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Complex spatiotemporal patterns of action potential duration have been shown to occur in many
mammalian hearts due to period-doubling bifurcations that develop with increasing frequency of
stimulation. Here, through high-resolution optical mapping experiments and mathematical model-
ing, we introduce a characteristic spatial length of cardiac activity in canine ventricular wedges via a
spatiotemporal correlation analysis, at different stimulation frequencies and during fibrillation. We
show that characteristic length ranges from 40 to 20 cm during one to one responses and it decreases
to a specific value of about 3cm at the transition from period-doubling bifurcation to fibrillation.
We further show that during fibrillation, the characteristic length is about 1 cm. Another significant
outcome of our analysis is the finding of a novel constitutive phenomenological law obtained from
a nonlinear fitting of experimental data which relates conduction velocity restitution curve with
the characteristic length of the system. The fractional exponent of 3/2 in our phenomenological
law is in agreement with the domain size remapping required to reproduce experimental fibrillation
dynamics within a realistic cardiac domain via accurate mathematical models.

Keywords: Cardiac Dynamics, Spatiotemporal Correlation, Conduction Velocity, Dispersive Media, Domain

Mapping, Generalized Reaction-Diffusion.

Exploiting characteristic lengths and times represents
a primary strategy to understand natural phenomena.
In this perspective, heart dynamics shows multiple spa-
tial and temporal scales ranging from physiological up
to pathological regimes [1-3]. Complex series of cardiac
spatiotemporal activation patterns, e.g. phase-locking
and period-doubling bifurcations [4-6], can lead to a dis-
organized ventricular electrical activity—fibrillation—(see
Fig. 1 for an experimental example of induction of fib-
rillation) classified as life-threatening cardiac arrhyth-
mias in the clinical community. These phenomena are
known to be supported by specific physical indicators,
e.g. spatial dispersion of repolarization [7—9] and associ-
ated abnormal values of action potential (AP) duration
and conduction velocity (CV), producing oscillations in
the electrocardiogram signal and suggesting their clin-
ical importance in risk stratification for sudden cardiac
death [10]. Attempts to classify different regimes involved
in cardiac activity dates back to Wiggers [11], and this
subject is still widely studied in animal experiments and
isolated myocardium as well as supported by sophisti-
cated mathematical models [12-17]. Indicators quanti-
fying general properties of ventricular fibrillation have
been proposed in the Physics literature [18-21], e.g. or-
der parameters and correlation functions. However, a
comprehensive spatiotemporal index, able to character-
ize the different regimes, is still missing, thus limiting our
predictive power.

In this work, we provide an experimental-modeling ra-
tionale identifying a novel predictive indicator of cardiac
dynamics. We make use of AP optical mapping record-
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FIG. 1. Endocardial action potential (AP) voltage data from
fluorescence optical mapping showing the transition from nor-
mal rhythm to ventricular tachycardia up to ventricular fibril-
lation. Spatial distribution at selected frames (top) and time
course of a single pixel (bottom). In sequence: top-down
propagating front, top-down wave back, single clockwise spi-
ral, double clockwise spirals. Color code refers to normalized
voltage amplitude. The grayscale background represents the
endocardial ventricular tissue [5].

s ings on endocardial canine ventricular wedges (we refere
s to Gizzi et al. [5] and Supplementary Material-SI-[22] for
ss details on the experimental protocol) and fine-tuned phe-
s nomenological mathematical models of cardiac electrical
s activity [9, 23] measuring characteristic lengths under dif-
a1 ferent dynamical regimes. We unveil novel constitutive
& properties of the heart, further identifying a normalized
s characteristic length which may serve as a predictive indi-
s+ cator of period-doubling bifurcations (alternans). We ex-
65 plain such observations by introducing a new phenomeno-



s logical relation linking characteristic length and conduc-
e tion velocity. Strikingly, such constitutive law allows us
e to accurately predict and reproduce spatiotemporal fib-
e rillation behaviors by applying a domain size mapping.
7 This methodology prevents any additional model tuning,
n which usually represents a necessary extra step to simu-
72 late arrhythmias in realistic cardiac geometries.
1 Mathematical Model Tuning. We make use of a mon-
7« odomain formulation of the four-variable minimal model
7 for cardiac electrophysiology [23] fine-tuned upon exper-
imental data (see SI). The objective here is to highlight
7 the complex multiscale nature of the cardiac tissue and
7 the intrinsic coupling between its spatial and temporal
features. In this perspective, Fig. 2(a) compares the
s time course of two consecutive action potentials dur-
a1 ing fast electrical pacing (cycle length—CL) quantifying
@ the action potential duration (APD) for a representa-
a3 tive example of canine optical mapping recordings [5]
s and one-dimensional (1D) simulations. Figure 2(b) com-
ss pares the conduction velocity (CV) calculated on the
s two-dimensional (2D) endocardial surface (average and
w standard error from 7 samples—squared symbols) for de-
creasing values of CL (restitution protocol [24]) with re-
s spect to 1D model prediction (solid line). Figure 2(c)
o0 shows experimental and simulated endocardial electri-
cal excitations during a single action potential wave
o2 propagation confirming the accuracy of the numerical
o3 wave-front dynamics. In this case, the phase field ap-
o proach is adopted [25] such that the computational do-
os main size corresponds to the irregular optical area taken
o from the measures. As an additional level of informa-
tion, isochrones of activation are provided in both cases
to highlight further the need for non-trivial anisotropies
o in the computational model to reproduce the observed
dynamics [26]. Finally, Fig. 2(d) shows a spatial view of
alternans maps on the optical field of view obtained on
the same tissue for different CL. In particular, from left
to right, CL decreases thus inducing a higher and more
heterogeneous distribution of alternans in the tissue, up
to 25 ms of APD difference for two consecutive beats.
We assume the presence of alternans when the condition
|AAPD| > 2ms is fulfilled [5] (see details in SI).
Correlation Measure. We introduce a novel quanti-
tative analysis of fluorescence optical mapping signals
based on the calculation of correlation functions and the
identification of the corresponding characteristic spatial
length (decay length, Lg). Specifically, we computed a
two-point operator within a square box extracted from
the mapped tissue (see Fig. 2(d)):

7) = (Va = (Va)e) (Ve — (VB)t))t 7 (1)
0A0B

where V4 = V(&,t), Vg = V(& + 7,t), (-)+ represents

the time average computed over a selected time window

and 04,05 are the standard deviations of V4 and Vg,

respectively. We finally average R(Z,7) over the whole
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FIG. 2. (a) Experimental (black) and simulated (red-light
gray) AP time course for two consecutive activations during
fast pacing with the indication of APD alternans. (b) Con-
duction velocity restitution curve (mean & standard error)
for experimental tissue samples (symbol), fitting exponential
law (dashed), and one-dimensional model prediction (solid).
(c) Representative endocardial wavefront propagations and
corresponding isochrones from experiments (top) and model
(bottom). Arrows indicate the location of the pacing elec-
trode. (d) Spatial map of AAPD alternans evolution during
pace-down stimulation protocol [5]: non-alternating (white),
concordant (blue-singly gray), discordant alternans (blue/red-
multigray). The red square (left) indicates the region selected
to compute the correlation function.

squared domain to compute the global correlation in-
dex at distance 7 defining the characteristic length Lg
as R(7) o« exp (—|7]/Lo) (see details in SI).

Evaluated Lo values are shown in Fig. 3(a) for 7 differ-
ent ventricular preparations. Optical data (squared sym-
bols) are characterized by an average Ly decreasing from
s 38 cm to 3 cm for the endocardial surface (34 to 4 cm
16 for the epicardial surface—not shown), reducing CL from
127 450 to 115 ms. As expected, we observe tissue variability,
128 but it decreases at short CLs where smaller Ly values are
120 identified, and significant exponential decay of the two-
130 point correlation function is obtained. The robustness of
1 the methodology is further confirmed by two-dimensional
132 numerical simulations (filled circle symbols in Fig. 3(a))
133 that match the experimental decay length trend finally
13+ merging the mean experimental value at short CLs.
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We further characterize the multiple transitions oc-
curring at fast pacing enriching the previous analysis
with the measure of the normalized decay length, L* in
Fig. 3(b):

Ly — (Lo)
(Lo)

representing a novel integral quantification of the well-
known cardiac beat-to-beat variability. In particular, we
identify ¢) the transition from no alternans to concordant
alternans, when a net increase of L* is observed, and i)
the transition from concordant alternans to discordant
alternans when consecutive CL-dependent oscillations of
L* are present. We also note that L* is not null for the
experimental data at slow pacing rates (CL > 300 ms),
thus implying an intrinsic dispersion in the tissue, and L*
oscillates by lowering CL within the discordant alternans
regime (CL < 150 ms). Interestingly, an intermediate re-
synchronization pattern appears, L* ~ 0, observed only
as a critical state before a transition occurs. We justify
such transitions in terms of L* values obtained via nu-
merical simulation (dashed line in Fig. 3(b)). The model
can reproduce the normalized decay length patterns both
in amplitude and timing, in particular predicting the on-
set of alternans. However, it does not capture either dis-
persion at slow pacing rates nor multiple oscillations at
fast CLs. We stress here that these two limitations are
common in the current literature of computational car-
diology [27]. An effort in introducing memory in time
and dispersion in space [17, 26] aims, in fact, at repro-
ducing in silico arrhythmic scenarios that usually require
non-physical (larger) simulation domains and ad hoc pa-
rameters’ choice.

Phenomenological Constitutive Theory. We assume
that the excitation wave velocity varies with the pac-
ing period according to the exponential law CV(CL) =
A — Bexp (C CL). Hence, we can successfully fit the ex-
periments, as shown in Fig. 2(b)-dashed line-by posing
A = ka, B = kb, and C = ¢/7 in which k = 1 c¢cm/ms and
7 = 1 ms restore physical dimensions, and a = 0.177,b =
0.31,¢ = —0.015 are non-dimensional parameters. Based
on this fit, we identify the characteristic length Ly of
the excitation wave introducing a new phenomenological
constitutive relation in which the pacing CL acts like an
internal variable:

Ly + Ly

, L' =
2

(Lo) (2)

Lo=kCV CL, (3)
and CV = CV/k represents the experimental-based di-
mensionless dispersive conduction velocity restitution re-
lationship. Equation (3) holds the notable limit of linear—
non-dispersive—wave propagation for « 1, shown in
Fig. 3(a) (green—upper-dashed line). We further remark

that the quantity Ly does not correspond to the concept
of wavelength. Indeed, the characteristic length is based
on an integral space-time operation and quantifies the
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response of the whole tissue at different pacing frequen-
cies. From such a plot, it appears evident that the linear
limit, also in the case of the chosen dispersive CV(CL) re-
lation, is not able to reproduce the sought characteristic
lengths, Lg. Figure 4, in fact, shows linear and log-log
plots of the characteristic length as function of CV. In
particular, Fig. 4(a) highlights the vertical saturation ef-
fect at high CV providing f/g as independent of the pacing
rate for physiological conditions. However, a horizontal
asymptote appears at small CV greatly varying Ly at
fast critical pacings. The log-log plot in Fig. 4(b) further
supports the power-law trend assumed for interpolating
CV(CL) restitution curves.

80 b~ —+ Lo Experiment

I el —e— Ly Model

'g 3 \"\_ ""E).azlAO

3‘60 B S o T a «a = 1.5 Experiment

< I \'\_ == Z\O « = 1.5Model

> 3 .

g |

Sa0t

2 I

_"@ L

§ |

§20¢

s |

<

O |

or 0
3 Regular Alternans Fib
PR EFETETE BT SISTEEE ST BN ST SRS R |
440 400 360 320 280 240 200 160 120
(a) Pacing Cycle Length [ms]
02r

-O- Experiment
--o- Model

Lot}

(o)) =_STIETIE [ SRR e - ‘»
| IS SRS IR USRS ST SRS SRS S |

440 400 360 320 280 240 200 160 120
(b) Pacing Cycle Length [ms]

FIG. 3. (a) Decay length as a function of pacing cycle length
for endocardial experimental recordings and corresponding
model simulations. Standard deviation is superimposed to
the experimental measures. Dashed | curves indicate the fit-
ted estimate of characteristic length Lo, Eq. (3), in the linear
case (o = 1) and fitted for experiments and model (o = 1.5).
(b) Normalized decay length L* versus pacing cycle length
for a representative experimental recording (solid) and model
(dashed).

We performed, then, a second fitting procedure to iden-
tify the values of a able to reproduce such a global and
synthetic length. Our analysis shows that both for the
experiment (dashed blue) and model (dashed red), the
exponent able to replicate the measured Ly corresponds
to a ~ 1.5. This particular value is in agreement with the
fractional Laplacian operator exponent showed to repli-
cate experimental dispersion of repolarization in human
cardiac tissue [28, 29] and that is based on a microscopic
biophysics description of cardiac propagation. The re-
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sult, by analogy in a homogenized micro-macro perspec-
tive, can be read as i) a spatiotemporal generalization of
scale invariance usually adopted in fractal geometry [30]
and 7i) the fractional diffusion description of cell-cell cou-
pling in cardiac electrophysiology [28, 31, 32].
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FIG. 4. Characteristic length vs. CV in (a) linear and (b) log-
log scales. Squares denote experimental measures at specific
cycle lengths. Vertical bars denote standard deviation.

Domain Mapping for Ventricular Fibrillation. Upon
this result, we analyze ventricular fibrillation both for the
experimental preparations and the mathematical model.
Fibrillation is an auto-excitatory regime (no external pac-
ing) presenting multiple unstable spirals at the same time
within the tissue (usually three for both experiments and
simulations—see SI), and much shorter decay lengths [19].
Our analysis reveals that Ly falls to an average value
of 1.1 cm for the endocardial experimental data (see
Fig. 3(a) red area (right)-squared symbol) supporting ev-
idence that cardiac fibrillation is not a spatially random
mechanism but a high-dimensional process characterized
by a measurable degree of coherence [33-35]. Accord-
ingly, numerical simulations confirm Ly ~ 1.4 cm only
when a domain scaling procedure is applied (see Fig. 3(a)
red area (right)—circle symbol). Such a scaling method-
ology is necessary to reproduce in silico the spiral me-
andering observed in the experiments within a realistic
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tissue size. We solve such well-known problem as follows:
(1) we simulate a sustained fibrillation scenario in a non-
physical squared domain with side length A = 20 unit
where unit = 1 cm; (2) we perform a down-scaling of the
domain size according to the fitted value of the exponent,
a = 1.5, defining the new unit = 0.37 cm that leads to
the physical domain size expected from the experiments,
ie. § = AY* =74 cm; (3) we over impose the irregular
mask boundaries from the experiments; (4) we perform
the spatiotemporal correlation analysis within the physi-
cal box of size 3x3 cm? (in agreement to the experimental
case) and identify the sought decay length.

Discussions and Perspectives. Physiological cardiac
synchronization features are associated with long-range
correlated dynamics corresponding to large spatial de-
polarization/repolarization states. Pathological behav-
iors, instead, are related to short-range coherent local
states. In such a scenario, we address the interpreta-
tion of spatial correlation supporting both an augmented
system’s understanding and mathematical model predic-
tivity. The physical meaning of such a value is regarded
as the total length through which the activation wave
must propagate to synchronize the whole organ as well
as to restore the resting condition in a unified man-
ner (full depolarization and repolarization phases con-
solidating additional information than the sole wave-
length [36]). Besides, we characterize the transition of
the excitation wave starting from normal rhythm (non-
alternating), passing through a period-doubling bifurca-
tion (concordant and discordant alternans), and ending
with sustained ventricular fibrillation. To this end, we
quantified the characteristic length transitions obtained
during pace-down stimulation protocol recorded for sev-
eral experiments following the usual restitution proce-
dure in cardiac electrophysiology [5]. We thus identify
critical values of the decay length: Ly ~ 10cm at the
onset of discordant alternans (CL ~ 200 ms), Ly < 3cm
at the onset of fibrillation (CL ~ 100 ms). On these
pieces of evidence, we develop a unified criterium in
terms of characteristic length of the system, either Lo
or Lo, entailing, in a homogenized sense, feedback insta-
bilities due to intra- and inter-cellular multiscale inter-
actions. Accordingly, we incorporate our findings into a
new phenomenological constitutive law based on wave-
front CV(CL) restitution properties. The advantage of
our method over previous attempts to predict excitation
adaptability, alternans and arrhythmias onset [36, 37],
is due to incorporating spatiotemporal information in
an integral/feedback sense, thus predicting cardiac in-
stabilities. Our phenomenological theory indicates that
a fractional exponent (« = 3/2) best replicates the ex-
perimental decay lengths of the system during sustained
pacing. Accordingly, we extrapolate this value to fibril-
lation scenarios introducing a new domain size mapping
allowing us to reproduce the physical spatiotemporal fea-
tures of the system without modifying any of the model



257 parameters. Such theoretical reasoning, making use of
a nonlinear phenomenological laws, clearly suggests the
need of a deeper understanding of cardiac tissue in terms
of microstructural features and non-local diffusion oper-
ators [6, 38-42], inter-scale coupling [43] and information
flow [44, 45], molecular diffusion [46], and spatiotempo-
ral renormalization [47] to replicate and predict emerging

phenomena in cardiac electrophysiology.
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