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We present an iterative method to compute traveling wave exact coherent states (ECS) in Couette
and Poiseuille flows starting from an initial laminar profile. The approach utilizes the resolvent oper-
ator for a two-dimensional, three-component streamwise-averaged mean and exploits the underlying
physics of the self-sustaining process. A singular value decomposition of the resolvent operator is
used to obtain the mode shape for a single streamwise-varying Fourier mode. The self-interaction
of the single mode is computed and used to generate an updated mean velocity input to the resol-
vent operator. The process is repeated until a nearly-neutrally stable mean flow that self-sustains
is obtained, as defined by suitable convergence criteria; the results are further verified with direct
numerical simulation. The approach requires the specification of only two unknown parameters: the
wavespeed and amplitude of the mode. It is demonstrated that within as few as three iterations,
the initial one-dimensional laminar field can be transformed to a three-dimensional ECS.

I. INTRODUCTION

Exact coherent states (ECS) are invariant solutions to the Navier-Stokes equations (NSE). ECS in the form of
equilibria/traveling waves and periodic orbits have been computed for several of the canonical geometries and exhibit
statistical and structural features that closely resemble those observed in fully turbulent flows [1]. State-space repre-
sentations of these solutions [2–4] show a rich set of dynamics which may further our understanding of transition and
the underlying structure of turbulence, as well as inform ways to ultimately control it.

Of particular interest has been the connection between ECS and the self-sustaining process (SSP). The work of [5]
demonstrated how a streamwise-constant (but spanwise-varying) shear flow can generate wave disturbances via an
instability, and the nonlinear self-interaction of the wave can generate the necessary Reynolds stresses to sustain the
streamwise-constant flow and thus complete the SSP. Secondary instability analyses of streamwise-constant vortices
and streaks in channels have also been investigated by [6, 7]. [8] further elucidated the underlying mechanisms of the
SSP via a high-Reynolds number asymptotic vortex-wave interaction theory; they demonstrated excellent agreement
between their theory and numerical solutions, even for moderate Reynolds numbers. Such frameworks provide promise
to the continued development of self-consistent models which may be broadly applicable to a wide range of flows [9].

The presence of streamwise-constant structures in fully turbulent flows has motivated the development of low-order
models as well. In particular, the decomposition of the flow into a streamwise-averaged two-dimensional, three-
component (2D/3C) velocity field and streamwise-varying perturbations has been investigated by numerous authors
[10–12]. Notably, it has been found that practical simplifications can be made by restricting the permissible nonlinear
interactions among the streamwise-varying modes, termed quasilinear or restricted nonlinear (RNL) models. It was
found by only allowing self-interactions to feed back to the 2D/3C mean, and either neglecting the other interactions
or modeling them with noise, a flow field with many of the salient features of turbulence could be produced that self-
sustains; furthermore, only a small number of streamwise-varying modes were needed to achieve this self-sustaining
state [13]. Such ideas have also been extended successfully to the description of ECS in channels by [14, 15].

Herein, we wish to extend this type of framework to resolvent-based approaches. It has been previously demonstrated
[16, 17] that resolvent analysis can be useful for providing low-order descriptions of ECS in the context of a 1D mean
(streamwise and spanwise averaged). Presently, we will formulate the analogous resolvent operator for a 2D/3C mean
at finite Reynolds number and leverage our understanding of the underlying self-sustaining mechanisms to develop a
physics-based methodology for computing ECS. In this respect, our formulation will share many similarities to the
work of [8] but without invoking high-Reynolds number asymptotics. Additionally, we will show the streamwise-
averaged mean is particularly relevant from a linear stability perspective in terms of predicting relevant frequencies
and flow structures, as analogously explored in flows such as cylinder wakes and thermosolutal convection [18, 19].
Despite the increased complexity with the multi-component and multi-dimensional mean field, we will demonstrate
this framework can be used to compute ECS from very minimal a priori knowledge, namely starting from an initial
laminar field.



2

II. METHODOLOGY

A. Governing equations

We consider the non-dimensional, incompressible NSE for flow in a channel

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∆u

∇ · u = 0.
(1)

Here, u is a three-component velocity field u = [u(x, t), v(x, t), w(x, t)]
T

and p(x, t) is the pressure, each a function of
three spatial dimensions x = (x, y, z) and time t. The components of u and x are aligned with the streamwise, wall-
normal, and spanwise directions respectively. The equations are non-dimensionalized with h, the channel half-height,

and the characteristic velocity u†, yielding the corresponding Reynolds number Re = u†h
ν where ν is the kinematic

viscosity. In the case of Couette flow, u† is chosen as half the relative velocity of the moving walls. For Poiseuille flow,
we focus on the case of a fixed mass flux, denoted as Q, and use the equivalent laminar centerline velocity u† = 3Q

4h .
We consider a domain periodic in the streamwise and spanwise directions with lengths of Lx and Lz respectively;
the wall-normal domain extends from y = −1 to y = 1. The velocity field is decomposed into the sum of a 2D/3C
streamwise-averaged (and time-averaged) mean, assumed known a priori, and corresponding fluctuations

u(x, t) = U(y, z) + u′(x, t). (2)

Substituting equation 2 into equation 1 yields for the fluctuations

∂u′

∂t
+ U · ∇u′ + u′ · ∇U +∇p′ − 1

Re
∆u′ = −u′ · ∇u′ + 〈u′ · ∇u′〉

∇ · u′ = 0,
(3)

with 〈 〉 denoting an average over x and t. We express the fluctuating velocity and pressure fields as Fourier modes
in the streamwise direction and in time[

u′(x, y, z, t)
p′(x, y, z, t)

]
=

∫∫ ∞
−∞

[
û(kx, ω; y, z)
p̂(kx, ω; y, z)

]
ei(kxx−ωt)dkxdω, (4)

where we introduce the streamwise wavenumber kx and temporal frequency ω. We can eliminate the pressure and
rewrite the equations for the fluctuations in terms of the vertical velocity v̂ and normal vorticity η̂ = ûz − ikxŵ.
Following the notation of [12], we define ∆ = ∂2yy + ∂2zz − k2x, ∆2 = ∂2zz − k2x and express the governing equations as

(−iωI + L1)

(
v̂
η̂

)
= Bf̂ , (5)

where

L1 = M−1L, (6)

M =

(
−∆ 0

0 1

)
, (7)

L =

(
LOS LC1

LC2 LSQ

)
, (8)

B = M−1
(
−ikx∂y ∆2 −∂2yz
∂z 0 −ikx

)
, (9)

and f̂ =
(
f̂u, f̂v, f̂w

)T
= − (u′ · ∇u′)k is the Fourier-transformed nonlinear forcing term where k denotes the wavenum-

ber pair (kx, ω). The full mathematical form of the block operators in L, the linearized Navier-Stokes operator as-
sociated with U(y, z) comprised of Orr-Sommerfeld (OS), Squire (SQ), and coupling (C) operators, is found in the
appendix. Equation 5 is recast into the input/output form

û = H(kx, ω)f̂ , (10)
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where the resolvent operator is given by

H(kx, ω) = C(−iωI + L1)−1B, (11)

and

C =

 −ikx∆2
−1∂y ∆2

−1∂z
1 0

−∆2
−1∂2yz −ikx∆2

−1

 . (12)

Notably, H(kx, ω) requires only U(y, z) as an input. For numerical implementation, the wall-normal operators are
discretized with Chebyshev differentiation matrices while Fourier differentiation matrices are used for the operators in
the spanwise direction [20]. The operators M and L are made invertible via enforcement of the boundary conditions;
in the velocity/vorticity formulation, this corresponds to v̂ = ∂v̂

∂y = η̂ = 0 at the walls.

The corresponding mean-momentum equations which govern U(y, z) are given by
V Uy +WUz + ∂〈p〉

∂x −
1
Re (Uyy + Uzz) = 〈fu〉

V Vy +WVz + ∂〈p〉
∂y −

1
Re (Vyy + Vzz) = 〈fv〉

VWy +WWz + ∂〈p〉
∂z −

1
Re (Wyy +Wzz) = 〈fw〉

Vy +Wz = 0.

(13)

Notably, the equations for V and W are decoupled from U . From the continuity equation, we can define the stream-
function Λ(y, z) [11, 12] such that

V = −Λz, W = Λy. (14)

Consequently, upon differentiating the V -momentum with respect to z and the W -momentum with respect to y and
subtracting the two, we can recast equation 13 as{

Λz [Λyyy + Λyzz]− Λy [Λzzz + Λyyz] + 1
Re [Λyyyy + Λzzzz + 2Λyyzz] = 〈fv〉z − 〈fw〉y

−ΛzUy + ΛyUz + ∂〈p〉
∂x −

1
Re (Uyy + Uzz) = 〈fu〉.

(15)

Thus, the solution to the mean-momentum equations amounts to first solving a nonlinear equation for Λ(y, z) and
using this result to solve a linear equation for U . In discretized form (Chebyshev/Fourier), the equation for Λ yields a
system of nonlinear algebraic equations and is solved for iteratively using the MATLAB function fsolve with an initial

guess of Λ = 0. In the case of Couette flow, ∂〈p〉
∂x = 0. For Poiseuille flow, ∂〈p〉

∂x is adjusted to enforce a prescribed
mass flux, here taken as Q = 4/3.

B. A low-dimensional iterative scheme

Returning our attention to the resolvent operator, there are many instances in which the operator is inherently
low-dimensional and linear tools can be leveraged to exploit this property. Specifically, a singular value decomposition
(SVD) of H(kx, ω) yields

H(kx, ω) = ΨΣΦH , (16)

where Ψ contains an ordered set of response modes ψ̂i(y, z), Φ contains an ordered set of forcing modes φ̂i(y, z), and
Σ is a diagonal matrix containing the singular values σi representing the gain between forcing and response. When
the operator is low-rank, i.e. σ1 � σ2, we can express, often to a good approximation, the velocity field as

û(kx, ω) ≈ Aψ̂1(y, z), (17)

where A = σ1χ1 and the weight χ1 = 〈f̂ , φ̂1〉 is the projection of the nonlinear forcing onto the leading forcing
mode. It has been demonstrated for several of the lower branch ECS in channels [21] that the approximation in
equation 17 is a very accurate representation when evaluated at the fundamental streamwise wavenumber kxf

= 2π
Lx

and corresponding frequency ω = ckxf
, where c is the wavespeed of the solution. This low-rank behavior can be

attributed to, as will be demonstrated more rigorously in the following section, the (near) neutral stability of the
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H(kxf , ω)

û ≈ Aψ̂1
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Nonlinear
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FIG. 1: An adaptation of the self-sustaining process [5] used to iteratively compute ECS. An initial laminar velocity
profile serves as an input to the resolvent operator. The leading singular mode of the operator provides an

approximation of the streamwise-varying field; the nonlinear self-interaction is computed and used to generate a new
mean velocity field U(y, z). The loop is repeated until U(y, z) not only converges, but also yields a resolvent

operator that is high-gain (i.e. σ1 � 1) and sufficiently low-rank (i.e. σ1 � σ2). The latter two conditions serve as a
proxy for the neutral stability of U(y, z). For a fixed box size and Reynolds number, the loop requires the

specification of only two unknown parameters: the wavespeed c = ω/kxf
and the amplitude A of the

streamwise-varying mode.

mean U(y, z) which effectively creates a resonance condition at the frequency ω = ckxf
. In this case, the resolvent

norm is inversely proportional to the distance to the nearest eigenvalue [22]; in the strict limit of a neutrally-stable
eigenvalue, the resolvent operator would be singular. Furthermore, the Reynolds stresses generated by the single
streamwise-varying Fourier mode are enough to sustain the mean, completing the self-sustaining process as outlined
by [5]. Thus, from the resolvent-based perspective of equation 17, with knowledge of U(y, z) we can effectively close
the system. The only unknown is the weight χ1 which can be computed with a weakly-nonlinear type analysis [23].

However, in general, a priori knowledge of U(y, z) can be considered a very limiting assumption. Here, we wish to
utilize the aforementioned framework but starting from simpler origins. Specifically, we wish to demonstrate if progress
can be made starting from an initial laminar profile. We propose an iterative procedure as illustrated in Figure 1. We

use the initial laminar profile (U(y, z) = yî, U(y, z) = (1− y2)̂i for Couette and Poiseuille flows respectively, where î
is a unit vector in the streamwise direction) as an input to the resolvent operator. Using equation 17, the fluctuating
velocity field is approximated by the leading singular mode of the resolvent operator. The nonlinear self-interaction is
computed and fed into the right-hand side of equation 15, which is solved to provide an updated mean velocity input.
The procedure is then repeated until three conditions are met: (i) the cycle self-sustains (i.e. U(y, z) converges),
(ii) the low-rank approximation of equation 17 is valid, and (iii) U(y, z) is (nearly) neutrally stable. The latter two
conditions are monitored by analyzing the signature of the singular values of the resolvent operator. Whether these
three conditions is met is dependent on the selection of the two unknown parameters in the model: the wavespeed
c and amplitude A (we emphasize that while in general A is complex, since we are considering a single streamwise-
varying Fourier mode we need only specify the magnitude of A). Stated more precisely, for a fixed box size and
Reynolds number, we seek values of A and c such that

∥∥Uj+1(y, z)−Uj(y, z)
∥∥
2

‖Uj(y, z)‖2
≤ ε

σ1
σ2
≥ γ

σ1 ≥ σc

(18)

for some threshold values ε, γ, and σc, where j = 0, 1, 2, ... is the iteration index, U0(y, z) is the laminar profile, and
‖ ‖2 denotes the L2-norm. For what follows, we choose values of ε = 0.01, γ = 10, and σc = 1000 though significant
sensitivity to these values was not observed. It was found that fixing values for A and c at iteration j = 0 more reliably
lead to convergence. The wavespeeds considered ranged from zero to the maximum velocity of the laminar profile.
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An upper bound for the amplitude A could be approximated by finding a critical value such that the computation
of the streamfunction Λ during the initial iteration failed to converge. With only two parameters, a sweep could be
performed to find candidate values in a manner that was computationally tractable. Inaccuracies in the true values
of A and c of approximately ten and five percent respectively still lead to converged solutions, suggesting a certain
level of robustness to the algorithm.

III. RESULTS

We consider the same domain sizes of [24] and [4] to compute ECS in Couette and Poiseuille flows and, in this
particular study, seek solutions for the two flows for Re = 1000 and Re = 3000 respectively. This choice of domain and
Reynolds number was selected to facilitate comparisons to previous studies. A summary of the relevant geometrical
and flow parameters are found in Table I. With the box size and Reynolds number established, we can proceed with
the algorithm illustrated in Figure 1.

TABLE I: Summary of relevant flow and geometrical parameters.

Flow Lx Lz Nx Ny Nz Re c A
Couette 2π/1.14 2π/2.5 32 35 32 1000 0 0.02

Poiseuille π π/2 24 81 24 3000 0.88 0.009

In Figure 2, we show the results of the iterative approach for Couette flow with wavespeed of c = 0 and amplitude
A = 0.02. We plot the magnitude of the û, v̂, and ŵ components of the fundamental streamwise Fourier mode, along
with the resulting mean velocity field (deviation from laminar). The first three columns show the first three iterations
respectively, with the third iteration satisfying the criterion outlined in equation 18. To verify if this is indeed a
potential solution, we write the velocity field in the form

u(x, y, z) = U(y, z) +
(
Aψ̂1e

ikxf
x + c.c.

)
(19)

where c.c. denotes complex conjugate, and input this field to the Newton-Krylov-hookstep solver implemented in
Channelflow [25]. While we only specify the mean and fundamental streamwise Fourier modes, we use the streamwise
resolution as shown in Table I to match previous studies and ensure proper convergence of the solution. This guess
quickly converges to an ECS solution, as plotted in the last column of Figure 2, needing only three Newton iterations
to achieve a relative error of O(10−13). Thus, the field from the third iteration provides an excellent approximation;
the relative difference between this field and the true solution with respect to an L2-norm is ≈ 0.7%. In addition, for
the plots of the converged solution, we show the location of the corresponding critical layer U(y, z) = c = 0. As is
the case with most lower branch solutions, the fluctuations are localized around this location. It should be noted this
particular ECS has been previously computed and reported for Re = 400 by [24] (and labeled as EQ7), though not
by this methodology.

In a similar manner, the results for Poiseuille flow with choices of c = 0.88 and A = 0.009 are found in Figure 3. We
plot the same fields as in Figure 2, but with the first three columns representing the first, second, and fifth iterations
respectively and the last column showing the converged solution obtained from Channelflow (requiring four Newton
iterations). We again observe a close correspondence between the final iteration and the true solution (relative error
of 1.4%), as well as localization of the fluctuations around the critical layer U(y, z) = c = 0.88. To the authors’
knowledge, this solution has not been previously reported. Though we do not show it here, a second traveling wave
solution was also found using this iterative method for values of c = 0.69 and A = 0.01, suggesting multiple solutions
can be computed for a fixed Reynolds number and box size using this approach.

In order to validate the notion of the (near) neutral stability of the ECS mean fields, we plot the corresponding
eigenvalues of the linearized Navier-Stokes operator L1 associated with U(y, z) (for the converged solution) and
evaluated at kx = kxf

, as seen in Figure 4. The same computation was performed on a higher-resolution grid to
ensure proper convergence of the eigenvalues. We also plot σ1 and σ2 (black and green lines, respectively) as a
function of wavespeed for the two flows. We observe the presence of an approximately neutrally stable eigenvalue for
each flow, as indicated by the red circles located at the wavespeed of the respective solutions. Consequently, we see
a near-resonance response in the singular values, with σ1 � 1 and σ1 � σ2 when evaluated at the wavespeed. It is
worth remarking that these associated eigenvalues lie, albeit barely, in the unstable right-half plane (the growth rates
are O(10−3)). In general, this would invalidate a resolvent analysis as these disturbances would grow in time and
would not yield a stationary mean flow. However, in a practical numerical sense for ECS, we consider the growth rates
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

FIG. 2: Couette flow: The amplitude as a function of spanwise (horizontal axis) and wall-normal (vertical axis)
distance of the (a)-(d) u-component, (e)-(h) v-component, and (i)-(l) w-component of the fundamental streamwise
Fourier mode kxf

along with the (m)-(p) resulting mean velocity U(y, z) (shown as the deviation from laminar)
generated from the self-interaction of the single Fourier mode. The first three columns represent the first three

iterations respectively for an initial laminar profile, and the last column shows the converged field computed using
Channelflow with iteration 3 as an input. The white dashed line in the last column designates the location of the

critical layer, U(y, z) = 0. This solution was previously computed by [24] and designated as EQ7.

sufficiently small to be regarded as effectively neutrally stable. Though not reported here, additional computations
suggest this growth rate continues to decrease for increasing Reynolds number. This is consistent with the high-
Reynolds number asymptotic results of [8], in which the flow is properly described by a single streamwise varying
mode; at this moderate Reynolds number, we are clearly approaching, though with small numerical discrepancy, this
asymptotic behavior. In this instance, we also note that the corresponding eigenvectors are identical in structure
to the leading resolvent modes [26]. The fact that the eigenvalues and eigenvectors associated with the mean can
correctly identify the wavespeed and spatial structure is again consistent with other studies in which a linearization
about the mean flow was performed. In particular, due to the dominance of the single streamwise varying mode,
the associated nonlinear contributions from higher wavenumbers is negligibly small and equation 5 yields (setting the
right-hand side to zero) the associated eigenvalue problem, as argued by [19]. However, at least with regards to the
iterative algorithm used herein where the initial laminar field is not neutrally stable, it was observed that use of the
singular modes of the resolvent operator, as opposed to the eigenvectors of the linearized operator, more robustly led
to convergence of solutions.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

FIG. 3: Poiseuille flow: The amplitude as a function of spanwise (horizontal axis) and wall-normal (vertical axis)
distance of the (a)-(d) u-component, (e)-(h) v-component, and (i)-(l) w-component of the fundamental streamwise
Fourier mode kxf

along with the (m)-(p) resulting mean velocity U(y, z) (shown as the deviation from laminar)
generated from the self-interaction of the single Fourier mode. The first three columns represent the first, second,

and fifth iterations respectively for an initial laminar profile, and the last column shows the converged field
computed using Channelflow with iteration 5 as an input. The white dashed line in the last column designates the

location of the critical layer, U(y, z) = c = 0.88.

IV. CONCLUSION

We have presented a low-order, resolvent-based method to compute ECS in channels. We demonstrated, starting
from an initial laminar profile, an iterative procedure to compute traveling wave solutions in Couette and Poiseuille
flow requiring the specification of only two unknown parameters, namely the wavespeed and amplitude of a single
streamwise-varying Fourier mode. The low-dimensionality of the approach leverages the properties of the resolvent
operator for the underlying (nearly) neutrally stable (streamwise-averaged) mean flow and perhaps suggests that
(lower-branch) solutions of the Navier-Stokes equation can be described in extraordinarily simple forms.

The framework is quite general in its formulation; it would be worthwhile to utilize this approach for other shear
flows such as boundary layers and pipe flow. In addition to starting from a laminar solution, simple analytic expressions
for the mean forcing may be useful to generate an initial roll/streak mean flow, as explored by [5] and [8]. A potential
improvement to the current formulation would be to incorporate an optimization step to more directly drive the mean
flow towards a neutrally stable configuration. While the current approach seems only applicable to lower-branch states
at these moderate Reynolds numbers, there is evidence these ideas can be extended to upper-branch states, though
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FIG. 4: Eigenvalues (dots) of the linearized Navier-Stokes operator associated with the 2D/3C mean L1 evaluated at
kxf

, and the first two singular values as a function of wavespeed (black and green lines, respectively) of the (a)
Couette and (b) Poiseuille ECS solutions. We note the presence of a nearly neutrally stable eigenvalue (red circles)

and hence large resolvent norm for the respective wavespeeds of c = 0 and c = 0.88 of the solutions (dashed blue
line).

at higher Reynolds numbers [27], and is a subject of future work; however, flows with more than one energetically
significant streamwise-varying mode would require more sophisticated modeling efforts. We wish to eventually extend
this methodology to the computation of periodic orbits as well. Ultimately, we hope the results presented herein will
inform the continued efforts to model turbulence using the 2D/3C framework, particularly by augmenting them with
frequency-based input/output techniques.

Appendix

The block operators in equation 8, i.e. the Orr-Sommerfeld, Squire, and coupling operators for a 2D/3C mean,
are defined below. These operators have previously been defined in [12] and [22] where terms involving Λ have been
neglected.

LOS = ikxU∆ + ikxUzz + 2ikxUz∂z − ikxUyy + 2ikxUz∂
3
yyz∆

−1
2 + 2ikxUyz∂

2
yz∆

−1
2

− 1

Re
∆2 − (Λyyz + Λzzz) ∂y + 2 (Λyyz + Λzzz) ∂

3
yzz∆

−1
2 − (Λyyy + Λyzz) ∂z

− 2Λzz∂
3
yyz∆

−1
2 + 2Λyz∂

3
yzz∆

−1
2 − Λz∆∂y − 2Λzz∂

2
yz − Λyyyz − Λyzzz − Λyz∆

+ Λyyy∂z∆ + 2Λyz∂
2
zz + Λyyzz∂

2
yz∆

−1
2 + Λzzzz∂

2
yz∆

−1
2 + Λzz∂

2
yz∆∆−12

(A.1)

LC1 = −2k2xUz∂y∆−12 − 2k2xUyz∆
−1
2 + 2ikx (Λyyz + Λzzz) ∂z∆

−1
2 − 2ikxΛzz∂

2
yy∆−12

+ 2ikxΛyz∂
2
yz∆

−1
2 + ikxΛyyzz∆

−1
2 + ikxΛzzzz∆

−1
2 + ikxΛzz∆∆−12

(A.2)

LC2
= −Uz∂y + Uyz + Uy∂z − Uzz∂2yz∆−12 + ikxΛyyzz∂

2
yy∆−12 (A.3)

LSQ = ikxU − ikxUzz∆−12 + Λyz − Λz∂y + Λy∂z − Λzz∂
2
yz∆

−1
2 −

1

Re
∆ (A.4)
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