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How does removal of sites by a random walk lead to blockage of percolation? To study this
problem of correlated site percolation, we consider a random walk (RW) of N = uLd steps on a
d-dimensional hypercubic lattice of size Ld (with periodic boundaries). We systematically explore
dependence of the probability Πd(L, u) of percolation (existence of a spanning cluster) of sites not

removed by the RW on L and u. The concentration of unvisited sites decays exponentially with
increasing u, while the visited sites are highly correlated – their correlations decaying with the
distance r as 1/rd−2 (in d > 2). Upon increasing L, the percolation probability Πd(L, u) approaches
a step function, jumping from 1 to 0 when u crosses a percolation threshold uc that is close to 3
for all 3 ≤ d ≤ 6. Within numerical accuracy, the correlation length associated with percolation
diverges with exponents consistent with ν = 2/(d − 2). There is no percolation threshold at the
lower critical dimension of d = 2, with the percolation probability approaching a smooth function
Π2(∞, u) > 0.

PACS numbers: 05.70.Jk 05.40.Fb 68.35.Rh 36.20.Ey

I. INTRODUCTION

In the simplest (Bernoulli) site or bond percolation
problem [1, 2] sites or bonds of a regular d-dimensional
lattice are independently occupied with probability p. For
an infinite system, there is a sharp percolation transition
point pc, such that for p > pc there exists an infinite clus-
ter spanning the system. Close to pc, many geometrical
and physical properties become singular, as expressed by
universal power-law dependencies on |p − pc|. For ex-
ample, the typical linear extension of finite clusters of
connected sites, indicated by the correlation length ξ, di-
verges as ξ ∼ |p− pc|−ν . The universal critical exponent
ν depends only on space dimension d, and is well known
for Bernoulli percolation in all d (see, e.g., Ref. [3]). A
much studied problem in mathematical literature, perco-
lation has also been used to model a variety of physical
systems for the onset of connectivity and flow, e.g. for
current passing through a random resistor network.
An early application of percolation is to gels formed

by random crosslinking of polymers [4]. Gelation has
acquired new interest in the context of reversible accu-
mulations of non-specific biological molecules into liquid
like droplets with important functions as in transcription
regulation [5]. The reverse process of gel degradation is
now also of relevance. In principle, the removal of connec-
tions, rather than their addition, does not qualitatively
change the percolation picture. For example, in the pro-
cess of hydrogel degradation [6–9] connections are severed
mostly uniformly in space, and the measured elastic and
rheological properties [10, 11] resemble the gel formation
process in reverse [12].
While in Bernoulli percolation, the elements are added

or removed randomly and independently, new behavior
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emerges if subsequent events are correlated. An extreme
case is that of explosive percolation when the events are
specifically chosen so as to delay the percolation transi-
tion [13]. A different extreme consists of removing entire
straight lines from the system in each step [14], e.g., by
drilling through a solid sample [15], or by having very
elongated obstacles (fibers) influencing molecular diffu-
sion between cells [16], and also corresponds to a com-
pletely different universality class [15, 17–19]. A variant
of the latter is removal of sites or bonds performed by a
meandering random walk (RW). This models a simplified
version of a degradation process in which a single enzyme,
or possibly a few enzymes, travel through a gel, breaking
the crosslinks they encounter [20, 21]. In an early numer-
ical study of this problem, which they named “random
walk decay,” Banavar et al. [22] considered properties
of the clusters of vacant sites, unvisited by the RW, on
square and cubic lattices. In a later study, Abete et al.

considered percolation of the vacant bonds on a cubic
lattice [23], finding numerically the threshold and several
critical indices of the problem, which they called “pac-
man percolation.”

Independently, the mathematical community has also
studied aspects of the above problem. While physicists
focused on geometry and critical properties of clusters,
primarily in d = 2 and d = 3 dimensions, mathemati-
cians debated the very existence of a percolation thresh-
old. For a random walk of length N to cover a finite
fraction of the M = Ld sites of a hypercubic lattice, the
number of steps N must be proportional to M . The
question of whether percolation of vacant sites stops for
N/M = u larger than a critical uc was addressed in sev-
eral mathematical works; first for d ≥ 7 [24] and later
for d ≥ 3 [25, 26]. In the mathematical literature, this
problem is referred to as “percolation of vacant sites of
interlacement.” Although, the bounds on uc established
in this literature were extremely broad, and in d = 3
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spanned many order of magnitude [27], we shall see that
uc is approximately 3 for 3 ≤ d ≤ 6.
More precisely, in this work we perform a de-

tailed numerical study of site percolation on d-
dimensional hypercubic lattices of linear dimensions L
(0 ≤ {x1, x2, . . . , xd} ≤ L − 1) and volume V =
adM = Ld (with lattice constant a = 1). A RW starts
at an arbitrary initial position on the lattice and per-
forms N = uM = uLd steps, obeying periodic boundary
conditions in all directions, i.e., xi = L coincides with
xi = 0 for i = 1, . . . , d. This scaling of N maintains a
fixed fraction of vacant sites in d ≥ 3. (The case of d = 2
is discussed separately in Section VI.) We then define
a configuration as “spanning” (“percolating”) if a con-
tinuous path of vacant sites exists between boundaries
at xd = 0 and xd = L − 1. Note that while checking
for this percolation condition, boundaries in directions
1, . . . , d − 1 are assumed to be periodic; this is some-
times referred to as “helical boundary conditions” [28].
By considering a large number of realizations for each L
and u, we determine the spanning probability Πd(L, u).
The fraction of vacant sites p is a monotonically decreas-
ing function of u. In d ≥ 3 there is a sharp percolation

threshold uc, such that in the L → ∞ limit the span-
ning probability becomes a step function with Πd = 1 for
u < uc and Πd = 0 for u > uc. (And in terms of p, this
corresponds to a threshold pc.) The relation between u
and p for d ≥ 3 is discussed in detail in Sec. II.
Unlike Bernoulli percolation, the sites removed by a

RW are highly correlated. In Sec. III we demonstrate
that the correlations between vacant sites decay as a
power-law, proportional to 1/rd−2 with their separation
r. Such correlated percolation has been argued to be-
long to a universality class characterized by an expo-
nent ν = 2/(d − 2) for divergence of the correlation
length [29, 30]. We set up to test this behavior in di-
mensions 3 ≤ d ≤ 6. Section IV details our numerical
study of percolation in d = 3, while Sec. V extends the
exploration to d = 4, 5 and 6. There is no percolation
threshold in d = 2, resulting in a smooth limiting func-
tion for spanning probability as demonstrated in Sec. VI.
The limits of this function for very short and very long
walks are discussed in Sec. VII. We conclude in Sec. VIII
with some topics for future investigation.

II. STATISTICS OF SITES NOT VISITED BY A

RANDOM WALK

As a random walker performs N = uLd steps on a fi-
nite hypercubic lattice of volume M = Ld (“box”) with
periodic boundary conditions, the fraction of unvisited or
vacant sites p decreases with increasing u. If instead of
performing an N -step RW, we randomly and indepen-
dently select N of sites on a lattice, the occupied sites
would be random, uncorrelated, with some of them mul-
tiply occupied. More precisely, the fraction of vacant sites
would be p = exp(−u), as indicated by the bottom dash-
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FIG. 1. Semi-logarithmic plot of the probability (fraction) p
of vacant sites as a function of u at d = 3. The dash-dotted
bottom curve corresponds to p = e−u obtained by dropping
uL3 independent sites on a lattice of L3 sites. The topmost
line represents the asymptotic behavior p = exp(−A3u). The
remainder of the curves represent measured values of p as
functions of u for L = 4, 8, . . . , 128 (bottom to top). Data
points are spaced ∆u = 0.05, and each point is an average of
400 configurations.

dotted line in Fig. 1, with their positions uncorrelated as
in usual (Bernoulli) percolation. However, the obvious
correlations in the positions of the random walker gen-
erate a different dependence p(u) as L → ∞, which also
remains non-zero for any finite u.
The fractal dimension of a RW is 2, leading to quali-

tatively different behaviors in d = 2 that are separately
discussed in Sec. VI. The results described in this sec-
tion, as well as in Sec. III, thus pertain only to dimensions
d ≥ 3. While the RW on an infinite hypercubic lattice
does intersect itself, it can be shown rigorously that the
number of distinct visited sites of a long walk of N steps
grows as [31–33]

Ndist = AdN , (1)

with subleading corrections of O(N1/2) in d = 3, and
O(lnN) in d = 4. The corrections do not increase with N
for d ≥ 5, as self-intersections of remote parts of RWs be-
come negligible. The coefficient Ad in Eq. (1) depends on
lattice type and space dimension. It is the inverse of the
mean number Bd of visits of a random walker to its initial
position [34–36] (see also Ch. 3 in Ref. [37]). [Also, the
mean number of RW steps required to visit all sites of a
finite box of size M is BdM lnM [36] (see also Ref. [38]).]
A detailed procedure for calculation of both Ad and sub-
leading corrections for various lattices was outlined by
Montroll and Weiss [32], while an efficient numerical
method can be found in Ref. [39]. The values of these
coefficients for hypercubic lattices are A3 = 0.659 [32],
A4 = 0.807, A5 = 0.865 and A6 = 0.895 [39]. (Here and
thereafter, the accuracy of numbers without error bars is
a single unit of the last digit or better.)
Sites visited by a RW are strongly correlated. In an
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infinite space, an n-step RW explores a volume of ra-
dius r ∼ n1/2 in which, for d ≥ 3, the density of vis-
ited sites will be n/rd ∼ 1/rd−2. Thus, if a particular
lattice site on a hypercubic lattice is visited by a RW,
then the probability of finding another visited site at a
large separation r will be Cd/r

d−2, where the lattice-
and dimension-specific prefactor Cd is of order of unity.
Consider a random variable w(~x) which is 1, if a site at
position ~x has been visited by a RW, and is 0 otherwise.
Probabilities, of RW visiting positions ~x and ~y are cor-
related, such that 〈w(~x)w(~y)〉/〈w(~x)〉 ≈ Cd/|~x − ~y|d−2,
where 〈〉 denotes an average over realizations of RWs.
To examine the problem on a finite hypercube with

periodic boundary conditions, we first create a RW on
an infinite lattice, then tile the space with boxes (hy-
percubes) of size M = Ld. The boxes are then cut out
and superposed; a procedure that we refer to as “fold-
ing.” For d ≥ 3, and for finite u = O(1) and large L, the
walk on an infinite lattice will have typical size (end-to-
end distance) ∼ Ld/2 ≫ L. In an infinite space most of
the boxes will be empty, and the RW will visit of order
Ld−2 distinct boxes. In the ith visited cube there will
be ni distinct visited sites, and ni will be of order L2.
Thus, the fraction of unvisited (vacant) sites in a cube is
pi = 1 − ni/L

d ≃ exp(−ni/L
d), as ni/L

d ∼ 1/Ld−2 is
very small. The “folding” process from infinite space into
a single periodic box effectively removes correlations be-
tween far away boxes, and we can treat the configurations
arising from superposition of distinct boxes as uncorre-
lated. Therefore, the probability that a particular point
in the periodic box has not been visited is

p =
∏

i

pi = exp

(

−
∑

i

ni

Ld

)

= exp

(

−Ndist

Ld

)

= exp(−Adu) . (2)

This asymptotic (very large L) result has been rigorously
proven in Ref. [36].
In numerical simulations with moderate values of L

(∼10–100), the finite-N corrections to Eq. 1 are notice-
able, especially in d = 3 where there is a non-negligible
probability for a RW that exited a box (on the infinite
lattice) to return to it. Yet correlations of occupied sites
even in adjacent boxes do not exceed Cd/L

d−2, and are
much smaller for non-adjacent boxes (which are the ma-
jority). Thus, in the “folding” process we superimpose
practically independent configurations. Also, the frac-
tion of visited sites ni/L

d ∼ 1/Ld−2 is still significantly
smaller than 1. The deviations from Eq. (2) for mod-
erate L can be corrected for by replacing Ad with an
effective Ad(L). We examined numerically the functions
p(u) in d = 3, 4, 5 and 6, and in all cases the results for
various L could be fitted extremely well by a pure expo-
nential p = exp[−Ad(L)u]. For d = 3 we checked such
dependence for L = 4,8,. . . ,128. The results presented
in Fig. 1 fit pure exponentials at the accuracy level of
χ2 ∼ 10−7. The slopes on the semilogrithmic plots de-
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FIG. 2. Semilogarithmic plot of the fraction p of unvisited
sites as a function of parameter u controlling the length of
the random walk in d = 4, for L = 4, 8, 16 and 32 (bottom
to top). Data points are spaced ∆u = 0.05, and each point is
obtained from 104 configurations.

pend on L but converge very fast to the known value of
A3 indicated by the top line on Fig. 1. Of course, both
this and the following statements, about “purely expo-
nential behavior,” should not be taken in a strict math-
ematical sense: We know, that for a finite periodic box
of size M , a walk of BdM lnM steps will “completely
occupy” the box. So, in d = 3 and L = 128, this will
occur for u > B3 ln 128

3 ≈ 22, far beyond the limits of
applicability of the above discussion.

In d ≥ 4 the distant parts of RW rarely intersect and
therefore Ad(L) converges very fast to its asymptotic
value Ad. As an example, in Fig. 2 we show the d = 4
case, where for lattices of sizes L = 4, 8, 16 and 32 we
generate 104 configurations per data point to measure
the relation between u controlling the chain length and
the fraction of unvisited sites p. As before, all curves
are straight on semi-log scale, i.e., p is an exponentially
decaying function of u. The rate of that decay quickly
converges to a constant, leading to p = exp(−A4u) for
large L. We repeated these calculations also for d = 5
and d = 6. There was practically no L-dependence of
Ad(L) and the coefficients reached their asymptotic val-
ues already for small L.

III. CORRELATED PERCOLATION

To quantify the correlations between sites visited by
the RW following the “folding” from infinite space, let us
examine the two-point correlation function 〈w(~x)w(~y)〉.
We argued previously that the RW segments from dis-
tinct boxes are almost uncorrelated, after being “folded”
into the single box with periodic boundary conditions.
A randomly selected site ~x in the periodic system has
a probability 〈w(~x)〉 = 1 − p = 1 − exp(−Adu) of be-
ing occupied. This point may have been visited a few
times either by the same RW segment, or by RW seg-
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ments belonging to distinct boxes before “folding.” Ei-
ther way, the probabilities of finding a site at position ~y
that has been visited by the segment of RW in the same

box (before “folding”), is given by Cd/|~x−~y|d−2, modified
by the number of distinct boxes to which the segments
belonged before “folding.” Thus, the correlated part of
〈w(~x)w(~y)〉 will decay as 1/|~x− ~y|d−2, as long as |~x− ~y|
is significantly smaller than the box size L. Of course,
the chances that position ~y also has been visited is domi-
nated by segments of RW that belong to other boxes be-
fore the “folding.” This constant background part must
be subtracted when measuring the cumulant, leading to
〈w(~x)w(~y)〉c = F (u)/|~x− ~y|d−2, where F (u) is a smooth
function of order unity for u = O(1). (In d = 3, an
equivalent argument can be found in Ref. [21].)
Since we are interested in the properties of vacant

sites, we define a related variable v(~x) = 1 − w(~x), with
〈v(~x)〉 ≡ p. Products of these variables at distinct posi-
tions have the property 〈v(~x)[v(~y) +w(~y)]〉 = 〈v(~x)〉 = p
and 〈w(~x)[v(~y) + w(~y)]〉 = 〈w(~x)〉 = 1 − p. Since our
system is translationally invariant and symmetric under
inversion, we have 〈v(~x)w(~y)〉 = 〈w(~x)v(~y)〉. Thus, by
subtracting the two previous equalities from each other,
we find 〈v(~x)v(~y)〉 = 〈w(~x)w(~y)〉+2p− 1. Consequently,
the vacant sites exhibit the same decay of cumulants as
visited sites, i.e.

〈v(~x)v(~y)〉c ∼ 1/|~x− ~y|d−2. (3)

The two-point correlation function captures only one
aspect of the interesting information about the system.
The RW in a periodic box has the distinct property of
being a single cluster (noting periodic boundary condi-
tions). While vacant sites can form many clusters, they
tend to aggregate into one large cluster. The unusual
properties of both small and “infinite” clusters have been
studied by several authors [22, 23, 40–42].
In ‘usual’ (Bernoulli) percolation there are no correla-

tions between occupied sites or bonds. This problem has
a lower critical dimension of d = 1, where pc = 1, and
an upper critical dimension of dc = 6 [43], above which
mean-field behavior is expected; e.g. with the correlation
length diverging with exponent νB = 1/2. Weinrib an-
alyzed stability of the Bernoulli percolation universality
class to correlations [30] (following a similar treatment
for critical phase transitions [29]). By appealing to a
generalized Harris criterion [44], he demonstrated that
short range correlations, as well as power-law correla-
tions decaying as 1/ra with a > d, do not modify the
universality class of Bernoulli percolation. However, for
a < d, the relevance of the correlations is determined by
the extended Harris criterion [29]: If aνB − 2 < 0, then
the correlations are relevant. Equation (3) shows that
vacant sites have a power law correlation with a = d− 2.
The quantity (d − 2)νB − 2 is -1.12, -0.62, -0.29 and 0,
for d = 3, 4, 5 and 6, respectively [3]. This expression
becomes positive, for d ≥ 7.
Percolation with long-range correlations is a well-

researched subject [45]. (For a more recent study see

Ref. [46].) In most physical contexts, correlations are
generated by thermodynamic systems such a critical Ising
model. It has been shown [29, 30] that, for power-law cor-
relations, the exponent characterizing divergence of the
correlation length equals ν = 2/a, which in our case is

ν = 2/(d− 2), for 3 ≤ d ≤ 6. (4)

Abete et al. [23] studied percolation of vacant bonds on
lattices of up to 603 and found ν = 1.8± 0.1, consistent
with ν = 2 expected from Eq. 4. In this work we consider
site percolation on large lattices, and confirm Eq. 4 in
d = 3, 4 and 5. In d = dc = 6 power-law correlations
∼ 1/r4 represent amarginal perturbation, and both Eq. 4
and standard Bernoulli percolation lead to ν = 1/2.
In a system of infinite size the spanning probability

is a step function, jumping between 1 and 0 as the per-
colation threshold is crossed. However, for finite L it
exhibits a smooth crossover between these values. It
has been shown for Bernoulli percolation [47–50] that
for large L the value of spanning probability Πd,B(L, p)
at p = pc reaches a universal value independent of mi-

croscopic lattice details, or the consideration of bond or
site percolation. Thus, the critical spanning probability

Πc
d,B ≡ limL→∞ Πd,B(L, pc) is a universal number char-

acterizing a percolation universality class. For exam-
ple, Πc

2,B = 1/2 in two-dimensional Bernoulli site and
bond percolation with free boundary conditions. How-
ever, the value of the spanning probability for finite L,
and consequently its universal limit of Πc

d,B, does de-
pend on the macroscopic definition of spanning: such
as requiring spanning in several directions simultane-
ously, or using periodic versus free boundary conditions.
Such dependence on macroscopic definitions has been
observed by several authors [28, 51–53]. The value of
Πc thus may serve as an extra indicator of differences
between universality classes. In the problem of perco-
lation of vacant sites of a RW, we can similarly define
Πc

d ≡ limL→∞ Πd(L, u = uc) characterizing this type of
percolation.

IV. PERCOLATION IN d = 3

In d = 3 we considered site percolation along the x3

direction for cubic lattice sizes L = 4, 8, 16, . . . , 512. For
every L and u we generated many realizations of RWs of
N = uL3 steps. Spanning probability Π3(L, u) was calcu-
lated by averaging 104 realizations for each u for L ≤ 64,
and 4000 configurations for each u for L ≥ 128. The
limiting factor in the computations was the large lattice
size, and correspondingly long walks reachingN = 5·105,
necessitating long times required to process each configu-
ration. (The previous study by Abete et al. [23] reached
lattice sizes L = 60 and considered bond percolation.)
Figure 3 depicts the spanning probability as a function
of u. As expected, the transition becomes sharper with
increasing L. The curves also exhibit a very strong drift
towards larger values of u with increasing L.
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FIG. 3. Percolation (spanning) probability Π3 of vacant
sites on a cubic lattice in d = 3 as a function of u for
L = 4, 8, . . . , 512 (left to right).

There are several methods to determine the critical
value uc for percolation. The low accuracy of the results
prevents us from using points u = u∗ of maximal slope
of Πd(L, u) as estimates of uc. However, we can examine
the L-dependence of values u∗ for which Πd(L, u∗) = c.
Independently of the choice of c, we expect limL→∞ u∗ =
uc. Moreover, for large L, we expect

|u∗ − uc| ∼ L−1/ν . (5)

For d = 3, Fig. 4 depicts the dependence of successive
estimates of uc on L−1/2, as suggested by Eq. (5) with
anticipated ν ≈ 2. (Note that for small L, the estimates
of uc do not follow the asymptotic form of Eq. (5), and
are sometimes even non-monotonic functions of L.) All
four lines extrapolate to uc = 3.15± 0.01.
An additional set of estimates (open circles) is obtained

by looking at points of intersection u∗ of two sequen-
tial curves of Πd: E.g., for L1 and L2 we may look for
Πd(L1, u∗) = Πd(L2, u∗) and study the resulting u∗ as a
function of (L1L2)

−1/2ν . For d = 3, when L1 = L, then
L2 = 2L. This sequence of estimates leads to the same
uc. This uc corresponds to pc = 0.125± 0.001, which is
rather close to the threshold of pc = 0.139± 0.001 found
for bond percolation in Ref. [23]. The fact that the site
percolation threshold found in our work is smaller than
the bond percolation threshold of Ref. [23] is somewhat
surprising.
By following the value of Π3(L, u∗), at points u∗ where

curves Π3(L, u) for successive L intersect, we estimate
the critical spanning probability Πc

3 = 0.04± 0.01. This
value is slightly larger than Πc

3 ≈ 0.032 found by Abete et
al. [23] in bond percolation; both are significantly smaller
than the analogous number 0.513 [28] in Bernoulli per-
colation.
Close to the percolation threshold, the correlation

length ξ diverges as |u − uc|−ν . For finite system size
L, as long as L > ξ the percolation probability resembles
that of an infinite system, i.e., Πd(L, u) ≈ 1 or ≈ 0, for
u < uc or u > uc, respectively. For ξ & L the value
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FIG. 4. Successive estimates u∗ of the percolation threshold
uc, as a function of 1/

√
L for L = 4, 8, . . . , 512 (full circles and

solid lines). Different curves provide the estimates obtained
from numerical values of u∗ for which the percolation proba-
bility is Π3(L, u∗) = 0.5, 0.1, 0.03 or 0.015 (bottom to top).
An additional estimate of uc (open circles and dotted line) is
obtained from intersection of the spanning curve for a par-
ticular L with the corresponding curve for 2L; the resulting
values are plotted as a function of 1/

√
Leff ≡ 1/(21/4

√
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FIG. 5. Logarithmic plot of the inverse width of the perco-
lation transition (in terms of the variable u) as a function of
L. 1/∆u is measured from the maximal slope of the curves in
Fig. 3. In theses coordinates, it occurs approximately where
the percolation probability is 1/2.

of Πd(L, u) decreases from close to 1 to near 0 as u in-
creases. Therefore, the transition region approximately
appears when b|u − uc|−ν > L, where b is a numerical
prefactor. Thus, the width of the transition region scales
as ∆u ≈ (L/b)−1/ν . Since Πd changes between 1 and 0
in the transition region, we expect the absolute value of
the slope in that region to be ≈ 1/∆u, or

slope ≈ (L/b)1/ν. (6)

(Here and thereafter we disregard the negative sign of
the slope.)
In d = 3 we measured the absolute value of the max-

imal slope of the curves in Fig. 3 for each L, and the
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FIG. 6. Spanning probabilities for (a) d = 4, and (b) d = 5. The transitions become steeper with increasing L. Each data point
for large L is an average over 4000 samples. For smaller L (≤ 8 in (a), and ≤ 16 in (b)) 104 configurations were generated.

results are presented in Fig. 5. According to Eq. (6), the
slope of this relation on a logarithmic plot should be 1/ν.
We observe a slow and noisy increase of the slope with
increasing L. The inverse of the extrapolated slope pro-
duces an estimate of ν = 2.04± 0.08 that is larger than
ν = 1.8± 0.1 that was found on significantly smaller sys-
tems in Ref. [23], and agrees well with the value ν = 2
predicted by Eq. (4). Instead of using the largest slopes
for each L, we could have concentrated on significantly
smaller slopes of the curves at u = uc. Such an approach
may provide a useful estimate of possible systematic er-
rors. However, our data are too noisy and inaccurate in
this area to produce reliable results.

V. PERCOLATION IN d = 4, 5, AND 6

In higher dimensions d, we followed a similar strategy
to the one described in the previous section. For d = 4
and 5, we generated RWs of N = uLd steps starting from
L = 4 and then doubling L until L = 64 for d = 4, or
L = 32 for d = 5. (With increased d, we had to limit
the maximal size L.) For each L, from repeated tests of
spanning along xd, we determined Πd(L, u). Results of
these measurements are depicted in Fig. 6.

The “drift” of the curves to the right in d = 4, and
especially in d = 5, is significantly smaller than in d = 3,
allowing a rather accurate determination of the percola-
tion threshold. In d = 4 we find uc = 2.99± 0.01, which
corresponds to occupation fraction pc = 0.0898± 0.0007
of unvisited sites. This value is roughly half of the perco-
lation threshold of 0.197 for regular (Bernoulli) site per-
colation on a hypercubic lattice in d = 4 [54]. In d = 5
we estimate uc = 3.025±0.008, which corresponds to the
critical fraction of vacant sites pc = 0.0730±0.0006. This
result is again about half of the percolation threshold of
0.141 for Bernoulli site percolation on a hypercubic lat-
tice in d = 5 [3]. It is difficult to determine the critical

spanning probability Πc
d with any accuracy. However,

by following the values of the intersections of Πd(L, u)
curves with sequential values of L, we estimate that Πc

4

is between 0.1 and 0.2, while Πc
5 is about 0.4.

We next estimate values for the critical exponent ν
from the dependence of slope on L near the transition
point. In d = 4, we were able to measure accurately
both the maximal slope and the slope at the estimated
uc. Differences between these two methods provide us
with an estimate of the possible systematic error. We find
that ν = 1.0±0.1, which agrees with ν = 1 expected from
Eq. (4), and is very different from the Bernoulli value of
νB = 0.685 [3]. In d = 5 the largest slope practically
coincides with the slope at uc (except for L = 4). We
detect a slight dependence of the effective exponent νeff
on L, and the extrapolated value is ν = 0.65±0.03, where
the error bars reflect the uncertainty in the extrapolation
procedure. This agrees excellently with ν = 2/3 expected
from Eq. (4), and differs from the regular (Bernoulli)
percolation exponent of νB = 0.57 [3].

In d = 6, we generated random walks of length uL6

for L = 4, 6, 8, 11, and 16. This required dealing with
lattice sizes M ≈ 1.7 · 107 and RWs reaching 6 · 107
steps. Figure 7 depicts the spanning probability Π6(L, u)
as a function of u for several values of L. The maximal
rate of decrease of all the curves is close to the point
where Π ∼ 1/2, or slightly higher. There is almost no
drift in the curves with increasing L, and we estimate
uc = 3.10±0.05, which corresponds to critical fraction of
vacant sites pc = 0.062±0.003. The latter is significantly
smaller than the threshold 0.109 for Bernoulli site perco-
lation [3]. The intersection points between Π6(L, u) for
successive L drift strongly upwards, leading to a rather
large estimate of Πc

6 ∼ 0.9 for the critical spanning prob-
ability. Since d = dc = 6 is the common upper critical
dimension [43], both the regular percolation theory and
Eq. (4) posit ν = 1/2. Unfortunately, the maximal lat-
tice size of L = 16 computationally available to us, is
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FIG. 7. Spanning probability Π6, for d = 6, as a function of
u, for L = 4, 6, 8, 11, and 16 (from gradual to steep decrease).
For L = 4 each data point corresponds to 104 configurations,
while for L ≥ 6, 4,000 configurations were sampled.

too small to determine ν with any degree of accuracy. In
addition to the obvious limitations of small-L, we note
that at dc there are logarithmic corrections in cluster size
distributions [55, 56] that further complicate detection of
the trends. A straightforward power-law fit in the range
4 ≤ L ≤ 16 produces νeff ≈ 0.6. Due to the above men-
tioned limitations, we believe that our numerical result
does not contradict the expected value of ν = 1/2.

VI. SPANNING PROBABILITY IN d = 2

The behavior of a two-dimensional RW of N = uL2

steps on the L×L square lattice is quite different from the
higher dimensions discussed previously. For u = O(1),
the root mean-squared end-to-end distance of a walk is
of the order of the linear size L, rendering the imagery of
multiple “foldings” of a much longer RW in Sec. II inap-
plicable. As in higher dimensions, we will test for span-
ning along the x2 direction, while assuming periodicity
in the x1 direction. Clearly, for u ≪ 1 a typical walk
is simply too short to block percolation of vacant sites
along x2, while for u ≫ 1 a single “circumnavigation” of
the walk in x1 direction will almost certainly block the
percolation in x2 direction. In earlier work, Banavar et

al. [22] studied properties of clusters of vacant sites in a
system of this type. They were primarily interested in
the fractal and fracton dimensions in the regime where
the RW covers a finite fraction of a lattice, i.e., for u of
order of unity.
Since the fractal dimension of a RW is 2, it is not sur-

prising that its behavior in d = 2 exhibits important dif-
ferences from higher dimensions. For example, the num-
ber of distinct sites visited by an N -step walk in d = 2 on
an infinite lattice is modified from Eq. (1) to the leading
order as [31, 32, 57, 58]

Ndist = A2N, with A2 = π/ lnN. (7)

0 1 2 3 4 5 6
u

0.01

0.1

1

p

L  =  4
L  =  8
L = 16
L = 32
L = 64
L=128
L=512

FIG. 8. Semilogarithmic plot of the fraction of unvisited sites
p versus u, for 4, 8, . . . , 512 (bottom to top) at d = 2. All
graphs can be well fitted by p = exp[−A(L)u], where the
prefactor A(L) (slope on this semilogarithmic graph), which
depends on L, does not saturate to a finite value for L → ∞.

Correspondingly, the number of visits of a random walker
to its initial position increases logarithmically with N ,
namely B2 = (lnN)/π, as opposed to a constant Bd for
d > 2. Similarly, the number of steps required to visit all
sites on a lattice of M sites is ∼ M ln2 M , i.e. with an
extra logarithm compared to higher dimensions. Thus,
when considering RWs of N = uL2 steps on a square
lattice of M = L2 sites, with u = O(1), the density of oc-
cupied sites actually vanishes in the limit L → ∞. This
again justifies arguments used in Sec. II to demonstrate
that, even for moderate L, there is a pure exponential
dependence of the fraction of vacant sites p on the pa-
rameter u.
The results of our numerical study of the dependence

of p on u are presented in Fig. 8. We performed simu-
lations for L = 4, 8, 16, . . . , 512. All curves are well ap-
proximated by a pure exponential, and appear as straight
lines on the semi-logarithmic plots in Fig. 8. Steps vis-
ible for L = 4 (and, to lesser extent, on L = 8) are a
consequence of N being an integer, requiring downwards
truncation to integer of uL2 = 16u (or 64u). The appar-
ent slope A(L) in Fig. 8 keeps decreasing with increasing
L. In fact, even the product A(L) lnL has some residual
dependence on L, but approaches π/2 for large L. We
verified this convergence to 5 digit accuracy. (The ex-
tra factor of 2 is due to the fact that to leading order
lnN = ln(uL2) ≈ 2 lnL.) Thus for large L

p = exp
(

− πu

2 lnL

)

. (8)

In the asymptotic limit of large L, this result has been
proven in Ref. [59]. The choice of u over p as the control
parameter is inconsequential in higher dimensions where
the two quantities are related by a fixed function. In
d = 2, the relation between p and u in Eq. 8 depends on
L, and using u creates a somewhat different perspective.
Figure 9 depicts numerically calculated accurate values

of Π2(L, u) obtained using large statistics (105 samples
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FIG. 9. Spanning probability Π2(L, u) on an L × L lattice
for random walks of length N = uL2, for L = 4, 8, . . . , 512
(bottom-left to top-right). Each point is an average of 105

configurations, and the points are separated by ∆u = 0.05.

per data point). We studied the spanning probability
on a square lattice for L = 4, 8, 16, . . . , 512; the limiting
factor for the largest L was the need to evaluate Π2(L, u)
with high accuracy. As before, the steps seen on the
graph for L = 4 are a result of truncating uL2 = 16u
to integer N . We immediately note that there is no sign
of Π2(L, u) becoming a step function with increasing L:
the two-dimensional problem does not have a non-trivial
percolation threshold. On the other hand, we clearly see
that for large L, the spanning probability approaches a
smooth function: limL→∞ Π2(L, u) = Π2(∞, u).

It can be argued that the existence of a finite Π2(∞, u)
is a consequence of the reduced role of lattice spacing in
d = 2. For d ≥ 3 the discreteness of the lattice plays a
crucial role: For percolation in the xd direction, a RW
that is a 1-dimensional path must completely block pas-
sage between boundaries at xd = 0 and xd = L − 1.
As this can only be achieved by creating a (d − 1)-
dimensional continuous surface separating the space into
disconnected parts, the RW path must either be on a
lattice, or endowed with some thickness a to block a fi-
nite volume. By contrast in d = 2, percolation say in
the vertical direction, can be blocked by a path crossing
the system horizontally, which can be accomplished by
a RW of zero thickness, as long as it acquires an exten-
sion R ∼ aN1/2, comparable to the system dimension
aL. The corresponding ratio (R/L)2 is proportional to
u and independent of a, would then determine the finite
probability Π2(∞, u)

Since, the relation between p and u depends on L, as
in Eq. (8), re-expressing Π2(∞, u) as a function of p leads
to a function that depends on L. As depicted in Fig. 10,
with increasing L the corresponding Π2(L, p) shift to-
wards p = 1. Thus p = 1 serves as a trivial percolation
threshold in d = 2.

0 0.5 1
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0.6

0.8
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4

L=10
6

L=10
9

FIG. 10. Semi-quantitative representation of Π2 as a function
of p for several large values of L (L = 512, 104, 106, and 109,
left-to-right). This simulated data was built from actual data
for L = 512, while the remainder was derived by using Eq. (8).

VII. VERY SHORT AND LONG WALKS IN d = 2

A. Limit of small u

For u ≪ 1, the typical linear size of a RW, such as
its end-to-end distance, is

√
uL. Since this is shorter

than the linear size, L, of the lattice, a typical RW can-
not block percolation in the vertical (x2) direction, and
Π2 ≈ 1. The only reason for deviation of Π2 from 1
is due to rare configurations that, stretching far beyond
the typical end-to-end distance, circumnavigate the pe-
riodic box in the horizontal (x1) direction, with end seg-
ments intersecting the starting segments, to completely
block percolation in the vertical direction. For example,
at u = 0.1 the probability of absence of percolation is
about one part per 105, and Fig. 11 depicts one such rare
event. Since such an event requires a RW of r.m.s. length
√

u/2L in the horizontal direction, to be stretched by at
least L in that direction, a lower bound for the proba-
bility of getting a non-percolating configuration can be
obtained by integrating the Gaussian probability distri-
bution of the end-to-end distance from L to infinity. The
resulting integral can be expressed in terms of the error
function, as

Π2 ≈ Erf(1/
√
u). (9)

This is just an estimate, since besides circumnavigat-
ing the periodic cell horizontally, the RW must also self-
intersect. Since for u ≪ 1 non-percolating configurations
are rare, we sampled 106 configurations for each data
point for small u with L = 512. Below u = 0.1 we could
not find non-percolating configurations. However, in the
range 0.1 ≤ u ≤ 0.3 we got rather accurate values of
Π2(512, u) that fit quite well to Erf(1/

√
u), as expected

in Eq. 9.
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FIG. 11. An extremely rare event for which the vacant sites
do not percolate in the vertical direction in a 64 × 64 lattice
for a 409-step random walk (u = 0.1).

B. Limit of large u

It is interesting to view the results of Fig. 9 on a
semilogarithmic scale, as depicted in Fig. 12. Since each
data point was obtained by averaging 105 random config-
urations, the statistical errors exceed 10% for Π2 below
10−3, and exceed 30% for Π2 below 10−4 (comprising all
fluctuations in the bottom right corner of the figure). We
note that for u > 3, the spanning probability for Π2 ≪ 1
seems to decay exponentially (while maintaining some
residual dependence on L). To understand this behavior
of the spanning probability, we take a closer look at the
shapes of percolating configurations. Figure 13 depicts
four such examples, for different values of u, with the
black squares indicating sites visited by the RW, while
the white area corresponds to vacant sites. By construc-
tion, the black sites always form a single cluster, while
the vacant sites can be split into many clusters. We no-
tice that most of the vacant sites also form a single large
cluster. For u = 1, vacant sites percolate most of the
time, and Fig. 13(a) represents a “typical” configuration.
For u = 4, 6 and 8, the percolating configurations are
exceptional (dropping to below 10−6 for u = 8). As u
increases, the rare percolating clusters start to resem-
ble narrow white bands connecting the top and bottom
boundaries, and the probability of such a rare configura-
tion is estimated next.

Consider a two-dimensional RW of length N = uL2 on
a square L×L lattice with periodic boundary conditions.
The probability distribution of the end point can be es-
timated from the diffusion equation ∂P/∂N = D∇2P ,
with diffusion constant D = a2/4, where a = 1 is
the lattice spacing. Consider an extreme configuration
where the percolating cluster of unvisited sites is a sin-
gle straight line in the vertical direction. The allowed
configurations of RW in that case are those that can
fit between two vertical lines separated by distance L.

0 1 2 3 4 5 6
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L = 16
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L = 64
L=128
L=256
L=512

FIG. 12. Same data as in Fig. 9 on a semilogarithmic plot.
The dashed line corresponds to exp(−π2u/4) (see text).

The total number of N -step RWs is 4N . The frac-
tion of configurations that fit within a strip of width
L can be found by solving the diffusion equation with
absorbing boundary conditions. The diffusion equation
can be separated into two independent parts: one for
the vertical direction which imposes no limits on the
walker, and one for the horizontal component with ab-
sorbing boundary conditions. With the horizontal co-
ordinate denoted by x, the normalized eigenstates are
Ψn(x, t) =

√

2/L sin(πnx/L) exp(−Dn2π2N/L2). For
large u, and hence N = uL2, the solution is dominated
by the term with n = 1, leading to the probability

P (x0|x, t) =
2

L
sin
(πx0

L

)

sin
(πx

L

)

exp(−Dπ2N/L2),

to find a random walker that started at x0 and arrived at
x. To obtain the total survival probability, we need to in-
tegrate over x and to average over the starting point x0.
(The vertical direction is completely free and does not
affect the probability.) The final result is the ‘survival
probability’ of G ∝ exp(−Dπ2N/L2) ∝ exp(−π2u/4).
(We omitted the numerical prefactor of this expression.)
Note, that our answer does not depend on L, and G ∼
exp(−π2u/4) provides a lower bound for Π2 at large u.
This result clearly underestimates Π2(L, u), as the per-
colating channel does not have to be a straight line; it
can be undulating or inclined. We anticipate that these
factors will modify the prefactor for G, but leave un-
changed the leading exponential part that is depicted
by the dashed line in Fig. 12. It clearly underestimates
Π2 by several orders of magnitude, but its slope (on the
semilogarithmic plot) is close to the behavior of the nu-
merical results for large u.

VIII. DISCUSSION

In this work we studied percolation of sites unvisited by
RWs on a periodic lattice. We extended previous results
by looking at larger lattice sizes in d = 3, and by consid-
ering all dimensions 2 ≤ d ≤ 6. Our primary goal was to
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(a) u = 1 (b) u = 4

(c) u = 6 (d) u = 8

FIG. 13. Examples of configurations on 64× 64 lattice, where (white) sites unvisited by the random walk span the system in
the vertical direction.

find the dimensionality dependence of such characteris-
tics as the percolation threshold uc,the critical exponent
ν, and the critical spanning probability Πc

d. While our
results agree well with the general theory of correlated
percolation, much remains unknown. We concentrated
on a single critical exponent ν, and did not attempt to
calculate additional critical exponents, e.g. describing
cluster sizes and fractal dimensions, which may provide
an interesting direction for further study. The RW cre-

ates rather unique constraints on cluster structure that
may lead to interesting results not only for d ≤ 6, but
also in higher dimensions when the critical behavior is
mean-field like.

The original impetus for the study of this type of per-
colation came from degradation of a gel. Percolation in
such a gel is accompanied by dramatic changes in physical
properties such as elasticity. However, theoretical studies
(with the exception of Ref. [22]) have so far concentrated
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on purely geometrical quantities. Thus it would be in-
teresting to extend the theoretical investigation of such
correlated percolation to conductivity and diffusion.
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[58] P. Erdős and S. J. Taylor, Acta Math. Acad. Sci. Hung.
11, 137 (1960).

[59] M. J. A. M. Brummelhuis and H. J. Hilhorst, Physica A
185, 35 (1992).


