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We study and characterize local density fluctuations of ordered and disordered hyperuniform point
distributions on spherical surfaces. In spite of the extensive literature on disordered hyperuniform
systems in Euclidean geometries, to date few works have dealt with the problem of hyperuniformity
in curved spaces. Indeed, some systems that display disordered hyperuniformity, like the space
distribution of photoreceptors in avian retina, actually occur on curved surfaces. Here we will focus
on the local particle number variance and its dependence on the size of the sampling window (which
we take to be a spherical cap) for regular and uniform point distributions, as well as for equilibrium
configurations of fluid particles interacting through Lennard-Jones, dipole-dipole and charge-charge
potentials. We show that the scaling of the local number variance as a function of the window
size enables one to characterize hyperuniform and nonhyperuniform point patterns also on spherical
surfaces.

I. INTRODUCTION

Since the fundamental work of Torquato and Stillinger
in the early 2000s [1], hyperuniformity has been the fo-
cus of a large collection of works of relevance in the fields
of physics (e.g. jammed packings [2, 3], driven nonequi-
librium granular and colloidal systems [4–6], sedimenting
particle suspensions [7], sand piles and other avalanche
models [8, 9], and dynamical processes in ultracold atoms
[10]), in materials science (photonic band-gap mate-
rials [11–13], dense disordered transparent dispersions
[14], composites with desirable transport, dielectric and
fracture properties [15–18], polymer-grafted nanoparticle
systems [19], and “perfect” glasses [20]), and in biological
systems (photoreceptor mosaics in avian retina [21], and
immune system receptors [22]). The defining characteris-
tic of these hyperuniform systems is the anomalous sup-
pression of density (particle number or volume) variances
at long wavelengths. In Euclidean space this implies that
the structure factor S(Q) ≡ 1 + ρh̃(Q) tends to zero as
the wavenumber Q ≡ |Q| → 0 [1], i.e.,

lim
Q→0

S(Q) = 0. (1)

Here h̃(Q) is the Fourier transform of the total correla-
tion function h(r) = g2(r)−1, g2(r) is the pair correlation
function and ρ is the number density.

Hyperuniformity in most of the systems described
above is a large scale structural property defined in an
Euclidean space [23]. However, generally speaking, one
can also transfer the concept to consider point configu-
rations in non-Euclidean spaces, such as points on the
sphere or torus. A particular case of relevance in this
connection is the avian photoreceptor cells that are dis-
tributed on the retina [21], which is a curved surface.

Obviously, to a first approximation, if the average near-
neighbor distance between the receptors is small com-
pared to the intrinsic curvature of the retina, one can
reduce the problem to that of a particle distribution on
a flat surface. However, this may not necessarily be the
case in all instances and hence curvature effects must be
considered. The extension of the concept of hyperunifor-
mity to sequences of finite point sets on the sphere was
introduced in the very recent works of Brauchart and
coworkers [24, 25], where the problem is addressed from
a formal mathematical perspective and connected to the
more general problem of spherical designs. Point pat-
tern designs on spherical surfaces are key in the develop-
ment of optimal Quasi Monte Carlo (QMC) integration
schemes [26]. These have been extensively used to con-
struct efficient quadratures to evaluate illumination inte-
grals which are essential in the rendering of photorealistic
images [27]. Brauchart and coworkers [24] have shown
that these optimal QMC design sequences are hyperuni-
form. In Ref. [26] it was shown that good candidates to
build QMC spherical designs could be devised from sets
of points minimizing Coulomb or logarithmic (i.e. two-
dimensional Coulomb) pairwise interactions. We will see
here how this finding is reflected by our own results. Very
recently, Božič and Čopar [28] have addressed the prob-
lem of hyperuniformity on the sphere and its connection
with the spherical structure factor.

On the other hand, from a materials science perspec-
tive, the realization of particle designs on curved sur-
faces at the microscopic level, has been experimentally
achieved by means of self-assembly of colloidal particles
on oil/glycerol interfaces [29]. This opens an avenue to
experimentally devise and manipulate hyperuniform sys-
tems on curved surfaces at will. Bearing in mind the
relevance of hyperuniformity for the accurate representa-
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tion of images (both in bird retina [21] and in artificial
image rendering [27]), the potential impact of these ex-
perimental achievements on the design of artificial pho-
toreceptor devices mimicking the acute visual system of
birds is beneficial.

In order to further our understanding of hyperuniform
systems in curved spaces, in this paper we have addressed
the characterization of the local particle number vari-
ances on a collection of point and particle distributions
on spherical surfaces. Our analysis encompasses both
the canonical ensemble setting (fixed number of points)
and the grand canonical ensemble (fluctuating number of
points around some average value). On the other hand,
one can resort to the use of the spherical structure factor
as introduced by Brauchart et al. [24] and Franzini et al.
[30]. In a recently published work, Božič and Čopar [28]
suggest the presence of gaps at low multipole moments in
this quantity as a signature of hyperuniformity. In this
work, and in order to stress the direct connection with the
characteristics of hyperuniformity in Euclidean space, we
will focus on the density/number variances. Obviously,
in the limit of infinite sphere radius with number density
fixed, the properties of the system will approximate those
of the Euclidean case, and Eq. (1) will be again useful as a
signature of hyperuniformity. This large-size connection
between curved and Euclidean geometries was already
exploited by Caillol et al. [31] to remove the effects of
periodic boundary conditions in molecular simulations,
and cope with the long-range of Coulombic interactions
without resorting to the use of Ewald summations or sim-
ilar techniques.

In practice, here we will analyze the scaling of the local
particle number variance defined as

σ2
n(a) = 〈n(a)2〉 − 〈n(a)〉2, (2)

where a denotes the base radius of the sampling spherical
cap. This quantity is directly related to the sampling
surface, s, as illustrated in Fig. 1. Also, in (2) n(a) is the
number of particles contained in the sampling window.
The 〈. . .〉 in Eq. (2) denotes an ensemble average on the
spherical surface, as described in greater detail below.
In practice, in this work we will be dealing with point
distributions composed of finite sets of N points placed
on the surface of a sphere of radius R and total area
A = 4πR2. From the work of Brauchart et al. [24],
we know that for uncorrelated points the local number
variance scales with the surface of the sampling window,
i.e. σ2

n(a) ∼ s(a). In contrast, in hyperuniform systems,
when ρ−1/2 � a < R, σ2

n(a)/s→ 0.
In Sec. II we will introduce explicit expressions con-

necting the number variance with structural properties,
such as the pair correlation function. In order to properly
describe hyperuniformity on the curved sphere, in Sec.
III we first analyze the behavior of the number variance
of regular point patterns on the spherical surface, namely
a triangular grid and a Fibonacci lattice. Since transla-
tionally and orientationally ordered point patterns such
as those of crystals in Euclidean space (or orientationally

ordered, such as quasicrystals) are known to be hyper-
uniform, one should clearly expect the same to happen
on the spherical surface. As reference nonhyperuniform
point patterns, we investigate in Sec. IV uncorrelated
point processes in both the canonical ensemble (uniform
point distributions) and grand canonical ensembles (Pois-
son point distributions). In Sec. V we study the be-
havior of fluid particles confined on the spherical surface
and interacting via potentials with different ranges, from
short-range Lennard-Jones interactions, to dipolar like
(i.e. ∼ r−3) and 3D Coulomb (plasma-like) (i.e. ∼ 1/r)
interactions. To that aim we have performed canonical
Monte Carlo simulations for various sphere sizes and a
fixed surface density. We will see the correspondence
between the hyperuniform and the nonhyperuniform ref-
erence systems on the spherical surface and in Euclidean
space, and then we will see how the interactions and the
size of the sphere play a role in the build up of disordered
hyperuniform states on this non-Euclidean space. We
make concluding remarks and discuss future prospects in
Sec. VI.

II. EXPLICIT FORMULAS FOR THE NUMBER
VARIANCE ON A SPHERE

To begin, consider a single configuration of a fixed
number of points, N , on the 2-sphere S2, i.e., surface
of a three-dimensional sphere of radius R, as depicted
in Fig. 1. It is assumed that both N and R2 are
large and of comparable magnitude to one another. Let
a =

√
h(2R− h) ≤ R and h denote the base radius and

the height of a spherical cap, respectively. The surface
area of a spherical cap is s(a) = 2πRh = 2πR2(1 −√

1− (a/R)2), where we will be considering only the up-
per hemisphere, 0 ≤ φ ≤ π/2 to avoid ambiguity. The
number density of the points on the sphere is given by
ρ ≡ N/(4πR2), and n(x0; a) is the number of points con-
tained within a spherical-cap window centered at position
x0 on the sphere. Let the window uniformly sample the

FIG. 1. Spherical cap sampling region (white) of arc length
x, area s, and base radius a, where the number variance is
calculated.
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space for sufficiently small a, i.e., s(a) is much smaller
than 2πR2. Following Torquato and Stillinger [1] for the
formulation in Euclidean space, the number variance as-
sociated with a single configuration on the sphere is given
by

n(a)2 − n(a)
2

= ρs(a)

[
1− ρs(a)

+
1

N

N∑
i 6=j

α2(xij ; a)

]
, (3)

where X denotes a statistical average of a random vari-
able X over uniformly distributed sampling windows on
4πR2S2 and α2(x; a) is the intersection area of two spher-
ical caps whose centers are separated by a geodesic dis-
tance x, divided by the area of a cap. In analogy with the
situation in Euclidean spaces [1], one can use formula (3)
to find the particular point pattern that minimizes the
variance at a fixed value of a, i.e., the ground state for the
“potential energy” function represented by the pairwise
sum in Eq. (3).

Now imagine that we generate many realizations of a
large particle number N on the surface of the sphere so
that the density is fixed and then consider the thermo-
dynamic limit. The canonical ensemble-averaged number
variance, σ2

n(a), follows immediately from Eqs. (2) and
(3) by converting a summation to an integral involving
g2(r), i.e.,

σ2
n(a) = ρs(a)

[
1−ρs(a)+ρ(1− 1

N
)

∫
4πR2S2

g2(x)α2(x; a)dx

]
,

(4)
where g2(x) is the geodesic pair correlation correla-
tion function. Similarly, the corresponding ensemble-
averaged expression for the local number variance in the
grand canonical ensemble is also easily obtained from (2)
and (3). We find

σ2
n(a) = 〈ρ〉s(a)

[
1−〈ρ〉s(a)+〈ρ〉

∫
4πR2S2

g2(x)α2(x; a)dx

]
.

(5)
In the grand canonical ensemble, the number density of
points fluctuates about some average value 〈ρ〉. Notice
that formula (5) for the grand canonical ensemble is the
one that most closely matches the local number vari-
ance formula in Euclidean spaces [1]. The reason for
this is that in Euclidean space, hyperuniformity requires
sampling large windows in infinite point sets; see Ref.
[23] for further discussion on this point. It is notewor-
thy that when approaching the thermodynamic limit, re-
sults from Eqs. (4) and (5) are approximately the same
for windows much smaller than the entire sphere surface
(ρ−1/2 � a� R).

Brauchart et al. [26] rigorously studied the behavior
of the number variance in the canonical ensemble in the
large-N limit. For “uncorrelated” point patterns (i.e.,

g2(x) = 1 for any x) in the canonical ensemble, from
Eq. (4) one has

σ2
n(a) = ρs(a)

(
1− s(a)

4πR2

)
, (6)

where we have used the identity
∫
4πR2S2 α2(x; a)dx =

s(a), and N = 4πR2ρ. Similarly, from Eq. (5) in the
grand canonical ensemble, the number variance of “un-
correlated” point patterns satisfies

σ2
n(a) = 〈ρ〉s(a), (7)

because the second term and the integral in the square
brackets of Eq. (5) exactly cancel each other. We call a
point process1 on S2 in the canonical ensemble hyperuni-
form if as a increases in the scaling regime 1/

√
ρ� a < R

(1/
√
〈ρ〉 � a < R in the grand canonical)

σ2
n(a)

s(a)
→ 0. (8)

In our particular case, from Brauchart et al. [25], the
normalized intersection area is given by

α2(ψ;φ) = 1− 1

π sin2 φ/2

(
arcsin(

sinψ/2

sinφ
)

− arcsin(
tanψ/2

tanφ
) cosφ

)
if ψ ≤ 2φ (9)

and zero otherwise, where ψ = x/R is the angle between
the vectors pointing to the center of the two intersecting
spherical caps. It can be shown that in the limit of R→
∞, Eqs. (4) and (9) reduce to the expressions found in
Ref. [1] for the Euclidean case in two dimensions.

III. NUMBER VARIANCE OF REGULAR
POINT PATTERNS ON A SPHERICAL SURFACE

In this and the ensuing sections, we perform our analy-
sis of the local particle number variance defined in Eq. (2)
using a spherical cap as illustrated in Fig. 1.

First we focus on the determination of the number vari-
ance associated with highly regular point patterns on the
sphere, e.g., triangular lattices and Fibonacci lattices.
Dealing with a regular point pattern implies that the
spatial configuration of the points will be kept fixed. For
this reason, and in order to perform an adequate sam-
pling of the number variance, a sufficiently large number
of centers of the sampling spherical cap must be chosen
randomly on the surface (in our case around 10000). In

1 A point process in Euclidean or compact spaces is a collection
of point configurations that are specified by certain probability
measures [see Ref. [23]].
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FIG. 2. Regular point distributions on a spherical surface: (a) Triangular lattice on a sphere, (b) Fibonacci distribution with

1000 points. (c) Plots of the scaled local number variance, σ2
n(a)/s, vs. aρ1/2 as a signature of hyperuniformity (see Eq. (8)).

The inset illustrates the linear dependence of the number variance with the radius of the base of the sampling spherical cap
(or the perimeter of the sampling window).

contrast, in the next sections (uncorrelated point pat-
terns and fluid particles on a spherical surface), we will
be able to average over multiple point configurations cor-
responding to the same density, ρ or 〈ρ〉.

It is important to note that building a two-dimensional
lattice on an spherical surface is a non-trivial problem,
which is certainly very useful in the field of astronomi-
cal observation. Here we will resort to the icosahedron
method proposed by Tegmark [32] as an alternative for
pixelizing the celestial sphere. The resulting point dis-
tribution is illustrated on Fig. 2(a). Note that this is
an approximate triangular grid since the algorithm maps
the triangular faces of an icosahedron in which the sphere
is inscribed onto the surface of the sphere, and then dis-
torts the points to give all pixels approximately the same
area.

Another alternative that yields equal area for all grid
points are the Fibonacci grids. Swinbank and Purser
have proposed an efficient algorithm to produce this
very regular grid on a spherical surface [33]. The cor-
responding illustration of the Fibonacci pattern is shown
in Fig. 2(b). These procedures are similar in spirit to the
Quasi Monte Carlo approach for numerical integration on
spherical surfaces discussed by Brauchart et al. [24]. In
the latter instance, one must choose a set of points that
minimizes the error of numerical integration, and this in

turn leads to pixels of similar size on the sphere’s surface.
In Ref. [24] it was shown that this corresponds to a hyper-
uniform point distribution. The minimization constraint
makes the approach deterministic, retaining nonetheless
some Monte Carlo (i.e. stochastic) character. In con-
trast, the result of our two tessellation techniques would
be the spherical geometry equivalent of regular grid in-
tegration sets in Euclidean spaces.

The σ2
n(a)/(ρs) of the two regular point patterns is

presented in Fig. 2(c). One observes clearly that these
quantities decrease with a (in accordance with definition
of Eq. (8) for hyperuniform systems). Obviously, a van-
ishing value is not to be reached due to the finite size of
our systems. In the inset, in both instances one readily
appreciates that the number variance scales linearly with
the a, σ2

n(a) ∝ a, and hence also with the perimeter of the
sampling area. This will precisely correspond to the lin-
ear dependence on the radius of the sampling window in
perfectly ordered lattices in a flat two dimensional space,
as shown in Ref. [1]. In our study we have found that
no simple scaling can be derived using the arc length, x,
of the sampling spherical cap. The marked oscillations
observed in σ2

n are a direct consequence of the ordering
of the point patterns which is due to strong oscillations
in g2(x) [cf Eq. (4)], which is consistent with the previ-
ous observations in the behavior of the number variance
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FIG. 3. Uncorrelated point patterns on a sphere in both the grand canonical (a) Poisson distribution (R = 1, 〈N〉 = 750)–
and canonical – (b) uniform distribution– ensembles. (c) Plots of the scaled number variance σ2

n(a)/ρs in terms of a for
the uniform (lower) and Poisson point patterns (upper). In agreement with Eqs. (4) and (5), the number variance of the
Poisson point pattern can be seen to follow approximately Eq. (7), whereas the variance for the uniform point pattern follows

σ2
n(a)/(ρs) = (1 +

√
1− (a/R)2)/2 (Eq. (6)).

of ordered point patterns in Euclidean spaces [1]. This
quantity enters σ2

n through Eq. (4). We have thus iden-
tified the signatures of hyperuniformity on regular point
patterns on the sphere.

IV. VARIANCES OF UNCORRELATED POINT
DISTRIBUTIONS

In this section, we focus on the determination of the lo-
cal number variances for uncorrelated point distributions,
which serve as ideal reference nonhyperuniform systems.
In the canonical ensemble, we consider uniform point pat-
terns, N points uniformly distributed on the sphere. In
the grand canonical ensemble, we consider Poisson point
patterns, i.e., point configurations chosen from the Pois-
son distribution with the mean 〈N〉. Details on the algo-
rithms to determine both types of point patterns can be
found in the Appendix A. Typical uniform and Poisson
point patterns on the sphere are illustrated in Figs. 3(a)
and 3(b), respectively.

Concerning the local number variance of point pat-
terns following a random uniform distribution, we find
that the analysis of σ2

n(a) for a wide range of parti-
cle numbers and sphere radius, yields the simple re-

lation σ2
n(a)/(ρs) = 1 − s/(4πR2), in agreement with

Eq. (6). This can be expressed in terms of a/R to give

σ2
n(a)/(ρs) = 1

2 (1 +
√

1− (a/R)2) when s(a) < 2πR2.
Our results follow precisely this behavior, as clearly il-
lustrated in the upper panel of Fig. 3(c). This result is
in accordance with the known number variance of a uni-
form distribution on a plane for a finite system [24]. Note
that clearly lima→∞ σ2

n(a)/(ρs) 6= 0, hence the system is
not hyperuniform, as it should be expected. From the
above formulas it can be shown that σ2

n(a) ∝ a2.

Let us now focus on the Poisson point distribution on
a spherical surface, whose generation is not a straightfor-
ward process. Here point patterns are generated by an
algorithm devised by Baddeley [34], which is described
in Appendix A. A characteristic Poisson configuration
on the spherical surface is illustrated in Fig. 3(b). Note
that the configurations so generated will be character-
ized by an average surface density, 〈ρ〉, and in contrast
with the previously discussed uniform distribution, we
will not have a system with a fixed number of points, N .
Instead we will have a collection of systems that have the
average density, 〈ρ〉. As mentioned before, to some ex-
tent, this formulation recalls the relation between grand
canonical and canonical ensembles. We now observe that
σ2
n(a)/(〈ρ〉s) ∼ 1 as expected from an uncorrelated point
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FIG. 4. Plots of the scaled particle number variance,
σ2
n(a)/(ρs(a)), vs aρ1/2, for configurations of particles inter-

acting with various potentials (as shown in the legend), on
a sphere of radius, R = 15 and for a density ρ = 0.5. One
can appreciate that curves are grouped following the range of
the interaction, LJ (upper curve, nonhyperuniform), dipole-
dipole and dipole charge, and charge-charge (both hyperuni-
form). In the inset the normalized number variance is plotted
as a function of a to illustrate the deviation from the linear
behavior (hyperuniform scaling for regular configurations) as
the range of the interaction decreases, to finally reach almost
quadratic scaling (nonhyperuniform) for the LJ interaction.
We note that the precipitous drop of the scaled number vari-
ance σ2

n(a)/(ρs(a)) for very small values of a will occur for
any correlated system, whether hyperuniform or not, in both
curved and flat spaces.

process (cf. Eq. (7)), and it is a known result for the
Poisson point distribution on a plane as well [34].

In summary, when considering systems with fixed num-
ber of points, N, in analogy with the definitions for Eu-
clidean spaces, a scaling σ2

n(a) ∝ a2 will be associated
with a nonhyperuniform point distribution. In the par-
ticular case of Poisson patterns σ2

n(a) ∝ s will be the
sought signature.

In this way, we have defined what will be our ref-
erence results for scaling of the local number variance
on the spherical surface for configurations with a fixed
number of points. We will see within the scaling regime
ρ−1/2 � a < R, intermediate situations between linear
and quadratic scaling will also be possible, such that

σ2
n(a) ∝ aδ with 1 < δ < 2. (10)

From Eq. (8), these values of δ will also correspond to
hyperuniform configurations so that the scaled variance
σ2
n(a)/(ρs) decreases as a decreases. A summary of the

systems considered up to this point is collected in Ta-
ble I together with those of fluid configurations on the
spherical surface.

V. NUMBER VARIANCES IN FLUIDS OF
INTERACTING PARTICLES

In this section, we present some results of Monte Carlo
simulations in a canonical ensemble (with a prescribed
particle number N , system area A, and temperature T )
for particles on a spherical surface interacting with the
potential functions summarized below in Eqs. (11) and
(12a)-(12d). The simulation starts when N particles are
randomly placed on a sphere surface of radius R. We
then perform 5 × 105 translational attempts along ran-
dom directions on the surface in order to equilibrate the
system. Averages are calculated over 105 statistically in-
dependent configurations. Sampling of the number vari-
ance is performed using only three different coordinate
origins in orthogonal directions. Here we will analyze the
effect of different interactions on the local particle num-
ber variances. Bearing in mind the results of the previous
Section, we will be able to see how the interaction tunes
the hyperuniform character of the fluid structure.

The net pair interaction between particles i and j
has a short-range dispersive/repulsive component of the
Lennard-Jones (LJ) form:

ULJ(r) = 4ε

((
dLJ
r

)12

−
(
dLJ
r

)6
)
, (11)

where r is the Euclidean distance between particles i
and j, and not the arc length. The Lennard Jones pa-
rameters, ε and dLJ , are defined as units of energy and
length respectively. We set the reduced temperature to
T ∗ = kBT/ε = 5.2 (kB being Boltzmann’s constant),
which is well above the critical temperature for a LJ fluid.
To the LJ interaction we will add dipolar-like, charge-
dipole, and charge-charge contributions. To simplify the
problem, dipoles are kept perpendicular to the surface, as
if under the influence of an electric field whose source is at
the center of the sphere. We will also consider the case of
a simple 1/r3 repulsion (equivalent to that of completely
parallel dipoles on a plane), and for the charge-dipole
interaction we will also consider that dipoles are orthog-
onal to the line joining the particle centers. This is a
crude approximation to the case of dipoles perpendicular
to the surface. The explicit form of the interactions used
is

Udd(r, ~si, ~sj) = ULJ(r) +
α

r3
[(~si · ~sj)

−3(~si · ~r)(~sj · ~r)
r2

] (12a)

Udd||(r) = ULJ(r) +
α

r3
(12b)

Udc(r) = ULJ(r) +
γ

r2
(12c)

Ucc(r) = ULJ(r) +
β

r
(12d)

where γ, β = 1 and α will be set to unity in most cases,
except when analyzing the effect of the repulsion strength
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on the number variance and pattern formation, and ~si
(~sj) is the unit vector denoting the orientation of dipole
i (j).

We have first determined the local number variance
for particle configurations on a sphere of radius R = 15.
Results are presented in Fig. 4. In the inset two refer-
ence curves have been added, one representing the linear
dependence on the sampling window radius, a (hyper-
uniform scaling in ordered configurations) and another
for the quadratic dependence (regular disordered nonhy-
peruniform systems). Note that here we have plotted
a normalized variance σ2∗

n (a), scaled with the value of
σ2
n(a = R) (obtained for each realization). One immedi-

ately observes that as the range of the potential increases,
the scaling becomes hyperuniform, i.e. σ2

n(a) ∝ aδ with
δ < 2, and δ decreasing as the interaction range increases.
In fact, for the Coulomb like interaction we have δ ≈ 1.4.
This interaction gives strictly δ = 1 for planar surfaces
[35]. The pure LJ fluid, as in the Euclidean case, displays
no hyperuniformity, and conforms quadratic scaling as
the uniform random point patterns. In the main graph
of Fig. 4 we have plotted σ2

n/(ρs), and we find again here
that as the range of the interaction increases this quan-
tity tends to vanish as a grows. The results for the LJ
are qualitatively similar to those of the uniform random
distribution depicted in Fig. 3(c), in accordance with the
quadratic scaling illustrated in the inset. Values of the
exponent δ obtained from fits of σ2

n(a) ∝ aδ are collected
in Table I, together with results obtained for R = 5 and
the same density with varying interaction strength. In-
terestingly, one can observe that dipoles perpendicular to

the spherical surface display a quadratic scaling identical
to that of the LJ fluid, i.e., δ = 2. This is due to the fact
that the angular part of the interaction changes, includ-
ing becoming attractive when the sign changes, as the
dipoles move apart due to the curvature of the sphere.
Due to this, the long-range component of the interaction
is not purely repulsive any more, a requirement that must
be fulfilled in disordered systems that exhibit hyperuni-
formity for equilibrium states at finite temperature [36].
This situation is in marked contrast with that of dipoles
orthogonal to a plane, where the interaction is always
purely repulsive and long-ranged, i.e. exactly the inter-
action defined by Eq. (12b), Udd||(r). We see in Fig. 4
that for this long-range interaction the scaling begins to
deviate from that of the LJ (quadratic), with an expo-
nent δ = 1.8 (see Table I).

It has to be pointed out that in Fig. 4 we have omit-
ted the results for a < 1, a region where one should see
that lima→0 σ

2
n(a)/(ρs) = 1. When a < 1, the sampling

window is smaller than the particle size, which implies
that one cannot expect to obtain a statistically signifi-
cant value for the variance along a finite simulation run,
particularly as a→ 0. This limitation applies more dras-
tically to the results presented in Fig. 5, since they cor-
respond to a smaller sample size.

Now, instead of tuning the interaction range by chang-
ing the functional form of the long-range contribution to
the potential as done above, we can modify its intensity
(which is in part equivalent to lowering the temperature).
Here we have chosen to vary the α parameter in Udd|| –
Eq. (12b)– from 1 to 6 for R = 5 and ρ = 0.5. The effect
of this change on the local number variance is visible in
the plot of Fig. 5. One can clearly observe that as the
strength of the interaction increases the degree of hyper-
uniformity grows. This should not be surprising, since for
a finite system increasing α is to some extent equivalent
to an increase in the range of interaction. For α = 6 we
are back to the linear scaling (strong hyperuniformity),
as evidenced by the value δ = 1.1 in the scaling of Table I.
One can also appreciate the characteristic oscillations of
a regular pattern. This pattern formation is readily seen
in the snapshots of Fig. 6. One sees there that for the
largest interaction strength the particles are almost or-
dered in a triangular lattice. This is mostly an energetic
effect (even if entropy is also maximized), by which the
particles adopt a configuration that maximizes the inter-
particle distances, thus minimizing the repulsive energy.
With this quasi-ordered state we are back to the purely
linear dependence of the local number variance of the
triangular and Fibonacci lattices. This low temperature
(or high α) states recall the point patterns that minimize
the Coulomb energy, which according to Ref. [26] provide
suitable spherical designs for QMC integration.

Finally, another feature that must be commented upon
is the visible decrease of the slope of the curves of the
local number variance in Figs. 4, 5 and also in Fig. 8 (be-
coming more negative as the interaction becomes weak)
that can be appreciated as a/R → 1. This is the result
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(a) α = 1.0 (b) α = 3.0 (c) α = 6.0

FIG. 6. Illustration of simulated systems for representative states of different repulsion strength when the long-range interaction
is Udd|| (cf. Eq. (12b)). For illustrative purposes, samples presented here are smaller than the samples that we use to compute
the local number variances.

of performing the calculations for a finite-sized sample
in the canonical ensemble, which is contributed from the
following term in Eq. (4)

− ρ

N

∫
g2(x)α2(x, a)dx. (13)

This term becomes more negative and has a larger con-
tribution to σ2

n(a) as a/R → 1. This feature is also ev-
ident in the upper panel of Fig. 3(c). This case is par-
ticularly meaningful since now the term (13) reduces to
−s(a)/(4πR2). This contribution is absent in the grand
canonical case. Comparing the upper and lower panels
of Fig. 3(c) (canonical vs grand canonical ensemble), one
can immediately grasp the implications of using a given
ensemble well away from the thermodynamic limit.

All other intermediate disordered situations are also
hyperuniform, but interestingly none of them (and nei-
ther does the pure Coulomb repulsion) exhibits the scal-
ing σ2

n(a) ∼ a at positive temperatures. This is in con-
trast with the situation found for plasmas in Euclidean
space [35, 36] which produce structural hyperuniform
configurations with linear scaling at any finite temper-
ature.

The structuring of the fluid as a consequence of the
increasing interaction strength is clearly reflected by the
pair correlation function depicted in Fig. 7. Here the
build up of strong short-range order is seen in the marked
oscillations of g2(r) for α = 6. This short-range order is
however highly distorted for distances beyond the second
coordination shell due to thermal fluctuations. These
changes on the pair correlation function induced by the
increase on the interaction strength are also reflected on
the evolution of the number variance with the size of the
sampling window through Eq. (4) in Fig. 8. The re-
sults qualitatively agree with those of Fig. 5 computed
by direct MC sampling of the particle number variance.
One observes how the results for σ2

n(a)/ρs computed from
Eq. (4) fall below the uniform limit value (= 1) and de-
crease as the repulsive strength increases, albeit with the

g
2
(
x
)

0

1

2

3

x
0 2 4 6

α = 1.0
α = 1.5
α = 2.0
α = 3.0
α = 6.0

FIG. 7. Effect of the interaction strength on the pair correla-
tion for a fluid with dipole-dipole like interactions on a sphere
of radius R = 5, and with surface density ρ= 0.5. Here x is
the geodesic distance between two particles.

results for α = 1 slightly closer to those of the LJ fluid.
This behavior is in accordance with the qualitative be-
havior observed in the curves of Figs. 4 and 5. For small
sampling window sizes, the agreement becomes quantita-
tive. On the other hand as a grows, the integrated value
of σ2

n(a) increasingly deviates from the MC results be-
cause this integral is appreciably affected by statistical
uncertainties in the tail of g2(r).

VI. CONCLUSIONS

In summary, we presented derivations of formulas for
the local number variance of point patterns on the sphere
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1

a ρ1/2
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 LJ
 α=1
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FIG. 8. σ2
n(a)/ρs vs. aρ1/2 as calculated from the pair corre-

lation functions from Eq. (4) for the LJ and dipolar-like inter-
actions with increasing repulsive strength (ρ = 0.5, R = 5).
The strong oscillations in g2(x) seen in Fig. 7 are reflected in
the curve for α = 6.

TABLE I. Summary of the scaling behavior of the number
variance with the geometric parameters of the sampling win-
dow for uncorrelated, regular point patterns, and fluid config-
urations on the sphere. In the latter instance, results for two
different radii are presented.

Point pattern scaling

Poisson distribution σ2
n(a) ∝ s = (1−

√
1− (a/R)2)2πR2

Uniform distribution σ2
n(a) ∝ a2 = s(1− s/(4πR2))/π

Triangular lattice σ2
n(a) ∝ a

Fibonacci lattice σ2
n(a) ∝ a

R = 15

LJ fluid σ2
n(a) ∝ a2

Udd(α = 1) σ2
n(a) ∝ a2

Udd||(α = 1) fluid σ2
n(a) ∝ a1.8

Udc (γ = 1) fluid σ2
n(a) ∝ a1.7

Ucc (β = 1) fluid σ2
n(a) ∝ a1.4

R = 5

Udd||(α = 1) fluid σ2
n(a) ∝ a1.7

Udd||(α = 3) fluid σ2
n(a) ∝ a1.3

Udd||(α = 6) fluid σ2
n(a) ∝ a1.1

in both the canonical and grand canonical ensembles. We
demonstrated that uncorrelated point patterns in these
two ensembles are definitely not hyperuniform and their
corresponding variance behaviors can dramatically differ
for large windows. We also showed that the local num-
ber variance exhibits two distinct types of hyperuniform
scalings in the canonical ensemble: regular point patterns
have a scaling σ2

n(a) ∼ a and some correlated disordered
point patterns have σ2

n(a) ∼ aδ(1 < δ < 2), which cor-
respond to class I and class III in Euclidean spaces [23],

respectively. There are also certain hyperuniform point
patterns that correspond to class II in Euclidean space
[23], e.g., determinantal point patterns in the so-called
harmonic ensemble [25], although they were not classified
that way in Ref. [25]. The identification and classifica-
tion of hyperuniform point configurations on the sphere
and other compact spaces (such as cylinders, ellipsoids,
or tori) represents a largely open area for future research.
We also plan to study the effect of interactions that favor
the formation of quasi-crystal-like structures, in particu-
lar those that present highly directional bonding interac-
tions, as found in patchy colloids.
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Appendix A: Generating uncorrelated point
patterns.

1. Uniform point patterns.

The generation of uniform point configuration is a triv-
ial problem in Euclidean spaces using pseudo-random
numbers. On a spherical surface S2, however, one must
be a bit more careful. The simplest approach is to gener-
ate a uniform distribution of points inside a cube inscrib-
ing the sphere, discarding those points outside the sphere,
and then performing an orthogonal projection of the in-
ner points onto the surface [37]. Alternatively one can
choose three pseudo-random numbers following a Gaus-
sian distribution centered in the sphere of radius, R, and
project the resulting points in space onto the spherical
surface. Other approaches can also be found in Ref. [38].

2. Poisson point patterns.

We recall that a random variable whose values are
the non-negative integers has a Poisson distribution with
parameter λ > 0 whenever P [X = k] = e−λλk/k! for
k = 1, 2, .... It is often abbreviated by saying that X has
a Poiss(λ) distribution. Note that λ corresponds specif-
ically to 〈ρ〉 in the main body of the manuscript. Some
basic properties are:
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• If X follows a Poisson distribution with an intensity
λ (i.e., X ∼ Poiss(λ)), then E(X) = V ar(X) = λ

• IfX1, ..., Xn are independent random variables hav-
ing Poiss(λ1), ..., Poiss(λn) distributions respec-
tively, then X1 + ...+Xn has a Poiss(λ1 + ...+λn)
distribution.

Let S be a sphere. For each region A ⊆ S we denote its
area by µ(A) . Suppose that we have a random distri-
bution of points on the sphere. For each region A ⊆ S
we denote N(A) the random variable “number of points
in A.” We have a random spatial point process with
parameter c > 0 whenever

• For each A , N(A) has a Poiss(cµ(A)/µ(S)) dis-
tribution.

• If A1, ..., An are mutually disjoint regions then
N(A1), ..., N(An) are independent random vari-
ables.

We recall that each point in the sphere has two angular
spherical coordinates θ and φ. In order to generate a set
of points distributed according to a Poisson spatial pro-
cess on the sphere with parameter c we have developed
an algorithm based in an usual idea in this subject:

1. We subdivide the sphere into small, mutually dis-
joint “spherical rectangles” R1, ..., Rm so that the
angular coordinates (θ, φ) of every point in Rj sat-
isfy inequalities of the form θj1 < θ ≤ θj2 and
φj1 < φ ≤ φj2.

2. For each Rj we generate a random number kj ac-
cording to a Poiss(cµ(Rj)/µ(S)) distribution and
kj points uniformly distributed in Rj are generated.
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