliton waves becomes increas-

ingly poorly conditioned with the increasing number of soli-

tons [40]. Alternatively, however, if the pulses are sufficiently

far apart at t = 0, a sum of single-soliton-like pulses provides a

reasonable approximation to such an initial wave when prop-

agated numerically in time. Typically, the pulses seem to each

contribute a linear piece to the wavenumber-dependent PSD,

reminiscent of the lines we would expect from the individual

pulses in Eq. (18), as is illustrated in Figure 6. Again, we see

that the collection of waves depicted in this figure does not

have a well-defined associated EDR.
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FIG. 5. Multi-“breather”-type wave generated from Eq. (19) with M = 4, A = 4, and α = 1. The computational domain was L = 2π , with

Nx = 212, ∆t = ∆x2/2π , and a final time T = π/2. (a) Surface plot of the wave, displayed here at an angle to more clearly highlight the

behavior of the breather, with color indicating the magnitude of the wave amplitude |q(x, t)|. (b) The spatiotemporal PSD of the wave, i.e., the

argument on the right-hand side of Eq. (2), used in the WFS analysis, plotted using a logarithmic color scale. (c) Peak-frequency ω values for

each wavenumber k of the PSD in panel (b). Here, all the peaks of the PSD within 90% of the global peak value at every k were marked with

a blue dot. These peaks (blue) are compared with the relevant theoretically predicted parabolic EDR in Eq. (9) (red). Panels (b) and (c) were

computed using the argument in Eq. (4), and employed averaging over 4 windows of width Twin = π/8.

FIG. 6. FNLS wave consisting of five distinct pulses, with parameters (A,V,δ ) = (20,−4,−π/2), (24,5,−π/4), (16,16,0), (32,−2,π/4),
(28,−8,π/2), and with α = 1. The computational domain was L = 2π with Nx = 211, ∆t = ∆x2/2π , and a final time T = π . (a) Color contour

plot of the solution with color indicating the magnitude of the wave amplitude |q(x, t)|. (b) The spatiotemporal PSD of the wave, i.e., the

argument on the right-hand side of Eq. (2), used in the WFS analysis, plotted with a logarithmic color scale. (c) Peak-frequency ω values for

each wavenumber k of the PSD in panel (b). In contrast to previous examples, here we have used a blue dot to mark each peak of the PSD which

is at least 10 times as high as its nearest local minimum value at every k. This is done so that all five pulses are diagnosed. In this example, the

pulses respectively each contribute a line to the spectrum, where fitting these lines to ω =−(A2+V 2)−2V k result in (A,V ) = (20.06,−3.92),
(24.02,5.004), (16.42,16.26), (31.98,−2), (27.99,−8.005) respectively. Panels (b) and (c) were computed using the argument Eq. (4), and

employed averaging over 8 windows of width Twin = π/8.

3. Effective Dispersion Relations of Special Multi-Soliton-Like

Waves

From the discussion at the end of the previous section, at

first, it may seem unlikely that any multi-soliton-like periodic

wave could generate a parabolic EDR, since the lines corre-

sponding to its individual constituent soliton-like pulses ap-

pear quite robust. Yet we can construct multi-soliton-like, spa-

tially periodic FNLS waves that do have parabolic EDRs. In

particular, if we take a number of single-soliton-like pulses,

initially spaced sufficiently far apart, and restrict them to all

have the same peak amplitude A, while their velocities are

picked randomly from the uniform distribution on a chosen

interval, the EDR lines of these pulses are in fact tangent to a

parabola, and their PSDs have their highest intensities at the

points of tangency.

To explain the claim made in the previous paragraph, we

notice that a straight-line EDR of a single FNLS soliton with

amplitude A and velocity 2V , given by ω(k) =−(A2 +V 2)−
2Vk in Eq. (18), is tangent to a parabola ω(k) = k2 −C pre-

cisely when C = A2, and tangency occurs at k = −V . More-

over, for this soliton, the PSD in Eq. (16) along the straight

line EDR in Eq. (18) has sech-like intensity, centered at

k = −V , i.e., at the tangency point between this line and the

parabola k2 −A2.

Now, consider an initial group of N soliton-like pulses, all

with the same peak amplitude A, equally spaced far enough

from one-another so that they do not overlap and can thus

evolve as a multi-soliton-like wave. Let their velocities 2V j,

j = 1, . . .N, also be equally spaced over the interval −V0 <
V j < V0, but assigned randomly to different pulse locations.

Then, the EDR of the resulting wave comprises a collection



10

of segments of the straight lines ω j(k) = −(A2 +V 2
j )− 2V jk,

centered around k = −V j, for j = 1, . . . ,N, which are all tan-

gent to the parabola k2 − A2. In other words, this parabola

is their envelope. For large N, the lengths of the segments

shrink, and their parabolic envelope thus becomes indistin-

guishable from the EDR of the corresponding multi-soliton

solution, i.e., this EDR becomes

ω(k) = k2 −A2. (20)

Therefore, in this case, the EDR is indeed again a parabola,

but now k2 shifted downward by the square of the common

peak amplitude of the wave’s constituent soliton-like pulses.

Two different examples of such EDRs are illustrated in Fig-

ures 7 and 8. In both cases, we use an initial condition of

15 spatially distinct pulses, all with the same peak amplitude

parameter A = 32. Both spectra indicate straight lines corre-

sponding to each pulse, with each line accurately correspond-

ing to the appropriate EDR in Eq. (18). Clear parabolas are

emerging as envelopes of these lines in each case. Note that

neither of these is, however, the parabola of Eq. (9), since the

corresponding waves are well approximated by multi-soliton-

like pulses. Instead, the EDRs of these waves are described

by Eq. (20), as discussed in the previous paragraph. In Figure

7, the constituent pulses’ velocities 2V j are distributed over

a wide interval, so that the their corresponding straight-line

EDRs in Eq. (18) are tangent to the parabolic EDR in Eq. (20)

over a wide interval of wavenumbers k. In Figure 8, the pulses

have a smaller range of values for the velocities 2V j, and so

the tangencies of their straight-line EDRs to the parabola in

Eq. (20) take place over a narrower range of wavenumbers

k. Note that the waves in Figures 7 and 8 are very similar

in appearance; however, note also that they evolve on quite

different time scales due to their disparate velocity ranges.

We should remark that, in contrast to Figures 7 and 8, where

the initial pulses were sufficiently separated in space, when

we choose the opposite extreme of overlapping initial pulses,

a significant amount of radiation-like behavior is introduced

because this initial profile is merely a sum of single soliton-

like pulses rather than a true exact multi-soliton-like shape.

Two different examples of this scenario are illustrated in Fig-

ures 9 and 10. Again, in both cases we use an initial condition

of 15 pulses, with the same peak amplitude parameter A = 32,

but here the x-interval is a fraction of what it was in Figures 7

and 8. Again, in Figure 9, the pulses have a wide range of

velocities 2V and in Figure 10, the range for V is small.

With the wide range of values for V in Figure 9, the spec-

trum indicates line segments that are distinct in wavenumber

k, similar to the case shown in Figure 7. However, these seg-

ments no longer correspond to the pulse parameters accord-

ing to Eq. (18). Instead, as seen from panel (e) of Figure 9,

the segments are shifted vertically so as to be tangent to the

parabola of Eq. (9), evidently because of the “radiation” in-

troduced in the overlap between the initial pulses. In partic-

ular, they have the correct V , the slope that corresponds to

the velocity of the pulse, but different A, the vertical inter-

cept that corresponds to the amplitude of the pulse. With a

smaller range of V shown in Figure 10, we do not even see the

EDR lines of the initial pulses any more; all that remains is

the parabola of Eq. (9), likely because the wave now appears

to be dominated by “radiation.” This scenario is also reflected

in panels (a) of Figures 9 and 10: the wave depicted in Fig-

ure 9 still contains traces of the initial pulses, whereas the

initial pulses in Figure 10 have all but disappeared in a sea of

what looks like dispersive ripples.

Waves that evolve from overlapping initial pulses, such as

those discussed in the preceding two paragraphs, thus ap-

pear to belong to the robust family of waves studied in Sec-

tion III A 2, or at least exhibit the same EDRs as waves that

belong to this family. The two examples discussed in these

two paragraphs also suggest that waves in that robust family

can be thought of as dominated by “radiation,” or at least as

containing a substantial “radiation” component.

4. Waves and Coherent Structures with Ambiguous EDRs

One last type of waves for which we seek an EDR com-

prises one or more coherent structures riding on top of a set

of dispersive waves. For the first such wave, we choose the

initial wave form composed of equidistant but overlapping

soliton-shaped pulses shown in Figure 9, and superimpose a

soliton-shaped wave on top of it that is four times taller and

narrower than the rest of the pulses. A tall coherent structure,

traces of smaller pulses, and dispersive radiation waves are

clearly visible in the resulting evolution. In the correspond-

ing mode-dependent PSD of Figure 11, a parabola satisfying

Eq. (9) can be seen, however, its intensity is not uniform, and

many straight lines are also present. The dominating straight

line has the slope V corresponding to the superimposed nar-

row soliton-shaped pulse, but its intercept A is shifted. The

parabola is also shifted slightly from the position described by

Eq. (9). Both these curves appear to be moved due to the in-

teraction of the pulse with the radiation components and pos-

sibly the smaller pulses contained in the wave. No single pro-

nounced maximum of the PSD emerges for many wavenum-

bers k, and so there appears to be no EDR. However, if we

nonetheless take the location of the largest value of the PSD

for each wavenumber k, an EDR composed of straight-line

and parabolic segments would emerge.

Finally, we look at a wave evolved from an initial condi-

tion of a periodic, spatial random-walk-like wave form. (See

Appendix E.) The amplitude values of the initial condition in

different subregions of the interval |x|<L/2 dictate how many

modes in that subregion become unstable, and the change of

phase dictates the velocities of these unstable modes. This

random initial wave evolves into a maze of meandering co-

herent structures, as seen in Figure 12. The PSD computed

for the WFS analysis, as displayed in panel (e) of Figure 12,

reveals the presence of a parabola satisfying Eq. (9), as well as

line segments corresponding to a soliton. This wave again ap-

pears not to possess an unambiguous EDR. However, if, as in

the previous example, we take the location of the largest value

of the PSD for each wavenumber k, the resulting EDR would

again be discontinuous and follow the parabola for larger val-

ues of k, but other parts of it would appear linear.
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FIG. 7. FNLS wave consisting of fifteen pulses, which are evenly distributed and well-separated across the spatial domain, as well as widely

distributed in wavenumber space. In particular, we sum 15 pulses of the form Eq. (14), with parameters A = 32, ψ = 0, α =
√

2A, δ j =
±13L j/210, Vℓ = ±32ℓ. Pulse velocities were sorted randomly so V j need not correspond to δ j. The computational domain was L = 8π

with Nx = 212, ∆t = ∆x2/2π , and a final time T = π . (a) Three-dimensional space-time profile of the wave at constant-time slices, where

color indicates the wave amplitude |q(x, t)|. (b) The initial spatial wave profile at t = 0. (c) The wavenumber dependence of the wave’s

Fourier amplitude |q̂(k, t)|, defined in Eq. (3), at t = 0. (d) The spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of

Eq. (2), used in the WFS analysis, plotted with a logarithmic color scale. (e) EDR obtained according to the WFS analysis by finding the peak

frequency ω values for each wavenumber k of the PSD in panel (d). Here, all the peaks of the PSD within 1% of the global peak value at every

k were marked with a blue dot. The resulting EDR (blue) is compared with the theoretically predicted parabolic EDR in Eq. (9) (red). Panels

(d) and (e) were computed using the argument in Eq. (4), and employed averaging over 4 windows of width Twin = π/4.

IV. CONCLUSIONS

In this article, we studied EDRs for different types of FNLS

waves. The main result is that, for a robust family of waves,

we found the parabolic EDR in Eq. (9), which equals the linear

dispersion relation shifted downward by twice the total wave

action of the wave multiplied by the square of the nonlinearity

parameter. This EDR appears to have a universal form par-

allel to that predicted for long wave-modes and verified nu-

merically for the general defocusing MMT model in Ref. [5],

which includes the defocusing Nonlinear Schrödinger equa-

tion.

That the general defocusing MMT form of the EDR is valid

for waves of the Nonlinear-Schrödinger equation is a bit sur-

prising, since this equation is an integrable system. That the

same form of the EDR holds for a robust family of FNLS

waves is still more surprising, since the FNLS additionally

exhibits instabilities and generates coherent structures such as

(multi-)solitons. Yet, clearly, our derivation of this EDR in

the case of small nonlinearity and its derivation in Ref. [24]

in the case of small mode-amplitudes, as well as its numer-

ical confirmation in example FNLS waves obtained using a

variety of techniques from a variety of initial-condition fami-

lies, give strong evidence in favor of extending the validity of

the predictions in Ref. [5] also to the focusing regime and the

exceptional integrable structure of the FNLS.

Nevertheless, the integrable structure of the FNLS and the

presence of coherent structures do exhibit their effects, as the

FNLS gives rise to both waves with no EDR at all, waves with

EDRs other than a quadratic function of the wavenumber, as

well as a family of waves with a quadratic EDR which equals

neither that in Eq. (9) nor the linear dispersion relation. In

particular, why the form of this latter EDR should still be a

quadratic, although we have been able to derive it explicitly

for a specific type of multi-soliton-like wave trains, remains a
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FIG. 8. FNLS wave consisting of fifteen pulses, which are evenly distributed and well-separated across the spatial domain, but now narrowly

distributed in wavenumber space. In particular, we sum 15 pulses of the form Eq. (14), with parameters A = 32, ψ = 0, α =
√

2A, δ j =
±13L j/210, Vℓ =±2ℓ. Pulse velocities were sorted randomly so V j need not correspond to δ j. The computational domain was L = 8π with

Nx = 212, ∆t = ∆x2/2π , and a final time T = π . (a) Three-dimensional space-time profile of the wave at constant-time slices, where color

indicates the wave amplitude |q(x, t)|. Notice the difference in timescales between panel (a) of this figure and panel (a) of Figure 7. (b) The

initial spatial wave profile at t = 0. (c) The wavenumber dependence of the wave’s Fourier amplitude |q̂(k, t)|, defined in Eq. (3), at t = 0. (d)

The spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of Eq. (2), used in the WFS analysis, plotted with a logarithmic

color scale. (e) EDR obtained according to the WFS analysis by finding the peak frequency ω values for each wavenumber k of the PSD in

panel (d). Here, all the peaks of the PSD within 1% of the global peak value at every k were marked with a blue dot. The resulting EDR (blue)

is compared with the theoretically predicted parabolic EDR in Eq. (9) (red). Panels (d) and (e) were computed using the argument in Eq. (4),

and employed averaging over 4 windows of width Twin = π/4.

bit of a mystery.

Examples of observed or experimentally measured EDRs

range over fields as diverse as surface gravity [41] and

gravity-capillary waves [42], nonlinear springs [43], ioniza-

tion waves [44], and graphene sheets [45]. Reference [42]

presents a particularly striking example of an EDR with sev-

eral distinct branches whose number depends on the amount

of power injected into the waves. While none of these mea-

surements have addressed EDRs for the FNLS discussed here,

experimental data yielding these EDRs may perhaps be ob-

tained from observations and measurements of random and

rogue waves in wave tanks [46, 47] and optics [48]. These are

approximately described by the FNLS, and our results may

apply to them.

One remaining open theoretical problem is to extend the

mathematically rigorous result of Ref. [24] from the limit of

small mode-amplitudes to at least some of the more general

cases described here using numerical simulations. Another

concerns the precise role of integrability in the existence and

form of the EDR in Eq. (9). Perhaps the Fourier represen-

tation of the theta-function FNLS solutions may help in this

regard [49].

Finally, as mentioned in the introduction, the existence of

an EDR for a wave of the FNLS signifies that this wave is,

statistically, a collection of weakly-nonlinearly coupled plane

waves whose long-term time-evolution is dominated by this

EDR. Therefore, for such a wave, splitting either the FNLS

equation or its total energy into effective linear and nonlinear

parts based on this EDR should result in minimizing the latter

part. In addition, the question arises as to what the relative

sizes of the two effective parts are, and which part dominates

for large values of the nonlinearity parameter. We will address

these issues in a subsequent publication.
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FIG. 9. FNLS wave consisting of fifteen pulses, which are evenly distributed and narrowly-separated across the spatial domain, but widely

distributed in wavenumber space. In particular, we sum 15 pulses of the form Eq. (14), with parameters A = 32, ψ = 0, α =
√

2A, δ j =
±13L j/210, Vℓ = ±256ℓ. Pulse velocities were sorted randomly so V j need not correspond to δ j. The computational domain was L = π/4

with Nx = 210, ∆t = ∆x2/2π and a final time T = π/16. (a) Three-dimensional space-time profile of the wave at constant-time slices, where

color indicates the wave amplitude |q(x, t)|. (b) The initial spatial wave profile at t = 0. (c) The wavenumber dependence of the wave’s

Fourier amplitude |q̂(k, t)|, defined in Eq. (3), at t = 0. (d) The spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of

Eq. (2), used in the WFS analysis, plotted with a logarithmic color scale. (e) EDR obtained according to the WFS analysis by finding the peak

frequency ω values for each wavenumber k of the PSD in panel (d). Here, all the peaks of the PSD within 1% of the global peak value at every

k were marked with a blue dot. Individual lines contained in the blue data were fit to equations of the type ω(k) = ω j,0 − 2Ṽ jk using least

squares. A least-squares fit to the tangency points (k j =−Ṽ j,ω j = ω j,0 +2Ṽ 2
j ), as discussed in the text in Section III B 3, yields the parabolic

EDR fit ω = k2 − 5521, which is compared with the theoretically predicted parabolic EDR in Eq. (9) ω = k2 − 4857 (shown in red). These

two curves are indistinguishable on the scale of the plots in panels (d) and (e). See discussion in Section III B 3 for additional comments about

panel (e). Panels (d) and (e) were computed using the argument in Eq. (4), and employed averaging over 4 windows of width Twin = π/64.
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Appendix A: Solution of the FNLS via Inverse-Scattering

Transform

In this appendix, we give a brief, heuristic review of the

inverse scattering transform applied to the FNLS to obtain

waves comprising solitons and radiation. In our exposition,

we largely follow the exposition in Ref. [22]. Classic refer-

ences are [17, 18, 20]. We took the notation from Ref. [50].

We purposely ignore any questions of analyticity.

The FNLS in Eq. (1), with the dependent variable q rescaled
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FIG. 10. FNLS wave consisting of fifteen pulses, which are evenly distributed and narrowly-separated across the spatial domain, and also

narrowly distributed in wavenumber space. In particular, we sum 15 pulses of the form Eq. (14), with parameters A = 32, ψ = 0, α =
√

2A,

δ j =±13L j/210, Vℓ =±32ℓ. Pulse velocities were sorted randomly so V j need not correspond to δ j. The computational domain was L = π/4

with Nx = 210, ∆t = ∆x2/2π and a final time T = π/16. (a) Three-dimensional space-time profile of the wave at constant-time slices, where

color indicates the wave amplitude |q(x, t)|. (b) The initial spatial wave profile at t = 0. (c) The wavenumber dependence of the wave’s

Fourier amplitude |q̂(k, t)|, defined in Eq. (3), at t = 0. (d) The spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of

Eq. (2), used in the WFS analysis, plotted with a logarithmic color scale. (e) EDR obtained according to the WFS analysis by finding the peak

frequency ω values for each wavenumber k of the PSD in panel (d). Here, all the peaks of the PSD within 1% of the global peak value at every

k were marked with a blue dot. A least-squares fit to the blue data yields ω = k2 −5227, which is compared with the theoretically predicted

parabolic EDR in Eq. (9) ω = k2 −4762 (red). These two curves are indistinguishable on the scale of the plots in panels (d) and (e). Panels

(d) and (e) were computed using the argument in Eq. (4), and employed averaging over 4 windows of width Twin = π/64.

so that α =
√

2, is the compatibility condition for the Lax Pair

φx = (ikσ3 +Q)φ , (A1a)

φt = (2ik2σ3 +H)φ , (A1b)

where

σ3 =

[

1 0

0 −1

]

, Q =

[

0 q

r 0

]

, (A1c)

H = iQ2σ3 + iQxσ3 + 2kQ, (A1d)

and r =−q∗. Equation (A1a) is called the scattering equation

and Eq. (A1b) is the evolution equation.

The scattering equation in Eq. (A1a) has eigenfunction so-

lutions that satisfy asymptotic boundary conditions:

φ±(x, t,k) ∼ eikσ3x, x →±∞. (A2)

Because the eigenfunctions φ± are both fundamental matrix

solutions of Eq. (A1a), we can write a “scattering” relation

between them in the form

φ+(x, t,k) = φ−(x, t,k)S(t,k), (A3)

where S is the 2× 2 scattering matrix with elements si j. One

can show that the coefficients of the scattering matrix satisfy

the symmetry

s22(t,k) = s∗11(t,k
∗), s12(t,k) =−s∗21(t,k

∗), (A4)

which implies that S is unitary for real values of the spectral

parameter k. One can also show that the element s11(t,k) of

the scattering matrix is time-independent. The coefficients in

the asymptotic expansion of ln s11(t,k) in terms of 1/k give

an infinite number of conserved quantities.
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FIG. 11. FNLS wave generated from an initial condition of fifteen equal size, identically spaced soliton-like pulses plus one tall, narrow

soliton-like pulse. The parameters of the fifteen pulses are the same as those used to compute Figure 9. The additional pulse has the form given

in Eq. (14), with parameters A = 128, ψ = 0, α = 32
√

2, δ =±13π/1680, V = 128. The computational domain was L = π/4 with Nx = 210,

∆t = ∆x2/2π and a final time T = π/16. (a) Three-dimensional space-time profile of the wave at constant-time slices, where color indicates

the wave amplitude |q(x, t)|. (b) The initial spatial wave profile at t = 0. (c) The wavenumber dependence of the wave’s Fourier amplitude

|q̂(k, t)|, defined in Eq. (3), at t = 0. (d) The spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of Eq. (2), used in the

WFS analysis, plotted with a logarithmic color scale. (e) EDR obtained according to the WFS analysis by finding the peak frequency ω values

for each wavenumber k of the PSD in panel (d). Here, all the peaks of the PSD within 1% of the global peak value at every k were marked

with a blue dot. The resulting EDR (blue) is compared with the theoretically predicted parabolic EDR in Eq. (9) (red). The EDR predicted by

Eq. (9) is ω = k2 −6189. The least-squares parabolic fit for small k, not including the line segments, gives the EDR of ω = k2 −8205. The

parabolic fit for large k [of the periodically repeated parabola pieces on either side of panels (d) and (e)] gives EDR of ω = k2 −8740. The fit

for the dominant straight line, using all three line segments in the blue data, gives A = 147 and V = 128 in Eq. (18). Panels (d) and (e) were

computed using the argument in Eq. (4), and employed averaging over 4 windows of width Twin = π/64.

In terms of the individual columns, φ±
1 and φ±

2 of the matrix

eigenfunctions φ±, Eq. (A3) can be rewritten as

φ+
1 = s11φ−

1 + s21φ−
2 , φ+

2 = s12φ−
1 + s22φ−

2 . (A5)

If, for real k, we rewrite the first equation in Eq. (A5) in the

form

φ+
1

s11

= φ−
1 + b(k, t)φ−

2 ,

where b(t,k) = s21/s11, we arrive at the interpretation in

which φ−
1 represents a right-moving incoming wave and

b(t,k)φ−
2 the corresponding reflected wave as x → −∞, and

φ+
1 /s11 represents the transmitted wave as x → ∞. Because of

this interpretation, b(k, t) is referred to as the reflection coef-

ficient. [The same interpretation is obtained from the second

equation in Eq. (A5) due to the symmetries in Eq. (A4).]

Likewise, for complex values ζ j = Reζ j + i Imζ j of k

in the upper half-plane such that s11(0,ζ j) = 0, and there-

fore s11(t,ζ j) = 0 for all times t, we find a proportionality,

φ+
1 (x, t,ζ j) = c j(t)φ

−
2 (x, t,ζ ). In other words, we obtain an

eigenfunction that decays exponentially at the rate e−Imζ |x| at

both x →±∞ and corresponds to the discrete eigenvalue ζ j of

the scattering equation in Eq. (A1a). In particular, if the decay

rate as x → ∞ is exactly e−Imζ jx, it is c j(t)e
Imζ jx as x → −∞,

and so c j(t) is referred to as the corresponding norming con-

stant.

Using the asymptotics of the evolution equation in

Eq. (A1b), we obtain the time evolution of the reflection coef-
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FIG. 12. FNLS wave generated from an initial condition of a (smoothed) periodic spatial random walk, as described in Appendix E. The

nonlinearity parameter was α = 8 and the computational domain was L = 2π with Nx = 212, ∆t = ∆x2/2π and a final time T = π . (a)

Three-dimensional space-time profile of the wave at constant-time slices, where color indicates the wave amplitude |q(x, t)|. (b) The initial

spatial wave profile at t = 0. (c) The wavenumber dependence of the wave’s Fourier amplitude |q̂(k, t)|, defined in Eq. (3), at t = 0. (d) The

spatiotemporal PSD of the wave, i.e., the argument on the right-hand side of Eq. (2), used in the WFS analysis, plotted with a logarithmic

color scale. (e) EDR obtained according to the WFS analysis by finding the peak frequency ω values for each wavenumber k of the PSD in

panel (d). Here, all the peaks of the PSD within 1% of the global peak value at every k were marked with a blue dot. The resulting EDR

(blue) is compared with the theoretically predicted parabolic EDR in Eq. (9) (red). The EDR predicted by Eq. (9) is ω = k2 −489; the fit of

the parabolic part of the blue data for |k| > 60 gives EDR of k2 −487. Panels (d) and (e) were computed using the argument in Eq. (4), and

employed averaging over 4 windows of width Twin = π/4.

ficients and norming constants as

b(t,k) = e−4ik2tb0(k), c j(t) = e
−4iζ 2

j t
c j(0). (A6)

Typically, we assume that there is a finite number J of zeros

k = ζ j of s11(0,k) and that none of them lie on the real axis.

We reconstruct the FNLS wave q(x, t) using the functions

µ±(x, t,k) = φ±(x, t,k)e−ikσ3x. In particular, q is expressed as

q(x, t) = lim
k→∞

2ikµ−
12(x, t,k). (A7)

Using the techniques from the theory of Riemann-Hilbert

problems, we can find equations for the entries µ−
11 and µ−

12.

If we assume that the zeros of s11(0,k) at all the eigenvalues

k = ζ j are simple, and write C j = c j(0)/s′11(ζ j), these equa-

tions are

µ−
11(x, t,k) = 1+

J

∑
j=1

C je
−2iζ jx−4iζ 2

j t µ−
12(x, t,ζ j)

k− ζ j

+
1

2π i

∫ ∞

−∞

b0(λ )e
−2iλ x−4iλ 2t µ−

12(x, t,λ )

λ − (k− i0)
dλ

(A8a)

µ−
12(x, t,k) =−

J

∑
j=1

C∗
j e

2iζ ∗
j x+4iζ ∗2

j t µ−
11(x, t,ζ

∗
j )

k− ζ ∗
j

+
1

2π i

∫ ∞

−∞

b∗0(λ )e
2iλ x+4iλ 2t µ−

11(x, t,λ )

λ − (k+ i0)
dλ .

(A8b)

Here, ±i0 indicates the indentation direction of the integration

path around the singularity at λ = k.

Using Eq. (A7), we obtain from Eqs. (A8) the wave q. After

rescaling back to the original variables of the FNLS equation
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in Eq. (1), we find

q(x, t) =− 2i
√

2

α

[

J

∑
j=1

C∗
j e

2iζ ∗
j x+4iζ ∗2

j t µ11(x, t,ζ
∗
j )

− 1

π

∫ ∞

−∞
b∗0(λ )e

2iλ x+4iλ 2t µ−
11(x, t,λ )dλ

]

. (A9)

We obtain (multi-)soliton solutions when the reflection co-

efficient vanishes, i.e., when b0(k) ≡ 0. In particular, for the

single soliton, when J = 1 and ζ1 = (V + iA)/2, Eqs. (A8)

and (A9) yield the wave in Eq. (14). In general, the discrete

sum in Eq. (A9) corresponds to the solitons, and the integral

to the continuous radiation.

Appendix B: Effective Dispersion Relation for Weak

Nonlinearity

In this appendix, we apply the method of multiple scales to

derive the EDR when the FNLS nonlinearity parameter α is

small. We first transform the FNLS to the wavenumber space

by letting

q(x, t) =
∞

∑
n=−∞

akn
(t)e−iknx, (B1)

with kn = 2πn/L, in Eq. (1). We thus obtain the infinite set of

ordinary differential equations

iȧkn
(t) =− k2

nakn
(t)

+α2
∞

∑
p,q,r=−∞

akp
(t)akq

(t)a∗kr
(t)δkp+kq−kr−kn,0 (B2)

for the wave modes akn
(t), where δ j,l is the Kronecker delta.

The solution of Eq. (B2) assumes the wave-mode time form

akn
(t) = bkn

(α2t)eik2
nt + α2akn,1, where bkn

(α2t) satisfy the

solvability condition

i∂α2tbkn
=

∞

∑
p,q,r=−∞

bkp
bkq

b∗kr
ei(k2

p+k2
q−k2

r−k2
n)t

× δkp+kq−kr−kn,0 δk2
p+k2

q−k2
r−k2

n ,0
. (B3)

It is well known that the equations

kp + kq − kr − kn = 0,

k2
p + k2

q − k2
r − k2

n = 0,

can only be solved if p = r and q = n or p = n and q = r [9].

Therefore, Eq. (B3) becomes

∂α2tbkn
=

(

2
∞

∑
m=−∞

|bkm
|2 −|bkn

|2
)

bkn
. (B4)

Because

∞

∑
m=−∞

|bkm
|2 =

∞

∑
m=−∞

|akm
|2 = ‖aκ‖2

is the conserved total wave action, the solution to Eq. (B4)

equals

bkn
= akn

(0)ei(2‖aκ‖2−|akn (0)|2)α2t ,

which gives Eq. (6). The second equality in Eq. (9) is a con-

sequence of Parseval’s equality [51].

Here, we also comment on the remark made in Sec-

tion III A 1 after Eq. (8) about the mode amplitudes |akn
(0)|

being conserved on O(α−2) time scales for small α . This

is connected to the complete integrability of the FNLS equa-

tion [17, 18, 20, 22] (see Appendix A), whose consequence is

that waves composed of sufficiently small mode-amplitudes,

so as to avoid the modulational instability [cf. Eq. (13)],

should be representable in terms of action-angle coordinates.

(Cf. [17–19, 35, 39].) In particular, the actions should reduce

to the mode amplitudes |akn
(0)| in the limit of small nonlin-

earity, and the frequencies of the angles to the frequencies in

Eq. (8). In this respect, intuitively, both the results of Sec-

tion III A 1 as well as those of Ref. [24] should be expected.

To our knowledge, however, a rigorous proof of the results of

Ref. [24] via action-angle variables is yet to be developed.

Appendix C: The Limit of Small Mode-Amplitudes

In this section, we describe the connection between our

results and those obtained in Ref. [24] in the small-wave-

amplitude limit.

In Ref. [24], the FNLS is scaled so that the factor 2 appears

in Eq. (1) in place of the nonlinearity size α2. In this case, our

limit of weak nonlinearity, discussed in Section III A 1 and

Appendix B, can be replaced by the limit of small amplitude,

which we again denote by α . In this limit, the expansion in

Eq. (6) must be replaced by one that acquires an overall fac-

tor proportional to α , but otherwise remains the same. The

necessary validity condition for this new expansion, i.e., the

condition that none of its modes become modulationally un-

stable, is a reinterpretation of the weak-nonlinearity condition

in Eq. (13) in the form that all the mode amplitudes should be

much smaller than π/L.

If we define the wave-modes akn
(t) as in Eq. (B1), the

condition for the small-wave-amplitude limit considered in

Ref. [24] states that all the initial wave-modes be small,

akn
(0) = O(α), (C1)

where α is again a small parameter. In this limit, the L2 norm

of the difference between the evolving FNLS wave q(x, t) and

the linear wave evolving according to the effective dispersion

relation k2 − (4/L)‖q(x,0)‖2
2 in Eq. (9) (with the scaling of

Ref. [24]) was shown to remain within O(α2) for short times t

and O(tα2) for long times. This result appears much stronger

than what we claim to see numerically in the more general

case, and states that the FNLS wave and its linear approxi-

mation using the EDR in Eq. (9) remain close on time scales

shorter than O(α−2). However, these waves are probably not

uniformly close nor have they close spatial slopes. Our claim,
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in turn, is only that the dynamics of each mode in a more gen-

eral FNLS wave is dominated by a single frequency obeying

the EDR in Eq. (9).

We should comment that the condition in Eq. (C1) certainly

includes the small-amplitude limit, and thus, after a rescaling,

also the weak-nonlinearity limit, but that it is more general.

In particular, by containing an increasing number, O(1/α2),
of non-decaying modes of size O(α), a wave satisfying this

condition may retain a total wave action, and thus L2 norm, of

size O(1).
The result of Ref. [24] was proven in a mathematically rig-

orous manner using the Poincaré-Birkhoff normal form [52],

a perturbation method formally equivalent to the method of

multiple scales but more suitable for rigorous proofs [53, 54].

Our numerical results show that the weaker, statistical inter-

pretation of the EDR in Eq. (9) extends far beyond its proven

validity in Ref. [24]. In particular, this EDR is valid for nu-

merous waves with mode sizes of O(1), including those result-

ing from modulational instability. We suspect that this insta-

bility may present a hard obstacle for the near-identity trans-

formations leading to the normal form, and that any future

rigorous proofs of the EDR form in Eq. (9) holding for waves

with mode sizes of O(1) may have to use different techniques.

Appendix D: Linear-Stability Analysis of Plane Waves

In this appendix, we apply linear stability analysis to the

single plane wave solution of the FNLS, seeking to understand

the behavior of its small perturbations [25–27]. We consider

a perturbed wave q(x, t) =
◦
q (x, t)[1+ ε(x, t)], where

◦
q (x, t) =

Ae−i[γx−(γ2−|A|2α2)t] is a plane wave in Eq. (10) and |ε|2 ≪ 1 is

a small perturbation. We insert this ansatz into the FNLS and

neglect higher-order terms in ε to obtain a partial differential

equation for ε:

i(εt + 2γεx) = εxx + |A|2α2(ε + ε∗). (D1)

We substitute plane-wave solutions

ε(x, t) = ρei(kx−ωt)+σe−i(kx−ω∗t) (D2)

into Eq. (D1), noting that the frequency ω could be real (giv-

ing bounded, oscillating solutions) or complex (giving expo-

nentially growing or decaying solutions).

Substituting the plane waves in Eq. (D2) into Eq. (D1),

separately collecting terms with ei(kx−ωt) and e−i(kx−ω∗t), and

taking the complex conjugate of the coefficients multiplying

e−i(kx−ω∗t) leads to the homogeneous linear algebraic system

of equations for the coefficients ρ and σ∗,

(ω − 2γk+ k2−|A|2α2)ρ −|A|2α2σ∗ = 0, (D3a)

|A|2α2ρ +(ω − 2γk− k2+ |A|2α2)σ∗ = 0. (D3b)

In order for this system to have nonzero solutions ρ and σ∗,

its determinant of coefficients must vanish, resulting in the

following quadratic equation for ω :

ω2 − 4γkω + 4γ2k2 − k2(k2 − 2|A|2α2) = 0. (D4)

When kn = 2πn/L, we compute the following expressions for

the two corresponding frequencies:

ω±n = 2γkn ± kn

√

k2
n − 2|A|2α2. (D5)

The frequencies in Eq. (D5) contain nonzero imaginary

parts corresponding to an unstable mode precisely when kn <√
2|A|α . An initial plane wave with amplitude A propagat-

ing in spatial domain |x|< L/2 with nonlinearity parameter α
will thus give rise to the number N of unstable Fourier modes

stated in Eq. (11).

Appendix E: Random Spatial Initial Conditions

We generate spatially-random, noise-like initial conditions

in such a way that they appear disordered on O(1) spatial

scales, but are smooth on O(∆x) spatial scales, where ∆x is

the size of the spatial discretization interval used in our FNLS

simulations. This is so that these initial conditions can be used

in our simulations and not destroy the order of accuracy of the

algorithms.

To generate an initial wave-form of (smoothed) spatial

“white noise,” at each spatial discretization point x j, we de-

fine two normally distributed random variables ρ j and φ j,

j = 1, . . . ,Nx, where Nx is the number of spatial discretiza-

tion points. We take for the initial wave-form the expression

q(x j,0) = a(x j)+ ib(x j), where

a(x j) = 16
j+4

∑
n= j−4

ρn, b(x j) = 16
j+4

∑
n= j−4

φn.

Here, we assume the periodicity ℓ±Nx ≡ ℓ.
To simulate a spatially periodic, (smoothed) “random-

walk”-like initial wave-form, we again begin with two nor-

mally distributed random sequences ρ j and φ j, j =−J, . . . ,J,

j 6= 0, and define the initial condition as [55]

q(x,0) = q0







J

∑
j=−J
j 6=0

ρ j + iφ j

j
e2π i jx/L +ρ0 + iφ0






,

where q0 the overall amplitude, and ρ0 + iφ0 is chosen to de-

termine the average value of q(x,0). In order to preserve

smoothness on the spatial discretization scale, O(∆x), we must

take Nx ≫ J. For our example in Sec. III B 4 and Fig. 12,

we took q0 = 1/
√

2, ρ0 + iφ0 = −0.6909− 1.4166 i, L = 2π ,

J = 28 and Nx = 212.

Appendix F: Power-Spectral Density of One Soliton

In order to derive the wavenumber dependence of the PSD

for the single soliton q(x, t) in Eq. (14), we first calculate its

spatial Fourier transform q̂(x, t) via Eq. (3). Using the well-

known formula
∫ ∞

−∞
sechξ e−iκξ dξ = π sech

(πκ

2

)

,
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we evaluate q̂(x, t) to be

q̂(k, t) = A (k)e−iΩ(k)t , (F1)

where

A (k) =

√
2π

α
sech

π(V + k)

A
ei[ψ−(V+k)δ ], (F2)

and Ω(k) is given in Eq. (17).

The finite-interval temporal Fourier transform of the mode

in Eq. (F1) equals

∫ T

0
q̂(k, t)e−iωt dt = iA (k)e−i[Ω(k)+ω]T/2 sin[(Ω(k)+ω)T/2]

(Ω(k)+ω)/2
,

which, together with Eqs. (F2) and (17) makes the expres-

sion for the PSD inside the argument on the right-hand side of

Eq. (2) equal to that in Eq. (16).
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