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The open asymmetric simple exclusion process (ASEP) has emerged as a paradigmatic model of
nonequilibrium behavior, in part due to its complex dynamical behavior and wide physical applica-
bility as a model of driven diffusion. We compare the dynamical phase behavior of the 1D ASEP
and the multi-lane ASEP, a previously unstudied extension of the 1D model that may be thought
of as a finite-width strip of the fully 2D system. Our characterization employs large deviation the-
ory (LDT), matrix product states (MPS), and the density matrix renormalization group (DMRG)
algorithm, to compute the current cumulant generating function and its derivatives, which serve
as dynamical order parameters. We use this measure to show that when particles cannot exit or
enter the lattice vertically, the phase behavior of the multi-lane ASEP mimics that of its 1D coun-
terpart, exhibiting the macroscopic and microscopic signatures of the maximal current, shock, and
high-density/low-density coexistence phases. Conversely, when particles are allowed to freely enter
and exit the lattice, no such transition is observed. This contrast emphasizes the complex interplay
between latitudinal and longitudinal hopping rates and the effect of current biasing. Our results
support the potential of tensor networks as a framework to understand classical nonequilibrium
statistical mechanics.

1. INTRODUCTION

In recent years, the asymmetric simple exclusion pro-
cess (ASEP) has emerged as a paradigmatic model of
nonequilibrium behavior in statistical mechanics [1]. The
basis for this popularity resembles that of the Ising
model: a simply defined model with contrastingly com-
plex behavior and wide applicability. The ASEP is de-
fined by bulk and boundary hopping rates that govern
the stochastic movement of particles between sites on a
1D lattice, limiting each site to an occupancy of one par-
ticle at most [2]. This simplistic model, originally used to
study protein synthesis [3], has since been applied to un-
derstand diverse physical problems such as the transport
properties of molecular motors [4], polymer reptation [5],
transport through membranes [6], and surface growth [7].

Because of its simplicity and applicability, the open
ASEP has been studied extensively, revealing a complex
dynamical phase diagram, with both boundary and bulk
driven phase transitions existing between many possible
phases [8]. Additionally, many exact and semi-analytic
results have been derived, making the ASEP a good can-
didate for benchmarking computational methods [9–12].

Much recent attention on ASEP has centered on more
complex realizations of the model, such as multi-species
and quantum analogs [13, 14] or studies of the effects
of spatial inhomogeneities [15]. In this work, we charac-
terize the behavior of the multi-lane ASEP, which can
be thought of as a finite-width strip of the fully 2D
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model. Previously, analysis of the behavior of the multi-
lane ASEP has been limited to specific derivatives of the
two-lane model and has focused on the mean behaviors
of the relevant observables, potentially missing critical
details encoded by fluctuations [16–19]. Alternatively,
current fluctuations in the fully 2D ASEP have been ex-
plored within macroscopic fluctuation theory, although
numerical validation of the resulting expressions has been
limited due to the cost of the required computations [20–
22].

In this work, we provide a first step towards numeri-
cally interpolating between the behaviors of the 1D and
fully 2D systems by studying the multi-lane ASEP with
up to four lanes. Specifically, we work within the frame-
work established by large deviation theory (LDT) [23–
25] and compute the current cumulant generating func-
tion (CGF), whose derivatives encode fluctuations of the
current and serve as dynamical order parameters.

Because of the difficulties associated with measuring
rare events in large or complex systems, significant ef-
fort has been devoted to the development of appropri-
ate and robust numerical and analytic approaches for
computing large deviation functions such as the CGF.
Monte Carlo sampling methods (such as the cloning al-
gorithm and transition path sampling [26–28] augmented
with importance sampling [21, 29, 30] and direct rate
function evaluation techniques [31]) have been applied
to both lattice and continuum nonequilibrium systems
[9, 11, 26, 28, 32–41]. Here, we compute these func-
tions using matrix product states (MPS) and the den-
sity matrix renormalization group (DMRG) algorithm.
This approach is an example of a tensor network (TN)
method, where the high-dimensional probability distri-
bution is represented as a contraction of many tensors.
The TN approach has been used to study nonequilibrium
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lattice problems both analytically, via the matrix prod-
uct ansatz [10, 42], and computationally [9, 35, 43–45].
Recently, it has been used to understand kinetically con-
strained models of glasses [46].

The remainder of this report proceeds by first provid-
ing a brief introduction to large deviation theory, matrix
product states, and the density matrix renormalization
group algorithm. We then calibrate our implementation
on the dynamical phase behavior of the 1D (single-lane)
ASEP, where we find excellent agreement between our
results and the semi-analytic expressions for the current
cumulant generating function in the region of applica-
bility of the functional Bethe ansatz [12, 47, 48]. We
note that DMRG has previously been successfully used
to validate expressions for high-order current cumulants
of the 1D ASEP [9] and to compute critical exponents
in the totally asymmetric case [35]. We also report on
microscopic observables, such as the local density and ac-
tivity. While the behavior of these observables has been
understood from approximate theories or near various
analytically tractable limits [48], the exact numerically
computed quantities have typically not been reported.

We use the 1D results as a framework to extend our
study to the multi-lane ASEP with up to four lanes.
Here, we describe the effect of vertical hopping rates on
the longitudinal dynamical phase behavior by comparing
the behaviors of the closed multi-lane ASEP, where par-
ticle insertion and removal is only permitted at the hori-
zontal boundaries, and the open multi-lane ASEP, where
particles freely enter and exit the lattice vertically. The
comparison of the behaviors of these models reveals the
complexity of the effects of vertical hopping rates on lon-
gitudinally biased systems, and serves as a step towards
understanding the fully 2D ASEP.

2. LARGE DEVIATION THEORY AND
MATRIX PRODUCT STATES

We first briefly summarize some relevant concepts in
large deviation theory, the theory of matrix product
states and the density matrix renormalization group. A
more complete description can be found in recent reviews
[25, 28, 49, 50].

In a nonequilibrium system, the state vector |Pt〉
evolves from an initial state |P0〉 according to a master
equation with dynamics generated by a non-Hermitian
Markov operator W,

∂t|Pt〉 =W|Pt〉, (1)

with the probability of a system configuration C at time
t given by Prob(Ct) ≡ 〈C|Pt〉. The long-time limit yields
the final (steady) state |P∞〉. The probability of ob-
serving a given trajectory of configurations C (tN ) =
{C0, C1, . . . , CtN } at times {t0, · · · , tN} (dt = tN/N) is,

Prob(C (tN )) = Prob(C0)

tN−1∏
i=0

〈Ci+1|edtW |Ci〉. (2)

We can define dynamical observables along such a
trajectory, such as a time-local observable O =∑tN−1

i=0 o(Ci+1, Ci), with o being an arbitrary function of
time-adjacent configurations (Ci+1 and Ci). To character-
ize the steady-state expectation value and fluctuations of
this observable, we define a cumulant generating func-
tion, ψ(λ),

ψ(λ) = lim
tN→∞

t−1
N ln

〈
e−λO

〉
= lim
tN→∞

t−1
N ln

∑
C (tN )

Prob(C (tN ))e−λO, (3)

where λ is a field conjugate to the observable. At λ = 0,
the first derivative of ψ is the observable’s steady-state
expectation value 〈o〉; characterizations of the fluctua-
tions of o, via its cumulants, are obtained from higher-
order derivatives of ψ. A fundamental result in LDT is
that ψ(λ) is the largest eigenvalue E0, of a tilted operator
Wλ, i.e.,

Wλ|Pλ〉 = ψ(λ)|Pλ〉, (4)

where, for discrete configurations, the tilted operator is,

Wλ(C, C′) =W(C, C′)e−λo(C,C′)(1− δC,C′)−R(C)δC,C′
(5)

with R(C) =
∑
C6=C′W(C, C′) and with right and left

eigenvectors |Pλ〉 and 〈P̄λ|. The eigenvectors give the
configurational probabilities at initial, intermediate, and
final times, respectively being,

|Pλt0〉 =
diag

(
|P̄λ〉 ⊗ |Pλ=0〉

)
〈P̄λ|Pλ=0〉 ,

|PλtInt.〉 =
diag

(
|P̄λ〉 ⊗ |Pλ〉

)
〈P̄λ|Pλ〉 ,

|Pλtf 〉 =
|Pλ〉∑
C〈C|Pλ〉

,

(6)

where the full trajectory satisfies 〈O〉 = dψ(λ)/dλ [51–
53].

The computation of ψ(λ) and each of the eigenvectors
in Eq. (4) is achievable via exact diagonalization for only
the smallest systems. Alternatively, the equation can be
recast as a generalized variational problem,

〈δPλ|Wλ|Pλ〉 − ψ(λ)〈δPλ|Pλ〉 = 0, (7)

where we seek to make ψ(λ) = 〈Pλ|Wλ|Pλ〉 stationary
with respect to a perturbation from |Pλ〉 to |δPλ〉. Be-
cause Wλ is non-Hermitian, 〈Pλ|Wλ|Pλ〉 may be above
or below the exact ψ(λ) for an approximate |Pλ〉 or 〈P̄λ|.

In this work, we use an MPS as an ansatz for |Pλ〉 and
perform the optimization in Eq. (7) using the DMRG
algorithm for non-Hermitian operators [43, 54]. To in-
troduce the MPS ansatz, consider a 1D lattice of length
L with sites i = 1 . . . L. Each site has a local state space
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{σi} of dimension d, with a system configuration C be-
ing an ordered list of the local states, |C〉 = |σ1, · · · , σL〉.
The state vector is specified by a tensor of weights:

|Pλ〉 =
∑

{σ1···σL}

cσ1,··· ,σL
|σ1, · · · , σL〉 , (8)

with cσ1,··· ,σL
specifying the probability of the system

being in configuration |σ1, · · · , σL〉.
In this exact representation, arbitrary strong correla-

tions can exist between all sites. However, if the Markov
operator Wλ only produces transitions between nearby
sites, we can expect correlations to decay with distance.
An efficient way to represent states with this property is
to rewrite cσ1,··· ,σL

as a product of matrices, i.e. a matrix
product state,

|Pλ〉 =
∑

{σ1···σL}

Mσ1Mσ2 · · ·MσL−1MσL |σ1, · · · , σL〉 .

(9)
where the dimension of the matrices, also called the bond
dimension D, specifies the amount of correlation that can
be transmitted between sites. If we assume that D satu-
rates with system size, then the representation is asymp-
totically linear in complexity with respect to system size,
i.e. it contains only O(dD2L) parameters.

Matrix product states with a size-independent D are
said to satisfy the 1D area law. In the quantum me-
chanical setting, the area law states that the entangle-
ment entropy between two partitions of the system is pro-
portional to the length of the boundary between them:
in 1D, this is independent of system size. It is known
that gapped Hamiltonians in 1D produce ground-states
which satisfy this law and thus can be ideally represented
by matrix product states [55]. However, note that even
when the area law is not satisfied, one can still exactly
represent an arbitrary state with an MPS by using a suf-
ficiently large D. For example, to satisfy the area law for
a multi-lane ASEP, we can use an MPS with a D that
grows exponentially with the number of lanes. In the
multi-lane case, the representation also depends on the
1D traversal pattern of the sites. Here, we use a zig-zag
ordering of sites, shown in Fig. 1.

With |Pλ〉 written as an MPS, the DMRG algorithm
solves the variational problem posed in Eq. (7) optimizing
one Mσi at a time by solving an eigenproblem at each
site of the form Weff

i ·Mσi = ψ(λ)Ni ·Mσi , where Weff
i

describes the action ofWλ in the vector space containing
Mσi . The metric Ni can be eliminated (i.e. converted
to the identity) by using the gauge freedom in the MPS,
i.e. a matrix and its inverse may be inserted between any
two sites without changing |Pλ〉,

Prob(C) =Mσ1Mσ2 · · ·MσL−1MσL ,

=Mσ1X−1XMσ2 · · ·MσL−1MσL ,

=M ′σ1M ′σ2 · · ·MσL−1MσL ,

(10)

Choosing the gauge to eliminate the metric yields the

FIG. 1: A diagrammatic representation of the mapping of a
2D lattice with nearest neighbor interactions onto a 1D lattice
with long range interactions. The arrows indicate how our
DMRG optimization traverses the 2D lattice and the dashed
line shows the bond over which the numerical entanglement
entropy is measured.

canonical form at the site,

|Pλ〉 =
∑

{σ1···σL}

Lσ1Lσ2 · · ·F σi · · ·RσL−1RσL |σ1, · · · , σL〉 ,

(11)

where
∑
σ L

σ†Lσ = I and
∑
σR

σRσ† = I and F σi

now denotes the tensor optimized in the local eigenvalue
problem. A series of sweeps of optimizations is then per-
formed over the sites, until convergence to the targeted
eigenstate of the tilted generator.

The canonical form of Eq. (11) is also used to define
the bipartite entanglement entropy S(i) at site i. Though
entanglement is strictly a physical property of quantum
systems, here the numerical value of S(i) can still be used
to quantify the non-factorizable correlations between the
states of sites to the left and right of site i, and to bound
the maximum bond dimension required to accurately rep-
resent the state as an MPS. It can also be used as a gener-
alized order parameter in quantum applications and may
thus provide similar insights here [56, 57]. By comput-
ing the singular values {sm} of the central F σi

pq reshaped
into the matrix Gσip,q = F σi

pq , the numerical entangle-
ment entropy is defined as,

S(i) = −
∑
m

s2
m log2 s

2
m. (12)

3. MODEL

The 1D ASEP (Fig. 2) takes place on a lattice of
L sites. Particles hop stochastically to vacant nearest-
neighbor sites at the following rates. In the lattice in-
terior, particles hop right (left) with rate p (q) with
asymmetry enforced via p 6= q (ASEP). At the edges,
particles enter (exit) at the left with rate α (γ) and at
the right with rate β (δ). In this work, we designate
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FIG. 2: The ASEP model where particles on a 1D lattice
stochastically hop to a vacant neighboring right (left) site at
a rate of p (q) and enter (exit) at the left and right boundaries
at rates α (γ) and β (δ).

the time-integrated current J for all bonds as the ob-
servable O mentioned previously and study phases in-
duced by the current bias λ in the parameter regime
α = β = γ = δ = 1/2 and p + q = 1. The tilted op-
erator for the current cumulant generating function is,

W1D
λ =α

(
eλa†1 − v1

)
+ γ

(
e−λa1 − n1

)
+

L−1∑
i=1

p
(
eλaia

†
i+1 − nivi+1

)
+

L−1∑
i=1

q
(
e−λa†iai+1 − vini+1

)
+ β

(
e−λa†L − vL

)
+ δ

(
eλaL − nL

)
,

(13)

where ai, a
†
i , ni and vi are annihilation, creation, par-

ticle number, and vacancy number operators. Note that
the tilted operator is invariant with respect to the com-
bined operation of particle-hole transformation/inversion
(a† ↔ a and {..., i, i + 1, ...} ↔ {..., i + 1, i, ...}). The
eigenvalues ofW1D

λ also exhibit a Gallavotti-Cohen (GC)
symmetry [51, 58] of the form ψ(λ) = ψ(λ∗) where, for
the specified ASEP parameters, λ∗ = −L−1

L+1 ln(p/q)− λ.
The multi-lane ASEP is defined on a 2D lattice of Ly×

Lx sites. It augments the 1D ASEP with bulk hopping
in the vertical (transverse) direction (at rates py, qy) and
particles inserted and removed at the vertical boundaries
(at rates αy, βy, γy, δy). We apply the current bias in
the (longitudinal) x-direction, with a tilted operator that
takes the form,

W2D
λ =W1Dx

λ +W1Dy

0 , (14)

and retains the above GC and particle-hole/inversion
symmetries. To understand the effects of the transverse
parameters on the longitudinal system’s phase behavior,
we focus on two multi-lane parameter sets, namely open
and closed vertical boundaries. Both require px+qx = 1,
py = qy = 1/2, and αx = βx = γx = δx = 1/2, while the
open (closed) case specifies αy = βy = γy = δy = 1/2
(αy = βy = γy = δy = 0).

To characterize the system, the DMRG algorithm is
used to determine the largest eigenvalue of each tilted op-
erator, through which the steady-state total current and
current susceptibility are computed as J = ∂ψ(λ)/dλ and
χ = ∂2ψ(λ)/dλ2. Local densities, currents, and activities
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FIG. 3: (a) Rudimentary sketches of the density profiles
in the three possible phases. Blue curves represent approx-
imate steady-state density profiles while green curves depict
typical particle configurations. (b) A map of the dynamical
phase behavior of the ASEP showing the steady-state cur-
rent J as a function of p and λ for a length L = 20 lattice
as determined via DMRG. Additionally shown in black are
lines indicating the center of the GC symmetry (solid) and
the predicted boundaries between the MC and shock phases
(dotted, via macroscopic fluctuation theory [8, 59, 60]) and
the shock and HD+LD phases (dashed, via functional Bethe
ansatz [8, 61]).

may also be computed by contracting the resulting left
and right eigenvector with the appropriate operator, i.e.,

ρi =
〈
Pλ
∣∣ni ∣∣Pλ〉 ,

Ji =
〈
Pλ
∣∣ peλaia†i+1 − qe−λa†iai+1

∣∣Pλ〉 ,
Ki =

〈
Pλ
∣∣ peλaia†i+1 + qe−λa†iai+1

∣∣Pλ〉 , (15)

assuming
〈
Pλ
∣∣Pλ〉 = 1.

4. RESULTS

4.1. Benchmark MPS calculations of the 1D ASEP

We begin by using MPS and DMRG to characterize the
phase behavior in the aforementioned parameter space
and benchmark this approach against earlier results from
the semi-analytical functional Bethe ansatz and approxi-
mate results from macroscopic fluctuation theory [8]. In
this space, there are three expected phases, which are
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FIG. 4: The behavior of the 1D ASEP with lattice lengths of L = [10, 100]. The DMRG results for the normalized (a) CGF.
ψ = E0/L, (b), current J = ∂λψ/L, and (e) scaled current susceptibility χ = ∂2

λψ/L
2 compared with the analytic functional

Bethe ansatz expressions (red), valid for λ → 0− and λ > 0; additionally (f) shows the gap between the first and and second
largest eigenvalues E0 and E1. Plots (c) and (d) show the density ρ and recurrent hopping K − |J | as a function of position
in a L = 10 lattice, x, and λ. (g) shows the numerical entanglement entropy S of a bipartition at the center bond as a
function of λ with the upper (lower) subfigures in (h) showing the corresponding ordered numerical entanglement spectrum,

with Ŝm = −s2m log2 s
2
m, at λ = −0.3 (λ = 0.3).

described in Fig. 3(a) via rudimentary sketches of both
the steady-state density profile and the most probable
particle configurations. These are the Maximal Current
(MC) phase, where, in the most probable microscopic
configurations, particles are evenly spaced throughout
the lattice, allowing a maximal amount of biased hop-
ping, the Shock (S) phase, where particles conglomer-
ate on one side of the lattice to form a shock that, in
path-space simulations, performs a Brownian walk on the
lattice, and the High-Density/Low-Density Coexistence
(HD+LD) phase, where the entirely filled and empty
states (with some boundary effects) are degenerate in the
thermodynamic limit and correspond to a steady-state
density profile of ρ = 1/2.

The predicted phase diagram is mapped in Fig. 3(b)
where the lines indicate the line of GC symmetry (solid),
the boundary between the MC and S phases (dotted, via
macroscopic fluctuation theory), and the boundary be-
tween the S and HD+LD phases (dashed, via functional
Bethe ansatz). The steady-state current is also shown,
computed via DMRG for an L = 20 ASEP, showing that
current functions as a dynamical order parameter for the
transition from S to HD+LD, going effectively to zero
in the HD+LD phase. While the boundary between the
MC and S phases is commonly defined as the point where
the per site current is J = (p − q)/4, we are not aware
of an order parameter for this transition, which instead
appears as a smooth crossover in the current rather than
a true phase boundary. Also note that because of the

symmetries of the system, the remaining analysis can be
limited to the lower left region of the parameter space
(p < 1/2 to the left of the line of GC symmetry), with
the rest of the diagram mapped out by symmetry.

Finite size errors can be converged rapidly by increas-
ing the lattice size. In Fig. 4, we characterize this behav-
ior using system properties such as the cumulant generat-
ing function, current, current susceptibility, and excited
state gap for a range of λ near λ = 0 with p = 0.1
and for lattice sizes up to L = 100 via DMRG with
bond dimension D between 50 and 300. The relative
errors in the energy, current, and numerical entangle-
ment entropy in the MC phase for a bond dimension of
D = 10 are approximately, ErrE = 0.01%, ErrJ = 0.02%,
and ErrS = 10%, respectively. Increasing to a bond di-
mension of D = 150 improves these relative errors to
ErrE = 0.0001%, ErrJ = 0.001%, and ErrS = 0.1%. As
a benchmark, the solid red line in Fig. 4 (a), (b), and (e)
corresponds to the functional Bethe ansatz result, which
is valid only in the HD+LD phase and near λ = 0 in the
S phase.

As L → ∞, a number of interesting behaviors are ob-
served, particularly at the interface between the S and
HD+LD phases. In this region, the cumulant generating
function transitions from having a finite negative slope
to become nearly flat, signifying a transition into a low-
current regime. This transition is marked by a continuous
change in the current and an abrupt change in the cur-
rent susceptibility, as shown in Fig. 4 (e). Note that here
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the current susceptibility has been scaled by L2, instead
of L, to show that this scaled measure does not diverge
at λ = 0. We also see that the system becomes gap-
less due to the degeneracy of the high-density and low-
density configurations. This degeneracy does not cause
a spike in the susceptibility because the high-density and
low-density states are of the same particle-hole/inversion
symmetry while ∂λWλ is odd under this symmetry. In-
stead, the growing susceptibility is controlled by the sec-
ond gap (between E2 and (E0, E1)) which also closes at
this point.

The MPS representation also provides the state’s full
configurational information, enabling us to study the
microscopic structure of the phases and quantities that
are not derivatives of the cumulant generating function.
Fig. 4 (c) and (d) show the steady-state density, ρ, and
recurrent hopping, K − |J |, computed as specified in
Eq. (15), as a function of the position in the lattice x
and the current bias λ. These density profiles correspond
to those shown in Fig. 3(a), with the linear profile near
λ = 0 corresponding to the shock phase. The HD+LD
and MC phases can here be distinguished via the rate of
recurrent hopping; particles and holes are spatially dis-
persed in the MC phase, allowing frequent opportunities
to hop back and forth, as indicated by the finite observed
recurrent hopping at λ < 0. When the transition is made
into the HD+LD phase, the recurrent hopping drops to
nearly zero in the lattice bulk, attributable to the lattice
being nearly entirely filled or empty in this phase and
thus providing few opportunities for recurrent hops.

An additional way to summarize the microscopic infor-
mation (and the associated correlations in the system) is
via the numerical entanglement entropy and spectrum
(S(i) and {sm} in Eq. (12)) which we measure at the
middle of the lattice. These are plotted for the right
eigenvector |Pλ〉 in Fig. 4 (g). There are two clear regions
present in the numerical entanglement entropy, one cor-
responding to the MC phase, the other to the HD+LD
phase. For the MC phase, the spectrum decays slowly,
indicating that a relatively large bond dimension is re-
quired to accurately represent the given state. In the
HD+LD phase, the numerical entanglement entropy is
larger and appears to be exactly 1 (log2 2). The numer-
ical entanglement spectrum shows that only two modes
contribute, arising from the filled and empty configura-
tions, indicating the state can be represented exactly by
an MPS of bond dimension 2.

4.2. Multi-lane ASEP model

We now consider a system comprised of multiple ASEP
lanes, with particles that may hop vertically (y-direction)
or horizontally (x-direction), where we will examine the
unexplored interplay between vertical and horizontal cur-
rents that can generate new phase behaviour.

4.2.1. Closed Multi-lane ASEP

A simple, but nontrivial, extension of the 1D ASEP
into multiple lanes, as specified in Sec. 3, is to augment
horizontal hopping and entry/exit parameters with equal
vertical hopping rates py = qy = 1/2 and no entry/exit
at the vertical bounds, i.e. closed boundary conditions.
To understand the phase behavior here, we again carried
out DMRG calculations mapping out the behavior as a
function of the longitudinal current bias λx for fixed px =
0.1, with bond dimensions D between 50 and 300 and
with system widths and lengths of up to Ly = 4 and
Lx = 50.

The resulting cumulant generating function, current,
current susceptibility, and first excited state gap are dis-
played respectively in Fig. 5 (a), (b), (d) and (e) for the
Ly = 4 ASEP (with the Ly = [2, 3] results being essen-
tially indistinguishable from these). A comparison be-
tween this figure and Fig. 4 shows no qualitative differ-
ence between the single lane and closed multi-lane ASEP.
We can analyze the ground state MPS to confirm whether
the microscopic configurations in the multi-lane system
correspond to those seen in 1D.

Fig. 5 (c) and (d) show the behaviors of key observ-
ables as a function of λ. Using results from a two lane
calculation, Fig. 5 (c) shows the density profile in one
of the lanes as a function of λ, with the most notable
point being the linear profile near λ = 0, indicative of
a shock phase. The MC and HD+LD phases are again
indistinguishable by their density profiles. As a means of
distinguishing the two phases, we can use either the hor-
izontal recurrent hopping rate profile (as done in 1D and
not shown here) or the vertical activities between the two
lanes as demonstrated in Fig. 5 (d). Here, the bulk ver-
tical activity is near Ky = 1/4 per site when in the MC
phase, supporting a microscopic structure where parti-
cles neighbor holes with probability 1/2 and the proba-
bility of a vertical hop when such a configuration occurs
is py = qy = 1/2. After crossing the 1D ASEP phase
boundary at λ = 0, the bulk vertical activity approaches
zero, indicating that hops are prevented by an entirely
full or empty lattice.

This picture is further supported by the profile of the
numerical entanglement entropy for the two-lane ASEP
shown in Fig. 5 (g), which again mimics the behavior seen
for the 1D ASEP. We would usually expect the numeri-
cal entanglement entropy across the central cut to grow
with the width of the system, which it appears to do
in the MC phase. In the HD+LD, however, the numer-
ical entanglement entropy is independent of the lattice
width because the phase results from entirely empty and
full configurations (where particle occupancy is perfectly
correlated between the lanes in both configurations).
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FIG. 5: The behavior of the closed multi-lane ASEP showing the DMRG results for the normalized (a) CGF ψ = E0/(LxLy),
(b) current J = ∂λψ/(LxLy), and (e) scaled current susceptibility χ = ∂2

λψ/(L
2
xLy) as well as (f) the gap between the first and

second largest eigenvalues E0 and E1 for the four lane systems with lengths up to Lx = 50. Plots (c) and (d) show the density
ρ and vertical hopping activity Ky between lanes for a two-lane ASEP with Lx = 20. (g) Shows the numerical entanglement
entropy S of a bipartition of the system at the center bond as a function of λ.

4.2.2. Open Multi-lane ASEP

To quantify the effects of vertical boundaries on the
horizontally biased dynamical phase behavior of this
multi-lane ASEP, we further consider a vertically open
multi-lane ASEP, where vertical entry/exit rates are 1/2,
as specified in Sec. 3. In these calculations, we employed
DMRG to study the ASEP behavior as a function of the
horizontal bias, λx, near λx = 0, with px = 0.1 for sys-
tems of up to length Lx = 50 with up to three lanes
(Ly = 3) using a maximum bond dimension of D = 50.

The results are displayed in Fig. 6, with the cumu-
lant generating function, current, current susceptibility,
and first excited state gap being shown in subfigures (a),
(b), (e), and (f). The per site macroscopic observables
are nearly indistinguishable for the various system sizes,
with the only noticeable difference caused by the requi-
site shifting of the point of GC symmetry as a function
of system length. While in the closed multi-lane model
the current detected a transition into the HD+LD phase,
no such transition is apparent here.

This is further supported by a microscopic analysis for
a lattice of size 2× 20. The density and activity profiles
are shown in Fig. 6 (c) and (d) as a function of λ. The λ
sweep show no changes in the behavior of the density and
vertical activity. This is also true at λ = 0, where the
phase transition would be expected to occur. While the
steady-state number of hops between lattice sites does
not seem to indicate any phase transition, we note that
the desired low current behavior is created in a MC-like

density profile by causing a small current to flow to the
left in the bulk to counter the large current flowing to
the right at the boundaries. This also illustrates a sig-
nificant difference between the single-lane and multi-lane
systems, namely that the steady-state current need not
be spatially homogenous.

The lack of the phase transition in the open multi-lane
system contrasts with the behavior of the closed multi-
lane system. The behavior of the open model likely arises
due to the availability of a vertical particle bath that
enables rapid relaxation when jammed phases begin to
form.

5. CONCLUSIONS

In conclusion, we have used MPS and DMRG to con-
duct a systematic study of the 1D and multi-lane ASEP
with open horizontal boundary conditions under a cur-
rent bias. With regards to the physics of the ASEP, we
characterized the phase transition between the MC and
HD+LD phases in the 1D system, showing agreement
for the current cumulant generating function with known
semi-analytic expressions and demonstrating changes in
underlying microscopic structure via the steady-state
density and activity profiles. We additionally found
that the numerical entanglement entropy and spectrum,
though different in physical meaning to their quantum
counterparts, provide a global summary of the correla-
tions in the system, identifying the sharp structure of
the transition into the HD+LD phase. In the case of
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FIG. 6: The behavior of the open multi-lane ASEP showing the DMRG results for the normalized (a) CGF ψ = E0/(LxLy),
(b) current J = ∂λψ/(LxLy), and (e) current susceptibility χ = ∂2

λψ/(LxLy) as well as (f) the gap between the first and
second largest eigenvalues E0 and E1 for the two- and three-lane systems with lengths up to Lx = 30. Plots (c) and (d) show
the density ρ and vertical hopping activity Ky between lanes for a two-lane ASEP with Lx = 20. (g) shows the numerical
entanglement entropy S of a bipartition of the system at the center bond as a function of λ.

the multi-lane ASEP, we demonstrated that when bias-
ing the current longitudinally with a simple choice of
vertical hopping rates the development of the HD+LD
phase occurs when vertical particle entry/exit is prohib-
ited, but the phase boundary disappears entirely when
this is reintroduced. This emphasizes the complex inter-
play between vertical and horizontal hopping parameters
in this class of boundary driven processes and calls for
the development of a more complete understanding of the
multi-lane and fully 2D ASEP.

The TN methods used in this work are numerical re-
alizations of the matrix product ansatz, which has long
been used to produce semi-analytical solutions in driven
lattice models. As we have shown, the flexibility of the
numerical approach allows this framework to be applied
to problems where analytical techniques are difficult to
use, as demonstrated here with the multi-lane ASEP. In
addition to providing a simple numerical route to com-
pute large deviation functions, this approach also provide
access to details of the underlying microscopic configu-
rations, all without encountering the limitations of an-

alytic methods or the sampling difficulties that plague
Monte Carlo techniques. In addition, the success seen
here and in other recent work [46] indicates the poten-
tial of more general tensor network approaches, which
allow for a natural treatment of two-dimensional, three-
dimensional, and thermodynamic lattice systems [62–
64]. Currently, the TN methods remain challenging to
apply to continuum systems. Continuing to further the
application of tensor networks to nonequilibrium statis-
tical models thus remains an exciting area of ongoing
research.
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R. Orús, Physical Review B 92, 035142 (2015).


	Introduction
	Large Deviation Theory and Matrix Product States
	Model
	Results
	Benchmark MPS calculations of the 1D ASEP
	Multi-lane ASEP model
	Closed Multi-lane ASEP
	Open Multi-lane ASEP


	Conclusions
	Acknowledgments
	References

