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We show that the critical manifold of a statistical mechanical system in the vicinity of a critical
point is locally accessible through correlation functions at that point. A practical numerical method
is presented to determine the tangent space and the curvature to the critical manifold with Varia-
tional Monte Carlo Renormalization Group. Because of the use of a variational bias potential of the
coarse-grained variables, critical slowing down is greatly alleviated in the Monte Carlo simulation.
In addition, this method is free of truncation error. We study the isotropic Ising model on square
and cubic lattices, the anisotropic Ising model and the tricritical Ising model on square lattices to
illustrate the method.

I. INTRODUCTION

The introduction of renormalization group (RG) the-
ory in statistical physics [1] has greatly deepened our
understanding of phase transitions. Our understanding
of RG, however, is far from complete. The actual im-
plementation of the RG procedure remains a highly non-
trivial task. The critical manifold of a lattice model is
defined as the set of coupling constants for which the long
range physics of the system is described by a unique un-
derlying scale-invariant field theory. However, the same
lattice model may admit different critical behaviors de-
scribed by different field theories, upon changing the cou-
pling constants. This is the case, for instance, in the
tricritical Ising model to be discussed later. Thus, the
critical manifold is always defined with respect to the
field theory underlying the lattice model. It could be de-
fined in any space of coupling constants associated with
a finite number of coupling terms, with co-dimension in
that space equal to the number of relevant operators of
the system. General RG theory requires that the RG
flow should go into a unique fixed-point Hamiltonian, if
the starting point of the flow is on the critical manifold.
There are various “natural” RG procedures where differ-
ent points on a critical manifold do not go to the same
critical fixed-point, the most well-known example being
the decimation rule in dimension higher than one [2]. By
contrast, when an RG procedure satisfies this require-
ment, the attractive basin of the critical fixed-point is
the entire critical manifold, and a computational scheme
should exist, at least in principle, to identify the critical
manifold. Whether or not this approach can be success-
fully pursued were a stringent test of the RG procedure
under consideration. Conversely, the knowledge of the
critical manifold provides a straightforward way to check
the validity of any RG procedure: one could simply simu-
late the RG flow starting from two different points in the
critical manifold and verify that they eventually land on
the same fixed-point. This consideration alone should be
enough motivation for developing a method to compute
the critical manifold.

Another issue for which the knowledge of the critical
manifold would be of interest is the study of the geometry
of the coupling constant space, i.e. the parameter man-
ifold of a classical or quantum many-body system. How
to define a Riemannian metric in the parameter mani-
fold has been proposed since long time for both classical
[3] and quantum systems [4]. Recently, there have been
developments in understanding the significance of the ge-
ometry of the parameter manifold for both classical and
quantum systems [5–9]. One would expect knowledge of
the critical manifold would fit naturally into such devel-
opments. We do not pursue further this issue here but
we leave it to future research.

In this paper, we present a method to determine the
tangent space and curvature of the critical manifold at
the critical points of a system with Variational Monte
Carlo Renormalization Group (VMCRG) [10]. We will
show that unlike the computation of the critical expo-
nents with Monte Carlo Renormalization Group [11] or
VMCRG, the determination of the critical manifold tan-
gent space (CMTS) and curvature does not suffer trun-
cation error no matter how few renormalized coupling
terms are used. We discuss first the case where there
are no marginal operators along the RG flow, and then
the case where there are. The examples that we consider
in this paper are all classical, but the method can be
extended to quantum systems if a sign-free path integral
representation of the quantum system would be available.

II. MONTE CARLO RENORMALIZATION

GROUP AND THE CRITICAL MANIFOLD

A. Coarse-graining and Renormalized Coupling

Constants

For notational simplicity, we use the terminology for
classical magnetic spins on a lattice in the following dis-
cussion, although the formalism applies in general. Con-
sider a statistical mechanical system in d spatial dimen-
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sions with spins σ and Hamiltonian H(0)(σ),

H(0)(σ) =
∑

β

K
(0)
β Sβ(σ) (1)

where Sβ(σ) are the coupling terms of the system, such
as nearest neighbor spin products, next nearest neighbor

spin products, etc., and K
(0) = {K

(0)
β } are the corre-

sponding coupling constants. Here we call the original
Hamiltonian before any RG transformation the zeroth
level renormalized Hamiltonian, hence the notation (0)
in the superscript. The critical manifold is then defined

in the space of K
(0)
β corresponding to a finite set of cou-

plings Sβ(σ).
In a real-space RG calculation, one defines coarse-

grained spins σ′ in the renormalized system with a con-
ditional probability T (σ′|σ) that effects a scale transfor-
mation with scale factor b. T (σ′|σ) is the probability of
σ

′ given spin configuration σ in the original system. The
majority rule block spin in the Ising model proposed by
Kadanoff [12] is one example of the coarse-grained vari-
ables. T (σ′|σ) can be iterated n times to define the nth
level coarse-graining T (n)(µ|σ) realizing a scale transfor-
mation with scale factor bn:

T (n)(µ|σ) =
∑

σ(n−1)

..
∑

σ(1)

T (µ|σ(n−1)) · · ·T (σ(1)|σ) (2)

T (n) defines the nth level renormalized Hamiltonian
H(n)(µ) up to a constant g(K(0)) independent of µ [13]:

H(n)(µ) ≡ − ln
∑

σ

T (n)(µ|σ)e−H(0)(σ) + g(K(0))

=
∑

α

K(n)
α Sα(µ) + g(K(0))

(3)

where {K
(n)
α } are the nth level renormalized coupling

constants associated with the coupling terms Sα(µ) de-
fined for the nth level coarse-grained spins. Modulo
the constant coupling term, T (n)(µ|σ) defines H(n)(µ)
uniquely. H(n) renormalized from different starting
Hamiltonians H(0) will generally be different. However,
if no marginal operators appear in the RG transforma-
tion, the renormalized Hamiltonians from different initial
points on the critical manifold will converge to the same
critical fixed-Hamiltonian , H∗(µ), as n goes to infinity.
To probe H∗(µ) in a Monte Carlo (MC) simulation,

one increases the iteration level n and the system size L,
until the renormalized Hamiltonian H(n) becomes invari-
ant with n to the desired accuracy and the L dependence
becomes negligible. It is generally impossible to deter-
mine all of the coupling constants of H(n)(µ) because
their number increases combinatorially with the lattice
size. In practice, one adopts some truncation scheme
and approximates H(n) with a finite number of coupling

terms {Sα(µ)} with coupling constants K
(n)
α :

H(n)(µ) ≈
∑

α

K(n)
α Sα(µ) (4)

B. Critical Manifold Tangent Space in the Absence

of Marginal Operators

To compute the CMTS, let us suppose that K
(0)
β and

K
(0)
β + δK

(0)
β belong to the critical manifold and apply

the RG procedure starting from these two points. As
the difference in the irrelevant directions becomes expo-
nentially suppressed with progressively large n, the corre-
sponding two renormalized Hamiltonians will tend to the
same Hamiltonian H(n) in the absence of RG marginal
operators. In particular, the truncated coupling con-

stants, K
(n)
α,truncate and K

(n)
α,truncate + δK

(n)
α,truncate, renor-

malized respectively from K
(0)
β and K

(0)
β + δK

(0)
β , will

be equal within deviations exponentially small with n,
because they are the truncation approximation for two
Hamiltonians, H(n) and H(n) + δH(n), whose difference
is exponentially small in n. Thus, the spanning set of

the CMTS, {δK
(0)
β }, satisfies the following equation for

sufficiently large n,

K
(n)
α,truncate +

∑

β

∂K
(n)
α,truncate

∂K
(0)
β

δK
(0)
β = K

(n)
α,truncate (5)

for every α. That is, the CMTS {δK
(0)
β } is the kernel of

the nth level RG Jacobian:

A
(n,0)
αβ ≡

∂K
(n)
α,truncate

∂K
(0)
β

(6)

for any well-defined truncation scheme. In the follow-

ing, we will use K
(n)
α to denote the truncated coupling

constants.
As shown in [10], VMCRG provides an efficient way to

compute the renormalized constants and the RG Jaco-
bian matrix with MC under a given truncation scheme.
It introduces a bias potential V (µ) of the coarse-grained
variables, expanded in a finite set of renormalized cou-
plings Sα(µ) with variational parameters Jα:

VJ(µ) =
∑

α

JαSα(µ), (7)

and a variational function of J = {Jα}:

Ω(J) = ln
∑

µ

e−(H(n)(µ)+VJ(µ)) +
∑

µ

VJ(µ)pt(µ) (8)

where pt(µ) is a preset target probability distribution,
which will be taken as the uniform distribution in the
following. As proved in [14], Ω is convex in each Jβ, and,
if one excludes the constant coupling term, has a unique
minimizer, Jmin, which can be found with a stochastic
gradient descent algorithm using the Jacobian and the
Hessian of Ω(J) [10]:

∂Ω(J)

∂Jα
= −〈Sα(µ)〉VJ

+ 〈Sα(µ)〉pt
(9)
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∂2Ω(J)

∂Jα∂Jβ
= 〈Sα(µ)Sβ(µ)〉VJ

−〈Sα(µ)〉VJ
〈Sβ(µ)〉VJ

(10)

Here 〈·〉VJ
is the biased ensemble average under VJ and

〈·〉pt
is the ensemble average under the target probability

distribution pt. The minimizer Jmin then satisfies the
minimizing condition: for every renormalized coupling
Sγ(µ),

〈Sγ(µ)〉Vmin = 〈Sγ(µ)〉pt
(11)

If the set of the coupling terms Sα is complete, Vmin(µ) =
∑

α Jα,minSα(µ) = −H(n)(µ), and we identify for each
α,

K(n)
α = −Jα,min (12)

Because the set of Sα(µ) is not complete, a truncation

error in computing K
(n)
α is incurred. However, because

the minimizer of Ω is unique, the truncation scheme is

well-defined. Within VMCRG, A
(n,0)
αβ can be obtained

by expanding Eq. 11 to linear order in δK
(0)
β and δK

(n)
α .

The result [10] is that, for a given β, every Sγ(µ) must
satisfy,

∑

α

〈〈Sγ(µ), Sα(µ)〉〉V
∂K

(n)
α

∂K
(0)
β

= 〈〈Sγ(µ), Sβ(σ)〉〉V (13)

where 〈〈X,Y 〉〉V ≡ 〈XY 〉V −〈X〉V 〈Y 〉V is the connected
correlation function of the observablesX and Y in the bi-
ased ensemble with the potential Vmin(µ). Thus, for any

β, the Jacobian matrix element A
(n,0)
αβ =

∂K(n)
α

∂K
(0)
β

, viewed

as a column vector indexed by α, can be obtained from
Eq. 13 by matrix inversion.
We also note that the method described above works

for any target distribution pt(µ) in VMCRG. A different
pt(µ) will result in a different bias potential Vmin(µ) to
be used in the sampling of the matrix A(n,0). We use
the uniform distribution here because then Vmin(µ) acts
to eliminate the long-range correlation in a critical sys-
tem and the resultant ensemble for the sampling ofA(n,0)

benefits from a much faster MC relaxation [10]. However,
one can impose any arbitrary bias potential of the coarse-
grained variables, V (µ), and adopt the corresponding bi-
ased distribution as the target distribution. All the steps
in the above derivation follow, and the CMTS can then
be computed in the biased ensemble with the arbitrary
V (µ). In particular, if one insists on using the original
ensemble with no bias potential, one only needs to set the
target distribution to be the original unbiased distribu-
tion, in which case Vmin necessarily vanishes and A(n,0)

is sampled in the unbiased ensemble.

C. Critical Manifold Tangent Space in the

Presence of Marginal Operators

When there are marginal operators in the RG transfor-
mation, two different points on the critical manifold will

converge to different fixed-point Hamiltonians. However,
starting from any point on the critical manifold, at suffi-
ciently large n, H(n) will be equal to H(n+1), and so will

the truncated renormalized constants K
(n)
α be equal to

K
(n+1)
α . Now suppose that both K

(0)
β and K

(0)
β + δK

(0)
β

are on the critical manifold, respectively giving rise to the

truncated renormalized constantsK
(n)
α andK

(n)
α +δK

(n)
α .

Then, the spanning set of CMTS, {δK
(0)
β }, instead of Eq.

5, satisfies the following condition,

K(n)
α +

∑

β

∂K
(n)
α

∂K
(0)
β

δK
(0)
β = K(n+1)

α +
∑

β

∂K
(n+1)
α

∂K
(0)
β

δK
(0)
β

(14)

for every α. But K
(n)
α and K

(n+1)
α are already equal up

to an exponentially small difference, because they are
renormalized from the same point on the critical mani-
fold. Thus, when marginal operators appear in the RG
transformation, the CMTS is the kernel of the matrix,

A
(n+1,0)
αβ −A

(n,0)
αβ (15)

D. The Normal Vectors to Critical Manifold

Tangent Space

Because of the spin-flip symmetry, the renormalization
of the even operators and of the odd operators are de-
coupled in the examples we consider here, so they can
be considered separately. In the Ising models that we
discuss later, the co-dimension of the critical manifold is
one, and the tangent space is thus a hyperplane and the
row vectors ofA(n,0) orA(n+1,0)−A(n,0), for systems with
or without marginal operators, are orthogonal to this hy-
perplane. This means that the row vectors of A(n,0) or
A(n+1,0)−A(n,0) are all normal vectors to the CMTS and
are parallel to one another. Thus, the P matrix defined
as

Pαβ =
A

(n,0)
αβ

A
(n,0)
α1

or
A

(n+1,0)
αβ −A

(n,0)
αβ

A
(n+1,0)
α1 −A

(n,0)
α1

, (16)

that contains the normalized row vectors of A(n,0) or
A(n+1,0) −A(n,0), should have identical rows.
In the tricritical Ising model that we also discuss, the

critical manifold in the even subspace has co-dimension
two [15]. In this case, we cannot expect all the rows of
Pαβ to be equal. Instead, the rows should form a two-
dimensional vector space to which the CMTS is orthogo-
nal. This outcome can be checked, for example, by verify-
ing that all the row vectors of Pαβ lie in the vector space
spanned by its first two rows. If such consistency checks
can be satisfied, it is a testament of the validity of RG
theory, which predicts that a critical fixed-point Hamil-
tonian exists and that the co-dimension of the critical
manifold has precisely the assumed value for the models
considered in this paper.
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In general, the CMTS computed from different renor-
malized couplings will have different statistical uncer-
tainty because the sampling noise differs for different
correlation functions in an MC simulation. One should,
thus, trust the result with the least uncertainty and use
the values computed from other renormalized constants
as a consistency check.

III. NUMERICAL RESULTS FOR CMTS

A. 2D Isotropic Ising model

Consider the isotropic Ising model on a 2D square lat-
tice with Hamiltonian H(σ)

H(σ) = −K(0)
nn

∑

〈i,j〉

σiσj −K(0)
nnn

∑

[i,j]

σiσj (17)

where 〈i, j〉 denotes the nearest neighbor pairs and [i, j]

the next nearest neighbor pairs. K
(0)
nn and K

(0)
nnn are the

corresponding coupling constants. This model is ana-

lytically solvable when K
(0)
nnn = 0 and is critical at the

Onsager point with K
(0)
nn = 0.4407... [16]. Four crit-

ical points are first located with VMCRG in the cou-

pling space of {K
(0)
nn ,K

(0)
nnn}. This task can be achieved

by fixing K
(0)
nnn and varying K

(0)
nn while monitoring how

the corresponding renormalized coupling constant K
(n)
nn

varies with n, the RG iteration index. The largest value

of the original coupling constant, K
(0)
nn,1, for which K

(n)
nn

decreases with n, and the smallest value, K
(0)
nn,2, for which

K
(n)
nn increases with n, define the best estimate, within

statistical errors, of the interval [K
(0)
nn,1,K

(0)
nn,2] of location

of the critical coupling, K
(0)
nn,c. We notice that the cal-

culated renormalized constants are truncated and we as-
sume here that the truncated K

(n)
nn increases or decreases

monotonically with the exact K
(n)
nn . This assumption is

very natural and does not seem to be violated in the
present study. Alternatively, the same procedure can be
performed by fixing Knn and varying Knnn. In the fol-
lowing VMCRG calculations, we use n = 4, L = 256, and
the b = 2 majority rule with a random pick on tie. We
use three renormalized couplings: the nearest neighbor

product K
(n)
nn , the next nearest product K

(n)
nnn, and the

smallest plaquette K
(n)
�

. The model is known to have no
marginal operators. The four critical points shown in Ta-
ble I all belong to the same critical phase, as they all flow
into the same truncated fixed-point renormalized Hamil-
tonian. The CMTSs are determined at these critical
points in a four-dimensional coupling space spanned by

K
(0)
nn , K

(0)
nnn, K

(0)
�

, and the third nearest neighbor prod-

ucts, K
(0)
nnnn. The Pαβ is shown in Table. I. In addition,

we also show the CMTS at the Onsager point, which is
analytically solvable [17].

K
(0)
nn K

(0)
nnn Pα2 Pα3 Pα4

0.4407 0 1.4134(3) 0.5135(3) 1.7963(5)
1.4146(7) 0.5134(7) 1.799(2)
1.413(3) 0.511(3) 1.794(7)

Exact 1.4142 0.5139 1.8006
0.37 0.0509 1.3717(4) 0.5242(3) 1.7664(8)

1.375(1) 0.5243(7) 1.773(2)
1.372(4) 0.527(3) 1.773(6)

0.228 0.1612 1.2529(7) 0.5303(4) 1.6545(8)
1.254(1) 0.5318(8) 1.659(2)
1.252(5) 0.535(3) 1.65(1)

0.5 -0.0416 1.4441(4) 0.5019(5) 1.816(1)
1.444(2) 0.503(2) 1.818(4)
1.441(7) 0.499(6) 1.80(1)

TABLE I. Pαβ for the isotropic Ising model. α indexes rows
corresponding to the three renormalized constants: nn,nnn,
and �. The fourth row of the table at the Onsager point
shows the exact values. β = 2, 3, and 4 respectively indexes
the component of the normal vector to CMTS corresponding
to coupling terms nnn,�, and nnnn. β = 1 corresponds to
the nn coupling term and Pα1 is always 1 by definition. The
simulations were performed on 16 cores independently, each
of which ran 3 × 106 Metropolis MC sweeps. The standard
errors are cited as the statistical uncertainty.

The CMTS can also be computed in the odd coupling
subspace, as we show here for the Onsager point. In this
calculation, we take n = 5, L = 256, and again the b = 2
majority rule for coarse-graining. The CMTS in a space
of four odd couplings, listed in the legend of Table II,
is calculated from the same four renormalized couplings.
The result is shown in Table II.

K
(0)
nn K

(0)
nnn Pα2 Pα3 Pα4

0.4407 0 3.31248(8) 1.65629(4) 1.49852(6)
3.296(2) 1.649(4) 1.479(2)
3.315(3) 1.658(2) 1.503(2)
3.32(5) 1.68(4) 1.51(3)

TABLE II. Pαβ for the odd coupling space of the isotropic
Ising model. α indexes rows corresponding to the four renor-
malized odd spin products: (0, 0), (0, 0)-(0,1)-(1,0), (0, 0)-(1,
0)-(-1,0) and (0, 0)-(1,1)-(-1,-1), where the pair (i, j) is the co-
ordinate of an Ising spin. The simulations were performed on
16 cores independently, each of which ran 3× 106 Metropolis
MC sweeps. The standard errors are cited as the statistical
uncertainty.

B. 3D Istropic Ising Model

Consider now the same model on a 3D square lattice

with K
(0)
nnn = 0, i.e. the 3D isotropic nearest neighbor

Ising model. This model does not have an analytical so-
lution, but is known to experience a continuous transition

at K
(0)
nn = 0.22165... [18]. To compute the CMTS at this

nearest neighbor critical point, we use n = 3, L = 64,



5

and the b = 2 marjority rule with a random pick on tie.
The CMTS is computed in an eight-dimensional coupling
space {K(0)} spanned by the nearest-neighbor and the
next nearest-neighbor renormalized coupling constants,

K
(n)
nn and K

(n)
nnn, as shown in Table III.

Pα2 Pα3 Pα4 Pα5 Pα6 Pα7 Pα8

2.642(8) 1.540(8) 6.61(3) 2.46(1) 0.788(3) 6.92(4) 1.99(1)
2.64(2) 1.55(2) 6.7(1) 2.50(2) 0.795(3) 7.0(1) 1.99(2)

TABLE III. Pαβ for the 3D isotropic Ising model. The two
rows in the table correspond to the two different α which re-
spectively index the nn and the nnn renormalized constants.
β runs from 1 to 8, corresponding to the following spin prod-

ucts, S
(0)
β (σ): (0, 0, 0)-(1, 0, 0), (0, 0, 0)-(1, 1, 0), (0, 0, 0)-(2,

0, 0), (0, 0, 0)-(2, 1, 0), (0, 0, 0)-(1, 0, 0)-(0, 1, 0)-(0, 0, 1),
(0, 0, 0)-(1, 0, 0)-(0, 1, 0)-(1, 1, 0), (0, 0, 0)-(2, 1, 1), and
(0, 0, 0)-(1, 1, 1), where the triplet (i, j, k) is the coordinate
of an Ising spin. 16 independent simulations were run, each
of which took 3 × 105 Metropolis MC sweeps. The simula-
tions were performed at the nearest-neighbor critical point
with Knn = 0.22165.

C. 2D Anistropic Ising Model

Consider then the anisotropic Ising model on a 2D
square lattice with Hamiltonian H(σ)

H(σ) = −K(0)
nnx

∑

〈i,j〉x

σiσj −K(0)
nny

∑

〈i,j〉y

σiσj (18)

where 〈i, j〉x and 〈i, j〉y respectively denote the nearest
neighbor pairs along the horizontal and the vertical direc-

tion. In the space of {K
(0)
nnx ,K

(0)
nny}, the model is exactly

solvable and is critical along the line [19]

sinh(2K(0)
nnx

) · sinh(2K(0)
nny

) = 1 (19)

With the 2 × 2 majority rule, the system admits
a marginal operator due to anisotropy in the RG
transformation [20]. We performed VMCRG calcu-
lations on two critical points of the system with

K
(0)
nny/K

(0)
nnx = 2, and 3, with four renormalized couplings:

K
(n)
nnx ,K

(n)
nny ,K

(n)
nnn,K

(n)
�

. The CMTS is computed in the

coupling space {K
(0)
nnx ,K

(0)
nny ,K

(0)
nnn,K

(0)
�

,K
(0)
nnnnx ,K

(0)
nnnny}

using Eq. 15, as shown by Pαβ in Table. IV.

D. 2D Tricritical Ising Model

Finally, let us consider the 2D tricritical Ising model
with the Hamiltonian

H(σ) = −K(0)
nn

∑

〈i,j〉

σiσj −K
(0)
△

∑

i

σ2
i (20)

K
(0)
nnx Pα2 Pα3 Pα4 Pα5 Pα6

0.304689 0.653(8) 2.387(10) 0.814(8) 1.749(8) 1.21(1)
0.646(4) 2.381(5) 0.807(4) 1.755(4) 1.200(5)
0.647(8) 2.38(1) 0.808(12) 1.747(14) 1.20(1)
0.63(2) 2.37(3) 0.78(3) 1.76(4) 1.22(3)

Exact 0.6478
0.240606 0.507(4) 2.241(5) 0.692(7) 1.74(1) 0.957(7)

0.498(2) 2.236(3) 0.681(3) 1.739(3) 0.946(4)
0.499(8) 2.24(1) 0.68(1) 1.736(14) 0.940(14)
0.500(16) 2.23(3) 0.67(3) 1.75(4) 0.94(2)

Exact 0.5

TABLE IV. Pαβ for the 2D anisotropic Ising model. α in-
dexes rows corresponding to the four renormalized constants:
nnx,nny ,nnn, and �. β = 2 − 6 respectively indexes the
component of the normal vector to CMTS corresponding to
coupling terms nny,nnn,�, nnnnx, and nnnny. β = 1 cor-
responds to the nnx coupling term and Pα1 is always 1 by
definition.

where σ = ±1, 0 and 〈i, j〉 denotes the nearest neigh-

bor pairs. In the coupling space of K
(0)
nn and K

(0)
△ , the

model admits a line of Ising-like continuous phase tran-
sitions, which terminates at a tricritical point. At the
tricritical point, the underlying conformal field theory
(CFT) changes from the Ising CFT with central charge
1
2 to one with central charge 7

10 [21]. Accompanying this
phase transition is a change in the co-dimension of the
even critical manifold, from 1 of the Ising case to 2 of
the tricritical case [15]. We compute the CMTS at the
tricritical point, which has been determined to occur at

K
(0)
nn = 1.642(8) and K

(0)
△ = −3.227(1) both by MCRG

[15] and finite size scaling [22].

The coupling space we consider has six couplings, listed
in Table V. We use n = 5, L = 256 and the b = 2

Coupling
1 σ2

i

2 σiσj , i and j nearest neighbor
3 σiσj , i and j next nearest neighbor
4 σiσjσkσl, i, j, k, l in the smallest plaquette
5 (σiσj)

2, i and j nearest neighbor
6 (σiσj)

2, i and j next nearest neighbor

TABLE V. The couplings used in the computation of CMTS
for the 2D tricritical Ising model.

majority-rule. The normal vectors to the CMTS are com-
puted using the first five renormalized couplings, as the
statistical uncertainty of the sixth renormalized coupling
is too large. The result is again represented by Pαβ and
shown in Table VI. As can be seen, the rows of P are
not equal within statistical uncertainty, indicating that
the co-dimension is higher than one. To verify that the
co-dimension is two, one can check whether the row vec-
tors for α = 3− 5 are in the vector space spanned by the
first two row vectors. Let un be the nth row vector of P .
If the hypothesis of co-dimension two were correct, one
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α Pα2 Pα3 Pα4 Pα5 Pα6

1 2.085(2) 2.100(5) 0.928(1) 2.079(1) 2.073(2)
2 2.200(2) 2.271(3) 1.046(2) 2.190(2) 2.232(2)
3 2.171(1) 2.2285(2) 1.0160(5) 2.163(1) 2.193(1)
4 2.214(1) 2.283(1) 1.04(1) 2.20(1) 2.24(1)
5 2.038(4) 2.03(1) 0.873(2) 2.03(1) 2.00(1)

TABLE VI. Pαβ for the 2D tricritical Ising model. α indexes
rows corresponding to the first five renormalized couplings
listed in Table V, which also gives the couplings for β = 2−6.

could write:

u3 = au1 + bu2 (21)

and find a and b from the first two components of the
vectors u1,u2, and u3. We could then check that the
remaining components of u3 satisfy the linear relation in
Eq. 21 with the so found a and b. A similar check can be
carried out for the vectors u4 and u5. The vectors u3,u4,
and u5 calculated in this way are reported in Table VII.
As we can see, the Pαβ for α = 3 − 5 and β = 2 − 6

α Pα2 Pα3 Pα4 Pα5 Pα6

3 2.171 2.230 1.019 2.163 2.194
4 2.214 2.284 1.047 2.204 2.245
5 2.038 2.026 0.872 2.033 2.004

TABLE VII. au1+bu2 computed from Table VI for α = 3−5
and β = 2− 6.

in Table VII are equal within statistical uncertainty to
the corresponding elements in Table VI, consistent with
a co-dimension equal to two at the tricritical point.

IV. CURVATURE OF THE CRITICAL

MANIFOLD

Next, we compute the curvature of the critical mani-
fold, using the isotropic Ising model as an example. For a

change {δK
(0)
β } in the original coupling constants, we ex-

pand the corresponding change in the renormalized con-
stants to quadratic order:

δK(n)
α =

∑

β

A
(n,0)
αβ δK

(0)
β +

1

2

∑

βη

B
(n,0)
αβη δK

(0)
β δK(0)

η (22)

where A
(n,0)
αβ and B

(n,0)
αβη can be determined by substitut-

ing Eq. 22 in Eq. 11 and enforcing equality to second

order in δK
(0)
α . A

(n,0)
αβ is already given in Eq. 13. The

result for B is that for given β and η, for every γ, one

requires

∑

α

〈〈Sγ(µ), Sα(µ)〉〉V B
(n,0)
αβη = 〈〈Sγ(µ), Sβ(σ)Sη(σ)〉〉V

+
∑

αν

AαβAνη〈〈Sγ(µ), Sα(µ)Sν(µ)〉〉V

− 2
∑

α

Aαη〈〈Sγ(µ), Sβ(σ)Sα(µ)〉〉V

(23)

where the connected correlation functions are again sam-
pled in the biased ensemble 〈·〉V . Note that Bαβη given
above is not symmetric in β and η. In order for it to be
interpreted as a second-order derivative, it needs to be
symmetrized:

∂2K
(n)
α

∂K
(0)
β ∂K

(0)
η

=
1

2

(

B
(n,0)
αβη + B

(n,0)
αηβ

)

(24)

In the coupling space of any pair β and η: {K
(0)
β ,K

(0)
η },

the critical manifold of the 2D isotropic Ising model is a
curve, and the curvature κβη of the critical curve can be
computed from the curvature formula [23] of the implicit
curve

K(n)
α (K

(0)
β ,K(0)

η ) = constant (25)

with the second-order derivatives given in Eq. 24. Again,
this curvature is determined separately by each renormal-
ized constant α. The result is given Table VIII. Here we

K
(0)
nn β

η
nnn � nnnn

0.4407 nn 0.143(8) 0.27(2) 0.21(2)
nnn 0.38(2) 0.341(8)
� 0.20(2)

Exact (nn, nnn) 0.148
0.37 nn 0.18(1) 0.23(1) 0.30(3)

nnn 0.35(2) 0.32(2)
� 0.18(3)

0.228 nn 0.35(2) 0.27(3) 0.49(3)
nnn 0.35(4) 0.29(2)
� 0.20(4)

TABLE VIII. κβη at the same three critical points as in Table

I, calculated from ∂2K
(n)
nn /∂K

(0)
β ∂K

(0)
η . The exact curvature

for β = nn and η = nnn at the Onsager point is also shown
[17].

only quote the result calculated from the nearest neigh-

bor renormalized constants K
(n)
α , α = nn. The curvature

computed from other renormalized constants have statis-
tical uncertainty much larger than the ones in Table VIII.
The difficulty in sampling the curvature, or generally

any higher-order derivatives, compared to the tangent
space, can be seen from Eq. 23. Note that on the left side
of Eq. 23, the connected correlation function 〈〈Sγ , Sα〉〉
is of order N , where N is the system size, but each of the
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terms on the right side is of order N2. Thus, a delicate
and exact cancellation of terms of order N2 must happen
between the terms on the right hand side of Eq. 23 to give
a final result only of order N . The variance due to the
terms on the right hand side, however, will accumulate
and give an uncertainty typical for O(N3) quantities as
each Sα is of orderN . (For the CMTS, the connected cor-
relation functions of interest are also of order N , but the
statistical uncertainties are those typical of O(N2) quan-
tities, as seen in Eq. 13.) In general, as an m-th order
derivative of the critical manifold is computed, the con-
nected correlation functions of interest will always be of
order N , but the correlation functions that need to sam-
pled will be of order Nm+1, giving an exceedingly large
variance. Thus, although in principle arbitrarily high or-
der information about the critical manifold is available by
expanding Eq. 11, in practice only low-order knowledge
on the critical manifold can be obtained with small statis-
tical uncertainty from a simulation near a single critical
point.

V. CONCLUSION

We have presented an MC procedure to obtain the lo-
cal geometrical information on the critical manifold in
the vicinity of a given critical point. The procedure is in
essence a projector Monte Carlo method that is based on
the fact that the irrelevant operators in a system decay
exponentially fast along an RG trajectory. Because of
such decay, the truncated RG Jacobian matrix, A(n,0),
acquires a structure that is asymptotically clearer and
clearer as n increases, i.e. its kernel emerges with co-
dimension equal to the number of relevant operators of
the system. This structure is quite robust. On the one
hand, it is immune from the truncation of the renormal-
ized Hamiltonian. On the other hand, it does not depend

on what biased potential of the coarse-grained variables
is applied to the system.
From the perspective of connected correlation func-

tions between the orignal spins σ and the coarse-grained
spins µ, the aforementioned structure means the follow-
ing. Given any bias potential V (µ) at any critical point,
each local observable Sβ of σ can be viewed as a linear
functional 〈〈 · , Sβ(σ)〉〉 on the space of the local observ-
ables of µ:

〈〈 · , Sβ(σ)〉〉 : Sγ(µ) 7→ 〈〈Sγ(µ), Sβ(σ〉〉V (26)

The presence of the CMTS implies that many distinct
linear functionals are linearly dependent. In fact, by Eq.

13, for any {δK
(0)
β } in the CMTS,

∑

β

〈〈 · , Sβ(σ)〉〉δK
(0)
β = 0 (27)

This poses an infinite number of conditions which the
coarse-graining procedure has to satisfy to generate a
proper RG structure. The majority-rule coarse-graining
considered in our examples seems to do very well in sat-
isfying these conditions. But a question still remains.
Are the conditions satisfied exactly or just approximately
but so closely that any violation is overshadowed by the
statistical uncertainty? In the latter case, which coarse-
graining procedure, preferably with a finite number of
parameters, can satisfy all the conditions in Eq. 27? In
the former case, what is the profound reason why all these
conditions can be satisfied simultaneously?
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