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Spatiotemporal dynamics of short- and long-time structural relaxation are measured experimen-
tally as a function of packing fraction, ¢, in quasi-two-dimensional colloidal supercooled liquids and
glasses. The relaxation times associated with long-time dynamic heterogeneity and short-time intra-
cage motion are found to be strongly correlated and to grow by orders of magnitude with increasing
¢ towards dynamic arrest. We find that clusters of fast particles on the two timescales often overlap,
and, interestingly, the distribution of minimum-spatial-separation between closest non-overlapping
clusters across the two timescales is revealed to be exponential with a decay length that increases
with ¢. In total, the experimental observations suggest short-time relaxation events are very often
precursors to heterogeneous relaxation at longer timescales in glassy materials.

Two-step structural relaxation is a hallmark feature
of supercooled liquids and glasses that characterizes the
spatiotemporal dynamics of disordered packings [1]. The
first step, called S—relaxation, is associated with parti-
cle motion within cages formed by their neighbors. The
second step, often called a—relaxation, is associated with
cage rearrangements and cage escape. While experiment,
theory, and simulation have revealed that a—relaxation
in supercooled liquids and glasses is heterogeneous and
cooperative [1-12], much less is known about the micro-
scopic underpinnings of f—relaxation processes. Inhomo-
geneous mode coupling theory predicts [13], and simula-
tion based on finite-size-scaling arguments [14] suggest,
that S—relaxation (i.e., motion within the cage) should
be cooperative. These conjectures, however, are unex-
plored in experiment. Only a few experiments have fo-
cused on the S—relaxation, and none have considered the
possible spatial correlations between g—relaxation and
a—relaxation rearrangement clusters, nor the evolution
of these correlations upon approach of dynamic arrest.

Nevertheless, important work establishing connections
between processes across timescales has been done [13-
28]. Experiments on molecular glasses suggest 73, the
timescale associated with S—relaxation, is correlated
with 7., the timescale associated with a—relaxation.
Many of these experiments are in close agreement with
the coupling model of Ngai (7, o Tl/(l_n), where n is the
system-dependent coupling parameter) [15-19]. Other
models, with different underlying physics, such as mode
coupling theory (MCT) [29] and the quasi-point defect
model [30], also predict relationships between the two
distinct macroscopic timescales, but the power-law ex-
ponent differs among models. Therefore, systematic ex-
periments that probe spatiotemporal structural correla-
tions between relaxation processes at the two distinct
timescales are desirable. Colloidal supercooled liquids
and glasses offer an excellent model system to elucidate
these phenomena with single-particle resolution upon ap-

proach of dynamic arrest.

In this communication, we experimentally investigate
these phenomena by measuring the spatiotemporal dy-
namics associated with short- and long-time structural
relaxation as a function of packing area fraction, ¢, in
a series of quasi-two-dimensional binary-sphere colloidal
supercooled liquids and glasses. We find that 73 scales as
a power law with some well-known timescales associated
with long-time dynamic heterogeneity (but not 7,); the
power-law exponent agrees with MCT predictions. More-
over, the spatial distribution of dynamic heterogeneities
at short and long timescales is indicative of strong cor-
relations between short- and long-time relaxation events.
These correlations, which grow with increasing dynamic
arrest, are revealed by the spatial overlap of fast-moving
particle clusters at long and short times and by a new,
packing-fraction-dependent length scale associated with
non-overlapping clusters at the two timescales. Taken
together, the observations provide evidence that motions
“beyond” the nearest-neighbor cage, are spatiotempo-
rally correlated with short-time displacements “within”
the cage.

The experiments employ binary particle suspensions
of small and large polystyrene spheres with diameters
os = 1.0 pm and o; = 1.3 pm, respectively. This choice
of diameter ratio, with a particle number ratio of approx-
imately one, prevents crystallization. The aqueous col-
loidal suspensions were loaded into a wedged-shaped cell,
and the cell was then oriented vertically to induce particle
sedimentation into a quasi-two-dimensional (quasi-2D)
region within the cell. When the desired packing area
fraction, ¢, was obtained, the cell was left horizontal on
the microscope stage to equilibrate for 3-5 hours. We en-
sured that aging effects measured over the experimental
duration are negligible in all samples (see Supplemental
Material [31]).

For each ¢, the trajectories of all particles were mea-
sured by video optical microscopy using a 100X oil im-



mersion objective (NA = 1.4) at a frame rate of 4 fps.
Depending on ¢, the experimental data acquisition time
varied from 25 to 50 minutes. Particle center-of-mass
was tracked using MATLAB, and data was analyzed us-
ing standard MATLAB and Python codes [32]. ¢ was
estimated using ¢ = [Nym(%)? + Nyw(%)?] /A, where N
and N; represent the number of small and large particles
in the field-of-view, respectively, and A is the total area
of the field-of-view. The range of ¢ was 0.56 < ¢ < 0.81,
and %l = 1.00 £ 0.10. Note, this wide range of packing
fractions spans from liquid to the deeply supercooled lig-
uid regime (Fig. 1, Fig. 2), and the highest area fraction
(= 0.81) is very close to the MCT crossover area fraction
[33].

A traditional way to quantify dynamics utilizes the
ensemble-averaged particle mean-squared displacement
(MSD), (Ar2(t)) = (& S8 (Fu(t + to) — 7 (t0))?). Here,
N is the total number of particles, 7% is the position of
k" particle, and () denotes an average over all particles
for all initial times, to, and the lag time, t. Figure 1(a)
shows the temporal evolution of the measured MSD for
various ¢. The inflection point in the MSDs at short
times defines the short-relaxation time, 75 [14, 20, 23].
It is apparent as an early-time minimum in the plot
of dIn((Ar?(t)))/dIn(t) versus t (Fig. 1(b)). Roughly,
73 corresponds to the time at which particle motion is
limited by the cage formed by its neighbors, i.e., the
time at which the particle “feels” its cage. The in-
set of Fig. 1(b) shows 73 increasing with ¢. Note,
when ¢ > 0.79, the MSDs remain predominantly sub-
diffusive over the entire experiment duration, and the
curves of dIn((Ar?(t)))/dIn(t) versus t exhibit broad
minima. Thus, error bars associated with 73 grow with
increasing ¢.

FIG. 1: (a) Log-log plot of the MSD, (Ar?(t)), versus lag
time ¢ for different ¢. (Ar2(t)) is scaled by the square of
the small sphere diameter, os. The solid black line has unit
slope. (b) Derivative of the logarithm of (Ar?(t)) with respect
dIn(Ar3(t))
dl1n(t)
symbol and color code for ¢ are the same as (a). Solid colored
lines are polynomial fits to the data near the minima. Inset
shows variation of 73 with ¢. Note, the lack of clear minimum
at ¢ = 0.56 prevented estimation of its 3.

to logarithm of time, , versus t at various ¢. The

For spatiotemporal dynamics at longer timescales, the
definitions of relaxation time are less standard. There-

fore, we quantify long-time structural relaxation using
three different methods (Fig. 2). The first approach em-
ploys the self-intermediate scattering function, defined
as Fy(q,t) = 2 (X0 exp(iq- 7u(t + to) — 7 (to))), where
¢ is the spatial wavevector. Herein we choose ¢ to have
magnitude ¢ = 27 /0,, where o, corresponds to the first
peak position in the radial pair-correlation function, g(r),
of the sample. Figure 2(a) shows the temporal evolu-
tion of Fy(g,t) for various ¢. Notably, for ¢ > 0.66, the
long-time decay of Fy(q,t) has a stretched-exponential
form, i.e., Fi(q,t) o< exp —(t/7)? with 8 < 1 (Fig. 2(a)).
By convention, the time at which Fs(q,t) decays by 1/e
is called the long-time structural relaxation time, 7,
[34, 35]. T4 increases with increasing ¢ (Fig. 2(d)). The
stretched-exponential decay of Fi(g,t) at long lag times
is indicative of heterogeneous relaxation dynamics, a key
feature of glass-forming liquids [1, 35]. Unfortunately,
Fs(q,t) lacks information about the times when relax-
ation dynamics are most heterogeneous. For this reason,
we employ two other well-known algorithms to better
characterize heterogeneous relaxation dynamics at long
times. These schemes yielded relaxation times wherein
dynamic heterogeneities are most apparent, which were
somewhat different than 7.

The first of these (less traditional) methods utilizes
the four-point susceptibility x4(Aa,t) [7, 36-38]. This
function quantifies the temporal variance of the two-
point self-correlation function, Q2(Aa,t): x4(Aa,t) =
N((@a(8a,1) — (Qa(Aa,1)?).  Here, Qa(Aa,t) —

i Ziv exp 7(F’“(t+2t°A)(;Fk(t°))2, Aa is a pre-selected prob-

ing length scale, and the other symbols have their usual
meanings. x4(f) measures the non-Gaussian contribu-
tion to the dynamics and is largest in the vicinity of the
time, 74; at 74, the dynamics are most heterogeneous
(Fig. 2(b)). Note, the peak-amplitude, y4(74), strongly
depends on the probing length scale, Aa (see Supplemen-
tal Material [31]). Therefore, in Fig. 2(b) we plot x4(¢)
versus lag time for each ¢ using the values of Aa that
maximize x4(t). The variation of both x4(74) (Fig. 2(b))
and 74 (Fig. 2(d)) with ¢ show that increased supercool-
ing causes structural relaxation to become increasingly
heterogeneous and slow.

The final analysis scheme involves direct visualization
of the dynamic heterogeneities. We first pick the top
10% most-mobile particles in the sample, i.e., associated
with each lag time t. Then we identify particle clus-
ters of most-mobile particles based on nearest neighbor
distances (see Supplemental Material [31]). These clus-
ters of most-mobile particles are believed to facilitate
structural relaxation in supercooled liquids and glasses
[1, 3, 4, 35]. To determine the time when the dynamics
are most heterogeneous, we measure the temporal evolu-
tion of the mean-cluster-size ({N.(t))) of the most-mobile

2
particles. (N.(t)) = %, where P(N.) is the
: 2(0))

probability of finding a cluster of size N, (Fig.
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FIG. 2: (a) Self-intermediate scattering function Fi(q,t) plot-
ted versus lag time t for different ¢. The solid lines are
stretched exponential fits, i.e., exp(—(t/7o)?). The black hor-
izontal line is drawn at Fs(g, 7o) = 1/e; its intersection with
Fs(q,t) determines 7. (b) Four-point susceptibility xa4(t),
with probing length scale (Aa) chosen to maximize x4, ver-
sus lag time ¢ at each ¢. (c) Mean cluster size of the top 10%
of the most-mobile particles, (Nc(t)), plotted versus lag time
t for different ¢. The symbols and color code for ¢ are the
same as in (a)-(c). Since dynamic heterogeneities are absent
at the lowest packing fraction (¢ = 0.56), the long-time relax-
ation timescales, 74 and 7., were not estimated for the lowest
packing fraction in (b) and (c), respectively. Solid lines in (b)
and (c) are polynomial fits to the data near the peak. (d)
Long-relaxation timescales 74 (squares), 7. (circles), and 7o
(triangles) versus ¢.

[3, 4]. The time at which (N.(t)) peaks is 7.; 7. defines
the time at which the heterogeneous dynamics are most
prominent within this scheme. Figure 2(c) is thus analo-
gous to Fig. 2(b). Similar trends with respect to packing
(¢) are observed for (N.(7.)), 7, and x4(74), T4, respec-
tively. Notice, for fixed ¢, the trends in Fig. 2(d) show
that 7. is always slightly less than 7.

Next, we examine how the three long-time relaxation
timescales, i.e., T4, T¢, Ta, vary as a function of the short-
time relaxation time, 753. Figure 3 shows this variation.
All three long-time relaxation timescales increase mono-
tonically with 753. Clear power-law scaling between 7,
and 73 is not evident in Figure 3. This finding differs from
early experimental work based on dynamic light scatter-
ing from 3D colloidal systems that suggested a power-

law relation between 7, and 73 with an exponent con-

sistent with the MCT predictions [28]; i.e., T TE;H%),

wherein a and b are mode coupling exponents [29]. Note,
however, 73 was not measured directly in [28]; rather, it
was inferred using MCT predictions. By contrast, spa-
tiotemporal information from optical microscopy permits
experimental determination of three long-time structural

relaxation timescales, 7., 74, and 7., and the latter two
timescales are sensitive to long-time dynamic hetero-
geneities. Interestingly, when using all ¢ data, both the
T4, and 7, timescales exhibit power-law scaling versus
73, albeit over our limited experimental dynamic range.
Moreover, the exponent (~ 1.5) is in concordance with
MCT predictions; for our system a = 0.32 + 0.01 and
b = 0.61 £ 0.02 [33]. These findings could enable es-
timation of long-time dynamic heterogeneity timescales
(1c and 74) from information about short-timescale relax-
ation (73) and vice versa, but it requires further study
and explanation.
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FIG. 3: Log-log plot of 74 (squares), 7. (circles), and 7o (tri-
angles) versus short-relaxation time (7g). The black and red
lines are fits that suggest power-law scaling and have a slope
of ~ 1.5. The blue line is to guide the eye for 7,.

The observation of power law scaling between long-
time dynamic heterogeneity timescales (7., 74) and 73
prompted us to investigate possible spatial correlations
of relaxation dynamics across the timescales (7. versus
7). To this end, we chose the top 10% of the most-
mobile particles associated for lag times of 7, and 73,
and we identified all associated particle clusters [3, 4, 35].
Figure 4(a) and (b) show single snapshots of clusters of
most-mobile particles at ¢ = 0.73 and ¢ = 0.79, respec-
tively. The sizes of the both 7.— and 73—clusters increase
with ¢, and at a fixed area fraction, the mean size of the
Tg—clusters is smaller than that of the 7.—clusters (Fig.
2(c), Fig. 4(a) and (b)).

We quantified the morphology of both 7.— and
Tg—clusters. The morphology of 7.—clusters has been
investigated in prior experiments [3, 4, 35, 39]. Here,
consistent with these works, we observed them to be-
come increasingly compact as the samples become more
dynamically arrested (see Supplemental MAterial [31]).
By contrast, the structural relaxation and corresponding
morphology of 7g—clusters has never been probed. Inter-



estingly, the 7g—clusters are string-like at low ¢, and they
become predominantly compact at higher ¢ (see Supple-
mental Material [31]). In total, the observations suggest
that both short-time (intra-cage motions) and long-time
(inter-cage motions) structural relaxation are heteroge-
neous and cooperative in nature.

Finally, we explore the spatial correlations between
7.— and Tg—clusters. In Fig. 4(a) and (b), we exhibit
these mobile clusters for a single frame on both long- and
short-timescales at two different ¢. While it is difficult for
us to measure the temporal trajectory of 7g3—cluster(s) as
they evolve and potentially contribute to the generation
of 7.—cluster(s), we can explore other types of connec-
tions between the spatial distribution of clusters of most-
mobile particles across the 73 and 7, timescales (i.e., for
fixed initial time ¢).

Recent two-dimensional numerical simulations suggest
the potential for overlap of short-time clusters of fast par-
ticles (quantified by particle Debye-Waller factor) with
clusters of mobile particles at longer timescales [26]. To
investigate this notion systematically with ¢, we first
measured the overlap fraction of 7.—clusters with re-
spect to Tg—clusters. Here, an overlap is defined to occur
whenever a 7.—cluster shares at least one of its particles
with those in a 7g—cluster. Interestingly, the fraction
of overlapping clusters increases with increasing packing
fraction (Fig. 4(c)). This observation suggests that the
parts of the sample that relax at long-time (7.—clusters)
are fairly likely to include fast-cluster regions at shorter
timescales (73—clusters); moreover, the probability for
interaction across timescales increases on approaching
dynamic arrest. In other words, relaxation at the two
distinct timescales appears to be correlated, and this cor-
relation becomes stronger with increasing ¢. Note, exper-
imental work in granular systems has also probed spatial
structure of short- and long-time dynamics [40]; this work
used instantaneous hopping events (only) as the quanti-
fier for dynamic heterogeneities. Our approach is differ-
ent in that it focuses on continuous particle displacements
that include both hopping and diffusive motions that oc-
cur during the short- (73) and long-time (7.) windows.
The hop-only analysis is limited to deeply supercooled
liquids and glassy samples (with relaxation via activated
hops). Our approach is in line with some well-established
notions about dynamic heterogeneities [1, 3, 4, 35] and
can be applied to particulate systems at lower packing
fractions which relax via diffusive cage-rearrangements.

A closer examination of these cluster images reveals
that full overlap of a 7g—cluster with a 7.—cluster is
rare (Fig. 4(a) & (b), see Supplemental Material [31]).
This observation suggests that 73—clusters in the vicin-
ity of 7.—clusters, but not overlapping, could also facil-
itate relaxation at long timescales. To explore this hy-
pothesis quantitatively, for each T3—cluster, we measure
the minimum particle-to-particle distance to the closest
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T.—cluster, i.e., the distance dﬂc . Interestingly, we dis-
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FIG. 4: Single-frame snapshots of clusters of the top 10%
most-mobile particles at lag times 73 (blue spheres) and 7.
(yellow spheres) for (a) ¢ = 0.73 and (b) ¢ = 0.79. Parti-
cles that are “most-mobile” at both 73 and 7. are shown as
red spheres. Note, at a fixed area fraction, the mean size
of the tg—clusters is smaller than that of the 7.—clusters.
(c) The fraction of 7.—clusters that overlap with 7g—clusters
versus packing fraction ¢ (see the text for overlap definition).
(d) The normalized probability distribution of the minimum-
spatial-separation (MSS) between the closest non-overlapping
Tc— cluster with respect to each 73— cluster, i.e., P( g’c”‘) ver-
sus dg.* at ¢ = 0.73 (squares) and ¢ = 0.79 (circles). The
grey shaded bin corresponds to dj." = 0 i.e. overlapping 75—
and 7.—clusters. Solid black and red lines are exponential fits
to the probability distribution data. Here, dglci.“ is normal-
ized by small particle diameter 0. (e) The exponential decay
length, £(os), of the probability distributions (for example,
(d)) versus ¢. The red-dashed lines in (c¢) and (e) guide the

eye.

covered the probability distribution of dglci“, i.e., P( ’gﬂ“),
to be exponential with a unique decay length for each ¢
(Fig. 4(d)). The exponential distribution facilitates ex-
traction of a characteristic lengthscale, £, which offers a
novel way to quantify the extent to which spatiotempo-
ral dynamics at short-time facilitate cage rearrangement
and structural relaxation at longer timescales. Notice,
¢ increases significantly with increasing ¢ (Fig. 4(e)).
These observations suggest that clusters of the most-
mobile particles at short-time help to facilitate cage-
rearrangement /escape at long time, even when interact-



ing over a comparatively long (many particle) length
scale; moreover, ¢ grows as the glass transition is ap-
proached. ¢ should not be confused with the heterogene-
ity lengthscale at only long-times that is suggested in the
Adam-Gibbs hypothesis [9]; rather, here we are exploring
the cooperativity of relaxation across different timescales
as the glass transition is approached. Note also, this re-
lationship of £ versus ¢ might be expected to be blurred
to some degree by multiple features such as the cluster
number, cluster size, and cluster morphology, which also
evolve with ¢ and that are difficult to control for (see
Supplemental Material [31]).

While prior studies have explored the scaling relation
between 7, and 75 [16-19, 23], the present work is unique
because it experimentally exhibits, with single-particle
resolution, the correlations between relaxation processes
at different timescales and it identifies a spatial correla-
tion between them. We find that relaxation events at
short timescales (73) appear to be precursors to those
at longer times (7.). The increase with ¢, of both the
overlap fraction of 7.—clusters with 7g3—clusters and the
length scale, &, is consistent with the notion that coop-
erative motion of particles increases upon approaching
dynamic arrest; this notion is also reflected in the trend
of x4(t4) and (N.(7.)) with ¢ (Fig. 2(b), (¢)).

In summary, we have studied spatiotemporal relax-
ation on multiple timescales in colloidal glass precursors.
We observe power law scaling over two decades of dy-
namic range between the timescales associated with long-
versus short-time spatiotemporal relaxation and the ob-
served power law exponent agrees with MCT. The results
suggest that short-time structural relaxation can pro-
vide useful information about long-time structural relax-
ation and vice versa. Interestingly, like a—relaxation, the
short-time particle motions were also observed to be het-
erogeneous and cooperative in nature. Furthermore, the
increasing fraction of overlapping 7.— and 7g—clusters
versus packing suggests a direct connection between dy-
namic heterogeneities at the two distinct timescales.
While other groups have explored the growth of par-
ticular length scales with increased supercooling, e.g.,
point-to-set length scales, {éprs and dynamic correlation
lengths, &ayn [39, 41], these parameters are associated
only with long-time structural relaxation. In the present
work, we identified a different and new length scale, &,
that depends upon the spatial separation of clusters of
most-mobile particles across short- and long-timescales;
& grows with increased supercooling and is suggestive of
spatial correlation between spatiotemporal dynamics at
short- and long-times. In future, it will be interesting to
examine relationships between ¢ and 73 (or 7¢), and to
check for generalizability of our findings across interac-
tion potentials (both isotropic and anisotropic) and di-
mension (2-D, 3-D).
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