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In this work, we explore a massless nonlinear Dirac equation. We study the dynamics of its pulse solutions

and find that a localized one-hump initial condition splits into a localized two-hump pulse, while an associated

phase structure emerges in suitable components of the spinor field. For times larger than a transient time ts
this pulse moves with the speed of light, effectively featuring linear wave dynamics and maintaining its shape

(both in two and three dimensions). We show that for the considered nonlinearity, this pulse represents an exact

solution of the nonlinear equation. Finally, we briefly comment on the generalization of the results to a broader

class of nonlinearities.

I. INTRODUCTION

In the present work, we will be interested in the massless

analogue of the Dirac equation. This setting, under the form

of the so-called Weyl equation, has seen a surge of interest

in recent years due to a variety of newly discovered materi-

als called Weyl semimetals [1], e.g. NbAs and TaP [2, 3].

These harbor chiral quasiparticles called Weyl fermions and

possess topological surface states [4]. Weyl fermions exhibit

linear dispersion, just like graphene, but are massless. In

fact, Weyl semimetals are the three-dimensional (3D) ana-

logues of graphene with broken spatial inversion or time re-

versal symmetry. In the Brillouin zone of such materials, lin-

ear dispersion arises around certain nodes, the so-called Weyl

points, which always occur in pairs. In addition, in Weyl

semimetals regions described by different Chern numbers are

connected by unclosed lines, the so-called Fermi arcs [5],

which can be experimentally observed using angle-resolved

photoemission spectroscopy. The Fermi arc starts from one

Weyl point and ends at the other one with opposite chirality.

The Weyl points (or nodes) are essentially monopoles of the

quantized Berry flux in the crystal momentum or reciprocal

space. Photonic counterparts of Weyl semimetals have been

observed in double-gyroid structures using angle-resolved mi-

crowave transmission measurements [6]. When time reversal

and spatial inversion symmetries coexist in such a material, a

pair of degenerate Weyl points may exist resulting in a Dirac

semimetal [1, 5], e.g. Cd3As2 [7] and Na3Bi [8].

In parallel to these developments of chiefly linear Weyl

physics, there has been an explosion of interest in the phe-

nomenology of the nonlinear version of the Dirac equation

and its solitary waves; a recent survey of the pertinent phe-

nomenology can be found in [9]. While the relevant model

in its massive Thirring form [10] was of interest to integrable

systems and its Gross-Neveu/Soler form [11, 12] led to exten-

sive studies in solitary waves and their stability [9], arguably,

part of the recent appeal of the model has been due to its appli-

cability to a number of relevant physical setups. Among these,

we note the dynamical evolution of Bose-Einstein conden-

sates in the presence of honeycomb optical lattices [13–16], as

well as the analogous propagation of light in honeycomb pho-

torefractive lattices, the so-called photonic graphene [17–19].

These, in turn, motivated numerical and theoretical studies on

the properties of these models and revealed crucial differences

from their nonlinear Schrödinger cousins, including, e.g., the

potential absence of the collapse instability for suitable para-

metric intervals in two-dimensional systems [20].

Some of the relevant applications of “massless Dirac

physics” such as the optical ones of [6] constitute settings

where the tuning of optical intensity may lead to the control-

lable introduction of nonlinearity. It is worthwhile to also note

another piece of relevant motivation in the context of atomic

Bose-Einstein condensates and their matter waves (but at the

discrete rather than at the continuum level) in the work of [21].

It is the introduction of such a model blending the underlying

linear massless 3D Dirac operator (although we also consider

the 2D analogue thereof as well) and a cubic nonlinearity that

we explore in the present setting. Given the extensive num-

ber of corresponding studies at the Dirac level, but also its

properties under Lorentz transformations and remarkable phe-

nomenology reported below, we select the Gross-Neveu/Soler

type of nonlinearity to formulate a massless nonlinear Dirac

equation (massless NLDE, for short) that may be a starting

point for exploring the interplay of nonlinearity with such lin-

ear operators in various contexts. The analytical (and numeri-

cal) results obtained herein can operate as a guide for examin-

ing other nonlinearities including the more relevant for atomic

condensates cases of a Kerr type nonlinearity [21]. In that

vein, at the end of the present exposition, we briefly touch

upon the generalization of our findings to the case of the latter

nonlinearity.

Our presentation and main results are as follows. First, we

formulate the 3D massless NLDE equation and present some

of its principal properties in 3 spatial dimensions, including

most notably the observation that pulse-like initial data split

into a two-humped ring density structure (acquiring a suitable

phase in some of the spinor components). Beyond a transient

time, the resulting density excitation is found to propagate at
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the speed of light. We demonstrate that, as a consequence,

the resulting waveforms satisfy an effective 3D wave equation

which is analytically solvable via suitable transformations. To

corroborate these findings, we also examine the correspond-

ing 2D case, and demonstrate the generic nature of the rele-

vant phenomenology. It is important to point out here that our

results bear fundamental differences from the recent 1D corre-

sponding study of [22]. In particular, here (a) there is a single

radial density structure (as opposed to two pulses in the 1D

case); (b) there appears a phase (vorticity) profile that we dis-

cuss below and finally (c) the density decays with the distance,

features that are particular to the higher dimensional settings.

Upon elucidating these traits, we summarize our main results,

offer a number of remarks regarding other nonlinearities and

applications, and propose a number of associated directions

for future study.

II. MASSLESS NLDE MODEL

One of our principal motivations for utilizing the Gross-

Neveu/Soler nonlinearity is that the associated quantity ψψ
transforms as a scalar under the Lorentz transformation; nev-

ertheless, we will also refer to the Kerr nonlinearity case be-

low. The Gross-Neveu/Soler case suggests the corresponding

massless Lagrangian density:

LNLDE = ψ̄ (iγµ∂µ)ψ + F
(

ψ̄ψ
)

, (1)

where ψ(x, t) ∈ CN , x ∈ Rn and γµ, 0 ≤ µ ≤ n, are N ×
N Dirac γ-matrices satisfying the anticommutation relations

{γµ, γν} = 2ηµν , with ηµν the Minkowski tensor [23], and

ψ̄ = ψ†γ0.

We start by considering the three dimensional massless

NLDE case in which the spinors have four components. The

relevant equation derived from the Lagrangian density of

Eq. (1), in Cartesian coordinates assumes the form:

i∂tψ1 = −i[(∂x − i∂y)ψ4 + ∂zψ3]− f(ψ̄ψ)ψ1,

i∂tψ2 = −i[(∂x + i∂y)ψ3 − ∂zψ4]− f(ψ̄ψ)ψ2,

i∂tψ3 = −i[(∂x − i∂y)ψ2 + ∂zψ1] + f(ψ̄ψ)ψ3,

i∂tψ4 = −i[(∂x + i∂y)ψ1 − ∂zψ2] + f(ψ̄ψ)ψ4, (2)

with F ′
(

ψ̄ψ
)

= f(ψ̄ψ) which here is chosen as f(ψ̄ψ) =

g(|ψ1|2+ |ψ2|2−|ψ3|2−|ψ4|2); we use the value of the pref-

actor g = 1 herein. Notice that, contrary to the linear case,

the transformation of the 4-spinor ψ into 2-spinors with left

and right chirality does not decouple the equations. While

here it can be thought that the nonlinearity plays the role of an

“effective mass” in that sense (i.e., of avoiding decoupling),

nevertheless recall that in the present speed-of-light limit, the

mass is vanishing (hence this analogy is, in some sense, prob-

lematic).

We have employed the Wakano ansatz [24]

ψ(~r, 0) = φ(~r) =







u(r)
0

i v(r) cos θ
i v(r) sin θeiϕ






(3)

FIG. 1: Snapshots showing the evolution of an initial hump in the 3D

massless nonlinear Dirac equation (NLDE). Top (middle) row shows

an isosurface for 0.25 times the maximum of |ψ1(~r, t)|
2+|ψ2(~r, t)|

2

(|ψ3(~r, t)|
2 + |ψ4(~r, t)|

2) at different values of time t; an octant of

the sphere has been removed in order to get a better visualization of

the two-humped nature of the resulting structure. The bottom row

shows the phase of ψ4(~r, t) with emerging vorticity. In each picture,

the axes cover the range [−40, 40].

to initialize the massless NLDE equation and the spherical

frame will be useful in our analytical considerations below.

Nevertheless, for our numerical solution of Eq. (2), we use

the Fourier spectral collocation method in Cartesian coordi-

nates adapting the method used in [20] to the 4-spinor case

in 3D (see Appendix A). The total mass stemming from the

integration over space of the mass density

ρ(r, t) = |ψ1(r, t)|2 + |ψ2(r, t)|2 + |ψ3(r, t)|2 + |ψ4(r, t)|2
(4)

is a conserved quantity of the model.

We now integrate the massless NLDE model of Eq. (2) for

typical pulse-like initial data of the form:

u(r) =
1

2
sech

r

2
, v(r) = 0. (5)

Notice that we have found similar results for other forms of

such initial data (e.g. Gaussian, etc.), and also by taking

nonzero v(r). Figure 1 shows snapshots of (isocontour den-

sity, as well as phase profiles of) both |ψ1(~r, t)|2 + |ψ2(~r, t)|2
and |ψ3(~r, t)|2 + |ψ4(~r, t)|2, i.e., the densities of two com-

ponent pairs. Note that the initial localized hump at the first

spinor component transforms into a spherical shell two-hump

structure that expands with time, whereas the initially null

third and fourth spinor components also transform into a sim-

ilar pattern, with the latter displaying vorticity, in line with

the Wakano ansatz of Eq. (3); the second spinor component

remains null (within machine precision) during the dynami-

cal evolution. Figure 2 shows the density at different times;

notice the persistence of the two local maxima over the propa-

gation time. The left panel of Fig. 3 shows the position of the

local density maximum; from this it is evident that the ‘ring’

expands asymptotically with speed 1 beyond a transient time,

i.e., for t > ts.

The right panel of Fig. 3 shows the quantity

δ(t) =

∫

dN~rf(ψ(~r, t)), (6)
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FIG. 2: Density ρ(r, t) at different values of time in the 3D massless

NLDE.

which tends to zero for t > ts, with N being the number of

spatial dimensions of the system. This quantity is a measure

of the nonlinearity of the system during time evolution. It is

thus clear that the nonlinear term becomes effectively “deac-

tivated” for t > ts (in line also with the 1D massless Dirac

case findings of [22]). As a result, the emerging two-humped

pulses propagate at the “speed of light”, effectively satisfying

the linear 3D wave equation, given the spontaneous vanishing

of the nonlinear term f . In other words, given our observa-

tion that f → 0, it is straightforward to show that each spinor

U = ψ1,2,3,4 satisfies the linear 3D wave equation of the form:

(

1

c2
∂2t − ∂2x − ∂2y − ∂2z

)

U = 0, (7)

for which the transformation w = rU can factor out the cur-

vature term (2/r)∂rU and effectively restore a 1D wave equa-

tion in the radial variable, ultimately retrieving the full solu-

tion in the form:

U(r, t) =
1

r
[h(1)(r − ct) + h(2)(r + ct)]. (8)

In our simulations h(2) = 0 and for t ≥ ts the four spinor

components ψi = Ui = 1
rh

(1)
i (x − ct) with four functions

(i = 1, . . . , 4) produce the two-hump structure seen in the

density, per Eq. (4), in Fig. 2. Remarkably, this two-hump

structure is a unique, previously undiscovered feature which

differs qualitatively from the two-hump structure that was ob-

served in the 1D massless NLDE [22]. In the latter the initial

pulse splits symmetrically into two equal humps which move

in opposite directions with the speed of light.

III. 2D MASSLESS NLDE

For the sake of comparison with the 3D case and a better un-

derstanding of the massless NLDE in general, next we study

the 2D massless NLDE, which also showcases the generality

FIG. 3: The left panel shows the position of the leftmost density

local maximum r0 for the 3D massless NLDE; the dashed red line

corresponds to a slope 1 line to which r0(t) tends asymptotically.

The right panel shows the evolution of δ(t) [see Eq. (6)], showcasing

its asymptotic vanishing. Notice that we have taken r0 = 0 when

there is a single local maximum.

FIG. 4: Snapshots showing the evolution of an initial hump in the

2D massless NLDE. Top (middle) row shows the value of |ψ1(~r, t)|
2

(|ψ2(~r, t)|
2) at different values of time t. Bottom row shows the

development of a vortical phase structure within ψ2(~r, t). In each

picture, the axes cover the range [−80, 80].

of our findings. In 2D the γ-matrices are defined as γ0 = σ3
and γj = σ3σj with j = 1, 2, where σ1, σ2 and σ3 are the

Pauli matrices. Explicitly, γ1 = σ3σ1 = iσ2 and γ2 = σ3σ2.

In this context, the simplest case example of interest derived

from the Lagrangian density in Eq. (1) can involve solely two

spinor components according to the dynamical equations [20]:

i∂tψ1 = −(i∂x + ∂y)ψ2 − f(ψ̄ψ)ψ1,

i∂tψ2 = −(i∂x − ∂y)ψ1 + f(ψ̄ψ)ψ2, (9)

whereψ1, ψ2 are the components of the spinorψ ∈ C2 and the

nonlinearity is f = g(|ψ1|2 − |ψ2|2). We note that Eq. (9) is

a U(1), as well as translation-invariant, Hamiltonian system.

In Fig. 4, we have once again explored the evolutionary dy-

namics of the 2D analogue of the massless NLDE, initializ-

ing with a single humped waveform. The relevant results are,

once again, generic in their nature within the class of such

initial data. We observe here too that a two-humped structure

spontaneously emerges in a “ring” form (for the density), with

the 2nd component also featuring a phase profile, associated

with the presence of vorticity in this spinor component. Sim-

ilar to the 3D case, and showcasing the generality of our ob-

servations, we find that for t ≥ ts ≃ 20, the pulses propagate

with constant speed, namely the speed of light, and the non-
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linearity once again is made to vanish due to |ψ1|2 = |ψ2|2,

leading to an effectively linear dynamics.

In a calculation similar to the above 3D case, given in detail

in Appendix B (where both standing and traveling wave solu-

tions of the 2D massless NLDE are explored, as applicable in

the case of t ≥ ts), we find that the effective dynamics for

t ≥ ts amounts to:

∂tψ1 + (∂x − i∂y)ψ2 = 0, (10)

∂tψ2 + (∂x + i∂y)ψ1 = 0. (11)

Combining the two equations (by taking, e.g., a time-

derivative of the first and substituting in the second), we obtain

a 2D wave equation for both ψ1 and ψ2, which, in turn, leads

to the following expression for the density:

ρ(r, t) =
1

r
|f(r − t)|2. (12)

Constant factors are omitted here because ψ1 and ψ2 are so-

lutions of effective linear equations. Notice the important 1/r
effect, induced by the presence of the curvature also in the 2D

system; such a term would be absent in a massless 1D Dirac

setting [22].

IV. CONCLUSIONS, EXTENSIONS AND FUTURE WORK

Motivated by related studies in the photonic realm [6]

(where nonlinearity can be naturally introduced) and in the

matter wave realm [21] (where nonlinearity is effectively

present due to inter-particle interaction), we have introduced

a prototypical massless nonlinear Dirac equation in 3D (and

examined its analogue in 2D). Considering the case invariant

under Lorentz transformations, we have utilized the Gross-

Neveu/Soler nonlinearity in this study. We have obtained

pulse solutions of massless NLDE and their time evolution.

Beyond a transient time t > ts, we have found that these

pulses move with the speed of light and satisfy an effectively

linear (and explicitly solvable) wave equation. In the process,

the role of curvature in the evolution of these pulses, as well

as their two-humped structure and spontaneous phase devel-

opment in suitable components, have also been elucidated.

Our results provide insight into the localization and dynam-

ics of massless Dirac fields in the presence of nonlinearity.

However, they also pose important questions that are espe-

cially relevant to address in future studies. In particular, from

the theoretical standpoint, while the Gross-Neveu/Soler non-

linearity is of interest given its symmetry properties, in opti-

cal and atomic Dirac settings a nonlinearity involving solely

|ψi|2ψi in the equation for the i-th spinor (i.e., a Kerr effect

solely in each component from its own self-action) is naturally

of interest. It is then particularly relevant to separately explore

the latter situation in both 3D and 2D. Remarkably our obser-

vations suggest that in these settings too, despite the varia-

tion of the nonlinearity, a similar phenomenology is observed.

Namely, long-lived pulses appear to propagate outward at the

speed of light for the class of initial data considered herein

(given the similarity of the pertinent figures to the Soler case

considered herein, we do not show them here). Moreover,

it would be particularly interesting in experimentally realized

photonic crystals, or perhaps in theoretically proposed atomic

settings to explore the possibility of observing this intriguing

interplay of linear phenomena (some of which have been dis-

cussed above) and nonlinearity.
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Appendix A: Numerical methods

We briefly describe in this appendix the numerical methods

employed for integrating equations (2). For a more complete

description of such methods, the reader is referred to [9].

The first step to follow is to implement a grid and a method

for discretizing the spatial derivatives of the partial differen-

tial equations (PDEs) of (2) and, consequently, transforming

them into a set of coupled ordinary differential equations. Fi-

nite difference methods do not usually work well in nonlinear

Dirac equations. Instead, one must make use of spectral meth-

ods. In our case, as we are dealing with numerical integrations

of PDEs and the pulse tends to infinity in an exponential way,

a well-suited choice is the Fourier spectral method. Such a

method requires the use of periodic boundary conditions and

an equispaced grid. The implementation is quite simple, as

it basically consists of performing direct and inverse Fourier

transforms. That is, if we denote by U(x, y, z) any of the

spinor components ψ1,2,3,4(x, y, z) then the derivative with

respect to, e.g. direction, x is given by

∂xU(x, y, z) = F−1
x (ikFx(U(x, y, z))) ,

where Fx and F−1
x denote the direct and inverse, respectively,

one-dimensional Fourier transform in the direction x. Notice

that U(x, y, z) actually represents anN×N×N array which

only takes values at the grid points. Because of this, Fourier

transforms can be accomplished by means of the Fast Fourier

Transform (FFT) and k ≡ {kn} is a vector with N compo-

nents given by kn = nπ/L for n < N and kN = 0.

Once we have defined our set of ordinary differential equa-

tions, the second ingredient is the numerical integrator. In our

case, the integrator we prefer to use for simplicity and accu-

racy is the Dormand-Prince [26] algorithm.

All the above schemes have been implemented using Mat-

lab in a desktop PC with 8 Gb of RAM. In our particular

case, the domain has been a box of size (−L,L]× (−L,L]×
(−L,L] with L = 48 and the lattice discretization parame-

ter is h = 0.8; with these data, the number of grid points
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is N = 120 so that the total number of ordinary differential

equations to integrate is equal to 4N3 ∼ 7 × 106. Reaching

the value of time t = 30 takes around a day. We finally remark

that one of the advantages of using spectral methods is that it

works even with a rough discretization and that the value of

the wavefunction at different values of (x, y, z) out of the grid

can be accurately attained by using spline interpolation.

Appendix B: The two-dimensional massless Nonlinear Dirac

case

For the 2D case, we can simplify the relevant analysis by

using the polar coordinates, where the equations take the form

i∂tψ1 = −e−iθ

(

i∂r +
∂θ
r

)

ψ2 − f(ψ1, ψ2)ψ1,

i∂tψ2 = −eiθ
(

i∂r −
∂θ
r

)

ψ1 + f(ψ1, ψ2)ψ2. (B1)

We have performed simulations of the relevant 2D analogue

of the massless NLDE model with the following initial con-

ditions, in line with those used in Ref. [20] (for the massive

case),

ψ(~r, 0) = φ(~r) =

[

u(r)eiSθ

i v(r)ei(S+1)θ

]

(B2)

with S being the vorticity and, just as in the 3D case,

u(r) =
1

2
sech

r

2
, v(r) = 0. (B3)

The two-humped ring nature of the resulting dynamics (as

well as the spontaneous emergence of vorticity) is revealed

in the figure shown in the main text. Here, for completeness

we show in Fig. 5 the density ρ(r, t) at different times. Also,

the left panel of Fig. 6 shows the position of the maximum of

the density of the ring; from this figure, it is evident that the

ring expands asymptotically with the speed of light (as in 3D).

The right panel of the figure shows δ(t) defined in the main

text. The vanishing of this quantity once again indicates the

spontaneous “self-annihilation” of the nonlinear terms. Thus,

for t > ts this structure remains the same for all times, but its

density is reduced by an r-dependent factor and it moves with

the speed of light.

Therefore, this structure is supposed to be a solution of the

linear 2D form of the equation. In the following we will show

that it is indeed the case by solving exactly the associated lin-

ear PDEs. We use the following Ansätze

ψ1 = e−i θ
2 ψ̃1(r, t), ψ2 = ei

θ

2 ψ̃2(r, t), (B4)

and obtain the following relations:

∂tψ̃1 = −
(

∂r +
1

2r

)

ψ̃2,

∂tψ̃2 = −
(

∂r +
1

2r

)

ψ̃1. (B5)

FIG. 5: Density ρ(r, t) at different values of time in the 2D massless

nonlinear Dirac equation.

FIG. 6: Left panel shows the position of the density maximum r0
for the massless 2D nonlinear Dirac equation; dashed red line corre-

sponds to a slope 1 line to which r0(t) tends asymptotically. Right

panel shows the evolution of δ(t) and its effective vanishing beyond

a transient time.

First we consider time independent solutions:

ψ̃1(r, t) = u(r), ψ̃2(r, t) = iv(r), (B6)

and obtain

v′ +
1

2r
v = 0, u′ +

1

2r
u = 0. (B7)

We find that

v = c2e
−

∫
1

2r
dr = c2e

− 1

2
ln r =

c2√
r
, (B8)

with arbitrary c2. In a similar way we have u = c1/
√
r with

c1 being an arbitrary constant. Thus,

Ψ = (ψ1, ψ2)
T =

1√
r
(c1e

−i θ
2 , ic2e

i θ
2 )T . (B9)

Denoting ũ = ψ̃1 + ψ̃2 and ṽ = ψ̃1 − ψ̃2 we decouple Eqs.

(B5) as

∂tũ = −
(

∂r +
1

2r

)

ũ,

∂tṽ = +

(

∂r +
1

2r

)

ṽ. (B10)
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Next, we consider stationary solutions by employing the

ansatz

ũ(r, t) = e−iωtu(r), ṽ(r, t) = e−iωtv(r) (B11)

and obtain

u(r) = c1
eiωr

√
r
, v(r) = c2

e−iωr

√
r
. (B12)

Finally, we get the solutions

ψ1 =
1

2
e−iωte−iθ/2[u(r) + v(r)],

ψ2 =
1

2
e−iωte+iθ/2[u(r)− v(r)]. (B13)

Next we consider traveling wave solutions. We take the

decoupled Eqs. (B10) and make the ansatz

ũ =
1

rβ
h(1)(r − ct), (B14)

with a solution c = 1, β = 1/2, where h(1)(r − ct) is an

arbitrary function, and

ṽ =
1

rβ
h(2)(r − ct), (B15)

with a solution c = −1, β = 1/2. That is, we have two

solutions (with h(1) and h(2) arbitrary):

ũI =
1√
r
h(1)(r − ct), c = 1, ṽI = 0,

ũII = 0, ṽII =
1√
r
h(2)(r − ct), c = −1. (B16)

Thus, the solutions of the original equations (with h(1) and

h(2) arbitrary) are

ψ1,I =
1

2
e−iθ/2 1√

r
h(1)(r − t), ψ2,I =

1

2
e+iθ/2 1√

r
h(1)(r − t).

ψ1,II =
1

2
e−iθ/2 1√

r
h(2)(r + t), ψ2,II =

1

2
e+iθ/2 1√

r
h(2)(r + t).

(B17)
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