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Optimal transport (OT) has become a discipline by itself that offers solution to a wide range of
theoretical problems in probability and mathematics. Despite its appealing theoretical properties,
solving the OT problem involves the resolution of a linear program whose computational cost can
quickly become prohibitive whenever the size of the problem exceeds a few hundred points. The
recent introduction of entropy regularization, however, has led to the development of fast algorithms
for solving an approximate OT problem. The successes of those algorithms have resulted in a pop-
ularization of the applications of OT in several applied fields such as imaging sciences, machine
learning, and in data sciences in general. Problems remain however as to the numerical conver-
gence of those regularized approximation towards the actual OT solution. In addition, the physical
meaning of this regularization is unclear. In this paper, we propose a novel approach to solving the
discrete optimal transport (OT) problem using techniques adapted from statistical physics. Our
first contribution is to fully describe this formalism, including all the proofs of its main claims. In
particular we derive a strongly concave effective free energy function that captures the constraints
of the optimal transport problem at a finite temperature. Its maximum defines a distance between
the two set of weighted points that are compared, which satisfies the triangular inequalities. The
temperature dependent OT distance decreases monotonically to the standard OT distance, provid-
ing a robust framework for temperature annealing. Our second contribution is to show that the
implementation of this formalism has the same properties as the regularized OT algorithms in time
complexity, making it a competitive approach to solving the OT problem. We illustrate applications
of the framework to the problem of protein fold recognition based on sequence information only.

I. INTRODUCTION

Computing the distance between two probability dis-
tributions defined on a metric spaceM is a common prob-
lem in statistics. There are no single definitions of such
a distance. Many statistical distances have been pro-
posed, such as the total variation distance, the different
divergences (Kullback-Leibler, Jensen-Shannon, ....), dis-
tances based on energy, ...It is worth noting that many
of those distances are not metrics. In addition, most of
them only compute a single number when comparing two
distributions. There are, however, many applications in
which it is desirable to also generate a map, or “trans-
port”, between the two distributions of interest. If a cost
is assigned to each of these possible maps, attempts to
find the optimal map, namely the one with the lowest
total cost, a problem referred to as Optimal Transport
problem (OT), has enabled statisticians and mathemati-
cians to derive a geometric structure on the space of prob-
ability distributions. The importance of this problem in
those two fields may be best seen from the fact that two
of its current main contributors have recently received
Fields medals, Cédric Villani in 2010 and Alessio Figalli
in 2018, in addition to Leonid Kantorovich receiving the
Nobel prize in Economics in 1975 for his contribution to
optimal transport and its applications in economics. In
addition, getting access to both the distance and the opti-
mal transport map when comparing probability measures

is of relevance to most, if not all data science disciplines,
and as such applications of OT have exploded in the re-
cent years, in domains such as machine learning [1], com-
puter vision and image analysis [2–6], linguistics [7, 8],
differential geometry [9, 10], geometric shape matching
[11, 12], and even music transcription [13], gene expres-
sion analyses [14], and the analysis of conformational dy-
namics of biomolecules [15]. Note that this is a small
subset of all current applications, listed for illustration
purpose only; for more extensive reviews of OT, we rec-
ommend [9, 16–18] for reviews on the theory, [19, 20] for
reviews on its computational aspects, and [1] for a (brief)
review of some of its applications.

The OT problem has been expressed in multiple forms,
starting from the work of Monge in the 1780s [21], to
be rediscovered or at least rephrased many times in the
1900s. For sake of clarity, let us caricature it as follows:
imagine we haveN flour milling plants surrounding Paris,
producing a total of 1 tonne of flour daily, and a distri-
bution of P bakeries within Paris that consume a total of
1 tonne of flour each day. Knowing the cost C(x, y) per
unit weight of flour transported from a milling plant at x
to a bakery at y, the problem is to define which milling
plants should be supplying which bakeries so as to min-
imize the total transportation cost. In a more mathe-
matical format, the milling plants and the bakeries lie in
a metric space M . The flour production of the milling
plants is represented by a probability measure µ, while
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the flour consumption is represented by another proba-
bility measure ν. Let C(x, y) be the cost of transporting
flour from x to y, and G(x, y) the amount of flour trans-
ported from x to y. G defines the transport plan. The
optimal transport plan minimizes the total transporta-
tion cost U defined as

U(G) =

∫ ∫
G(x, y)C(x, y)dxdy. (1)

The minimum of U(G) is to be found over the transport
plans that satisfy the following constraints

∀x, y,G(x, y) ≥ 0 (2a)

∀x,
∫
G(x, y)dy = µ(x) (2b)

∀y,
∫
G(x, y)dx = ν(y). (2c)

Constraint 2b enforces that the total amount of flour
delivered by plant x corresponds to its actual produc-
tion, while constraint 2c enforces that the total amount
of flour delivered to bakery y corresponds to its actual
need. The positivity constraint 2a makes the problem
physical. Finding a solution to the OT problem amounts
to finding the optimal transport plan Gopt. The corre-
sponding minimum transport cost Umin defines a “dis-
tance” between the two distribution measures µ and ν.
The distance has all the properties of a metric when
the cost matrix C is a metric matrix, see [17]. When
C(x, y) = d(x, y)p where d is a metric of the space M ,
the distance is often referred to as the p−Wasserstein
distance Wp(µ, ν) = (Umin)1/p between the two mea-
sures. We note that when p = 2 and the cost matrix
is based on the L2 norm (i.e. C(x, y)p = ||x − y||2),
the OT problem maps to the Shrödinger bridge problem
[22], for which some simplifications are possible (see for
example [5]). In this paper we will focus instead on the
1−Wasserstein distance (i.e. with p = 1), also called the
earth mover’s distance, for a more general framework.
Optimizing (1) under the constraints (2) is a linear pro-
gramming (LP) problem. While much progress has been
achieved for solving those problems [23], current practi-
cal implementations of algorithmic solutions are roughly
of order O(n3) where n is the size of the discrete sets
representing µ and ν, with a quadratic complexity in the
number of variables considered. Such complexity levels
are usually considered problematic when n is larger than
a few thousands.

The current successes of OT did not come from recent
improvements in solving LP problems. Instead, they have
been triggered by the idea of minimizing a regularized
version of equation 1 :

U(ε,G) =U(G)− εH(G)

=

∫ ∫
G(x, y)C(x, y)dxdy +

ε

∫ ∫
G(x, y)log(G(x, y))dxdy, (3)

where ε is the regularization parameter, and the second
term H(G) is an entropic barrier that enforces the posi-
tivity of the transport plan [24] (note that other penalty
functions have been considered, see [20] for discussions).
This regularized version of optimal transport is often
called the Schrödinger problem [22]. It maps to the tra-
ditional OT problem as ε → 0; in addition, the optimal
solution at a given ε defines a distance with metric prop-
erties, referred to as the Sinkhorn distance [24]. The
entropic penalization has the advantage that it defines
a strongly convex problem (as opposed to the original
OT problem) with a unique solution [24]. Another ad-
vantage of the regularized OT problem is that its solu-
tion can be found efficiently through the so-called iter-
ative proportional fitting procedure [25], also known as
the Sinkhorn’s algorithm [26], or Sinkhorn-Knopp algo-
rithm [27]. Many variants of those algorithms have been
developed for solving regularized OT problems; we refer
to [28–30] for overviews on those methods. Those algo-
rithms find solutions for a given value of the relaxation
parameter ε. For small values of this parameter, numer-
ical issues can arise and a stabilization of the algorithm
is necessary [31]. Despite such stabilization, convergence
of a stabilized Sinkhorn-Knopp algorithm can neverthe-
less be very slow when ε is small. Such small values are,
however, desirable for finding good approximations to the
solution of the original non-regularized OT problem. A
popular heuristic solution to this problem is the so-called
ε-scaling, where one subsequently solves the regularized
problem with gradually decreasing values for ε (see for ex-
ample [32]). To our knowledge, no quantitative analysis
of the convergence of such an ε-scaling method are avail-
able. In particular, it is unclear whether the Sinkhorn
distance is monotonic with respect to ε.

Our focus in this paper is to provide an alternate
framework for solving the OT problem, as derived from a
statistical physics point of view, in which we fully exploit
the formal analogy of the cost function in Eq. 3 to a free
energy, with ε an analogue of a temperature, T . It can be
seen as a generalization of the so-called invisible hand al-
gorithm, which used a similar framework for solving the
assignment problem in which the transportation plan G
is encoded as a binary matrix [33]. This paper serves as
a theoretical companion paper to Ref. [34], where we in-
troduced the framework and applied it to the problem of
defining a distance between 2D images. It provides the
proofs of all the properties associated with the free en-
ergy we introduce, in particular its metric properties and
its monotonic convergence to the “true” OT distance.

The paper is organized as follows. We start with a brief
review of both the OT problem and its regularized ver-
sion in the discrete case, with some proofs related to their
metric properties. In Sec. III, we describe in details the
framework we propose for an optimal transport at finite
temperature. Proofs of its major properties are provided
in the appendices. The following section briefly describes
the implementation of the framework in a C++ program,
FreeOT. In Sec. V, we present applications of this frame-
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work to the problem of protein fold recognition based on
sequence information only. We finally conclude with a
detailed comparison between the entropy-regularized for-
mulation of the OT problem and our formalism, as well
as with a discussion on future developments.

II. THE REGULARIZED OPTIMAL
TRANSPORT PROBLEM

This section provides a brief overview of the discrete
optimal transport problem and its regularized version,
covering definitions as well as some considerations on its
implementations. More thorough presentations can be
found in Ref. [20].

We consider here the discrete version of the OT prob-
lem, i.e. optimal transport between two discrete proba-
bility measures. We consider two sets of points S1 and S2

of size N (for simplicity, we will assume that the two sets
have the same size; note that the formalism can easily
be extended to different sizes). Each point k in S1 (resp
S2) is assigned a “mass” m1(k) (resp m2(k)). The bal-
ance condition implies that

∑
km1(k) =

∑
lm2(l). For

simplicity, we assume that these two sums are equal to
1. We encode the cost of transport between S1 and S2

as a positive cost matrix Ckl with (k, l) ∈ [1, N ]2. The
discrete optimal transport problem can then be formu-
lated as finding a transport plan G, namely a matrix of
correspondence between points k in S1 and points l in S2

that minimizes the total transport cost U defined as

U(G) =
∑
k,l

G(k, l)C(k, l), (4)

where the summations extend over all (k, l) ∈ [1, N ]2.
The minimum of U is to be found for the matrices G
that satisfy the following constraints

∀(k, l), G(k, l) ≥ 0 (5a)

∀k,
∑
l

G(k, l) = m1(k) (5b)

∀l,
∑
k

G(k, l) = m2(l). (5c)

Note that the first condition, (5a), extends to 0 ≤ Gkl ≤
1 for all k and l, based on our assumption that the sum
of the discrete probability measures are 1 on both sets of
points. Matrices G that satisfy those conditions 5 belong
to a polytope that we note as G(S1, S2).

The solution to this problem is an optimal transport
plan Gopt and the corresponding minimum transport cost
d(S1, S2) = U(Gopt). Note that this solution and its
properties depend strongly on the choice of the cost ma-
trix C. In particular, if we consider three sets of points
S1, S2, and S3, it is often of interest to have C satisfy
metric properties, namely that

∀(k, j, l) ∈ [1, N ]3, C(k, l) ≤ C(k, j) + C(j, l)

∀(k, l) ∈ [1, N ]2 C(k, l) = 0⇔ k = l. (6)

Villani [17] proved the following properties for Umin:

Property 1. The optimal transport cost d(S1, S2) is a
distance between S1 and S2 that satisfies all axioms of a
distance when C is a metric matrix, as defined above.

The gluing lemma [17] is the key to proving this prop-
erty. As it will be used in the following, we write its
discrete version here

Lemma 1 (Gluing lemma). Let S1, S2, and S3 be three
sets of points, with associated mass vectors m1, m2,
and m3. Let G12 ∈ G(S1, S2) and G23 ∈ G(S2, S3) be
two transport plans between S1 and S2, and between S2

and S3, respectively. Let G13 be the matrix defined by

G13(k, l) =
∑
j
G12(k,j)G23(j,l)

m2(j)
. Then G13 ∈ G(S1, S3),

i.e. G13 is a transport plan between S1 and S3.

Solving for the transport plan that minimizes Eqn. 4
under the constraints 5 is a linear programming problem
with a O(N3) complexity. To circumvent this large com-
puting cost when N is large, Cuturi proposed to minimize
a regularized version of equation 4 :

Uε(G) =
∑
kl

G(k, l)C(k, l) + ε
∑
k,l

G(k, l) log(G(k, l))(7)

where ε is the regularization parameter, and the second
term is an entropic barrier that enforces the positivity
of the Gkl terms [24]. With the addition of the entropic
term controlling condition 5a, the two other conditions
5a and 5b are then enforced by introducing new auxiliary
variables λk and µl as Lagrange multipliers,

Lε =
∑
kl

G(k, l)C(k, l)− ε
∑
k,l

G(k, l) log(G(k, l))−

∑
k

λk(
∑
l

G(k, l)−m1(k))

−
∑
l

µl(
∑
k

G(k, l)−m2(l)). (8)

Setting
∂Lε

∂G(k, l)
=
∂Lε
∂λk

=
∂Lε
∂µl

= 0, The critical points

of the Lagrangian Lε satisfy the following conditions:

G(k, l) = Ak exp

(
−C(k, l)

ε

)
Bl∑

l

G(k, l) = m1(k)∑
k

G(k, l) = m2(l), (9)

where A(k) = exp(λkε − 0.5) and B(l) = exp(µlε − 0.5).

If we set K the matrix defined by Kkl = exp
(
−Cklε

)
, the

conditions 9 can be rewritten in vector form as:

G = diag(A)Kdiag(B)

A ◦ (KB) = m1

B ◦
(
KTA

)
= m2, (10)
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where ◦ is the Hadamard (i.e. element-wise) product.
Solving the OT problem by solving those equations leads
to two main improvements compared to the standard lin-
ear optimization approach:

i) The matrix G is directly computed from the vectors
A and B; this leads to a reduction of the number
of variables from N2 to 2N .

ii) Equations 10 enable a simple iterative scheme to
compute A and B, namely, (A, B) ← (m1 �
/(KB),m2 � /(KTA)), where � is the Hadamard
(element-wise) division. This iterative scheme is
known as the Sinkhorn’s algorithm [26, 27].

As discussed in the introduction, while these remarks
lead to a significant reduction in computing time, there
remains difficulties when solving the regularized OT
problem when ε→ 0, which is required to reach the true
OT distance. This will be discussed further in the next
section.

In contrast to the non-regularized transport cost U , the
regularized transport cost Uε (Eqn. 4) does not directly
define a distance. However, it is possible to derive a
distance from the regularized OT, using the following
property (adapted from [24] in which a proof is provided):

Property 2. For ε > 0, let Goptε be the transport plan
that minimizes the regularized transport cost Uε(G) over
all G ∈ G(S1, S2). Then dε(S1, S2) =

∑
k,l

Goptε (k, l)C(k, l)

is a distance between S1 and S2 that is symmetric and
satisfies all triangular inequalities.

We conclude this section with a discussion of the rele-
vance of properties 1 and 2, namely that the solutions of
the OT and regularized OT problems define a distance
between the two discrete measures considered. The prop-
erties associated to distances are desirable, and we will
ensure that we have them for whichever notion of sim-
ilarity we introduce. As elegantly discussed by Mémoli
[35], the triangular inequality properties of a distance d
imply that if one is interested in comparing two contin-
uous distributions λ and µ, and if S1 and S2 are finite
supports to sample λ and µ, then

|d(λ, µ)− d(S1, S2)| ≤ d(λ, S1) + d(µ, S2) (11)

In practice we always have to rely on finite samples. It
is clear that the quality of the approximation of a dis-
tribution λ by such a finite support S1 is described by
d(λ, S1) . Therefore Eqn. 11 indicates that comparing
the discrete samples gives a measure of similarity of the
underlying continuous distributions that is as good as
how those discrete samples describe those distributions.

III. THE OPTIMAL TRANSPORT PROBLEM
AT FINITE TEMPERATURE

Let us consider a system in thermal equilibrium at a
finite temperature T . This system will sample several

states, with each state characterized by a probability that
is related to the energy of that state. The most probable
state is the one with lowest energy. Using this framework
from statistical physics, minimizing an energy function
can be reformulated as the problem of finding the most
probable state of the system it defines. Let us apply
this framework to the discrete OT problem between two
sets of points S1 and S2, using all the definitions from
above. The “system” is then identified with the differ-
ent transport plans between S1 and S2 equipped with
masses m1 and m2, respectively, that satisfy the con-
straints of mass balance and positivity, namely that be-
long to G(S1, S2). We will slightly adapt the definition
of this set by replacing the condition that a matrix G
of this set must satisfy 0 ≤ Gkl for all (k, l) ∈ [1, N ]2

with the condition that 0 ≤ Gkl ≤ 1. The upper bound
of 1 is a direct consequence of the fact that we impose∑
k

m1(k) =
∑
l

m2(l) = 1.

Each state of the OT system is identified with a trans-
port plan G, and its energy U(G) is defined in equation
4. The probability distribution function for this system,
P (G), also referred to as the Gibbs distribution, is de-
fined as:

P (G) =
1

Zβ(S1, S2)
e−βU(G) (12)

In this equation, β = 1/(kBT ) where kB is the Boltz-
mann constant and T the temperature, and Zβ(S1, S2)
is the partition function computed over all states of the
system. This partition function is given by

Zβ(S1, S2) =

∫
G∈G(S1,S2)

e−βU(G)dµ12 (13)

where dµ12 can be seen as the Lebesgue measure for the
space of transport plans G(S1, S2). The partition func-
tion Z is related to the free energy of the system by

Fβ(S1, S2) = − 1

β
ln(Zβ(S1, S2)) (14)

and to the average energy Eβ(S1, S2) =< U(G) >G∈G by

Eβ(S1, S2) = −∂ ln(Zβ(S1, S2))

∂β
(15)

We note first two important properties of the free energy
and average energy:

Property 3. For all β > 0, the free energy Fβ(S1, S2)
is symmetric and satisfies all triangle inequalities if the
cost matrix C between S1 and S2 is metric.

Property 4. For all β > 0, the free energy Fβ(S1, S2)
and the average energy Eβ(S1, S2) are monotonically de-
creasing functions of β. Both converge to the traditional
optimal transport distance d(S1, S2).

Proof. The symmetry of Fβ(S1, S2) is a direct conse-
quence of the symmetry of the metric matrix C. The
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proof that it also satisfies all triangle inequalities is given
in appendix A, while the behavior of Fβ and of Eβ is
analyzed in appendix B.

This statistical physics formulation of the optimal
transport problem is appealing. It defines a tempera-
ture dependent free energy that satisfies metric prop-
erties when the cost function is metric, with a mono-
tonic dependence on the temperature (or inverse of the
temperature, β), and convergence to the actual optimal
transport distance at zero temperature. It is, however, of
limited interest in practice as the partition function and
therefore the free energy cannot be computed explicitly.
We propose a scheme for approximating these quantities
using the saddle point approximation. We will show that
the corresponding mean field values satisfy similar prop-
erties than the exact quantities defined above. These
mean field values can be readily computed.

Taking into account the constraints that define
G(S1, S2), the partition function can be rewritten as

Zβ(S1, S2) =

∫ 1

0

∏
kl

dG(k, l)e
−β
∑
kl

C(k,l)G(k,l)
×

∏
k

δ

(∑
l

G(k, l)−m1(k)

)
×

∏
l

δ

(∑
k

G(k, l)−m2(l)

)
(16)

Using Fourier, we can represent a delta function as an
integral of an exponential,

δ(x) =
1

2π

∫
e−ixtdt (17)

where the integration is usually performed along the real
axis. Introducing new auxiliary variables λ(k) and µ(l),
with (k, l) ∈ [1, N ]2, and omitting the unessential nor-
malization factors 1/(2π), the partition function can be
written as,

Zβ(S1, S2) =

∫ 1

0

∏
k,l

dG(k, l)e
−β
∑
kl

C(k,l)G(k,l)
×

∫ ∏
k

dλ(k)e
−iβ

∑
k,l

λ(k)G(k,l)+iβ
∑
k

λ(k)m1(k)

×∫ ∏
l

dµ(l)e
−iβ

∑
k,l

µ(l)G(k,l)+iβ
∑
l

µ(l)m2(l)

. (18)

We have factored out β for the variables λ(k) and µ(l) for
consistency with the first term. Note that the integrand
in Z is now a complex function, while Z itself is a real
number. The imaginary part can be absorbed into λ and
µ, i.e. λ(k) ≡ iλ(k) and µ(l) ≡ iµ(l), with now λ and µ
being complex variables.

Rearranging the order of integration and reorganizing
the exponential terms, we get,

Zβ(S1, S2) =

∫ ∏
k

dλ(k)

∫ ∏
l

dµ(l)

∫ 1

0

∏
k,l

dG(k, l)

e
−β
∑
k,l

G(k,l)(C(k,l)+λ(k)+µ(l))+β

(∑
k

λ(k)m1(k)+
∑
l

µ(l)m2(l)

)
(19)

Performing the integration over the real variables G(k, l)
(most inner integrals), we get,

Zβ(S1, S2) =

∫ ∏
k

dλ(k)

∫ ∏
l

dµ(l)

e
β

(∑
k

λ(k)m1(k)+
∑
l

µlm2(l)

)
×∏

kl

1− e−β(C(k,l)+λ(k)+µ(l))

β (C(k, l) + λ(k) + µ(l))
(20)

We rewrite this partition function as

Zβ(S1, S2) =

∫ ∏
k

dλ(k)

∫ ∏
l

dµ(l)e−βFβ(λ,µ) (21)

where Fβ (λ,µ) is a functional, or effective free energy
defined by:

Fβ (λ,µ)= −

(∑
k

λ(k)m1(k) +
∑
l

µlm2(l)

)

− 1

β

∑
kl

ln

[
1− e−β(C(k,l)+λ(k)+µ(l))

β (C(k, l) + λ(k) + µ(l))

]
(22)

Let Ḡ(k, l) be the expected value of G(k, l) with re-
spect to the Gibbs distribution given in equation 12. It
is straightforward from the definition of the energy U(G)
and of the Gibbs distribution that

Ḡ(k, l) = − 1

β

∂Zβ(S1, S2)

∂C(k, l)
(23)

It is unfortunately not possible to compute these ex-
pected values directly from this equation, as the partition
function is not known analytically. Instead, we derive a
saddle point approximation (SPA). The SPA is computed
by looking for extrema of the effective free energy with
respect to the variables λ(k) and µ(l):

∂Fβ (λ,µ)

∂λ(k)
= 0 and

∂Fβ (λ,µ)

∂µ(l)
= 0 (24)

After some rearrangements, those two equations lead to
the following system of equations:

Ḡ(k, l) = φ(β(C(k, l) + λ(k) + µ(l))) (25)∑
l

Ḡ(k, l) = m1(k) (26)∑
k

Ḡ(k, l) = m2(l) (27)
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where,

φ(x) =
e−x

e−x − 1
+

1

x
(28)

Note that φ(x) is related to the Langevin function L(x)
by φ(x) = 1

2 (1 − L(x2 )). This function φ(x) is defined
and continuous for all real values x (with the extension
that φ(0) = 0.5), monotonically decreasing over R, with
asymptotes y = 1 and y = 0 at −∞ and +∞, respectively
(see appendix E for a representation of φ(x)). As such,
it correctly constrains the values of the transport plan G
to be in the range of values [0, 1].

One can see that the variables λ(k) and µ(l) must be
real as the transport plan is real. Another way to see
this is to recognize that the complex integral defining
the partition function (see Eqn. 20) does not depend
on the choice of the integration paths. The saddle point
equations 27 indicate that a path parallel to the real axis
for each of the variables λ(k) and µ(l) is preferred.

We observe that equations (22) and (27) are invariant
under the constant translation {λ(k)+K,µ(l)−K} where
K is an arbitrary real constant. This translational de-
gree of freedom leaves the effective free energy Fβ (λ,µ)
unchanged. To analyze the validity of the saddle point
approximation, we need to check the existence and as-
sess the unicity of the critical points of this effective free
energy. The following theorem shows that Fβ (λ,µ) is
weakly concave and can be made strictly concave on a
subspace of the parameter space that is easily defined.

Theorem 1. The Hessian of the effective free energy
Fβ (λ,µ) is negative semi-definite with (2N − 1) nega-
tive eigenvalues and one zero eigenvalue. Furthermore,
the eigenvector corresponding to the zero eigenvalue is
(1,...,1, -1, ....-1) (with N 1s, and N -1s), and thus cor-
responds to the constant translation invariance of this en-
ergy. Setting one of the parameters λ(k) or µ(l) as zero,
the free energy function on this restricted parameter space
is strictly concave.

Proof. See Appendix C.

For a given value of the parameter β, the expected
values Ḡ(k, l) that are solutions to the system of equa-

tions (27) form a transport plan Goptβ between S1 and
S2 that is optimal with respect to the free energy de-
fined in (22). We can associate to this transport plan
an optimal free energy FMF

β and an optimum energy

UMF
β =

∑
k,lG

opt
β (k, l)C(k, l). Note that those two val-

ues are the mean field approximations of the exact free
energy and internal energy defined in Eqn. 14 and 15,
respectively. We now list important properties of UMF

β

and FMF
β .

Property 5. For all β > 0 and cost metric matrix C,
UMF
β is symmetric and satisfies all triangle inequalities.

Proof. The symmetry of UMF
β is a direct consequence of

the symmetry of the metric matrix C. The proof for the
triangle inequalities is given in Appendix D.

Property 6. FMF
β and UMF

β are monotonic decreasing
function of the parameter β. In addition, both converge
to the optimal transport energy defined in equation (1).

Proof. See Appendix E.

Theorem 1 and the two propositions 5 and 6 above
highlight a number of advantages of the proposed frame-
work that rephrases the optimal transport problem as
a temperature dependent process. First, at each tem-
perature the optimal transport problem is turned into a
strongly concave problem with a unique solution. This
problem has a linear complexity in the number of vari-
ables, compared to the quadratic complexity of the orig-
inal problem. The concavity allows for the use of simple
algorithms for finding a minimum of the effective free en-
ergy function (equation 22). We note also that equations
27 provide good numerical stability for computing the
transport plan, because of the ratio of exponentials. Sec-
ond, the modified problem defines an optimal distance
at each temperature, that converges to the traditional
optimal transport distance when T → 0. Finally, the
convergence as a function of temperature is monotonic.

IV. IMPLEMENTATION

We have implemented the finite temperature optimal
transport framework described here in a C++ program
FreeOT that is succinctly described in algorithm 1.

Algorithm 1 FreeOT: a temperature dependent frame-
work for computing the Optimal Transport Distance be-
tween two weighted set of points

Input: The two sets of points S1 and S2, and their associ-
ated weights m1 and m2. Cost matrix C between S1 and
S2. Initial value β0 for β

Initialize: Initialize arrays λ and µ to 0. Set STEP =√
10. Set β0 = β0/STEP

for k = 1, . . . until convergence do
(1) Initialize βk = STEP ∗ βk−1.

(2) Solve non linear equations ( 27)) at saddle point

(3) Compute optimal transport plan Goptβ and UMF (βk)

(4) Check for convergence: if |UMF (βk) −
UMF (βk−1)|/UMF (βk−1) < TOL, stop
end for

Output: The converged transport plans Goptβ (k, l) and the

corresponding transport costs UMF (β).
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FreeOT is based on an iterative procedure in which
the parameter β (inverse of the temperature) is gradu-
ally increased. At each value of β, the non linear system
of equations defined by equation 27 is solved using an it-
erative Newton-Ralphson method. At each iteration for
this Newton method, the Jacobian of the system of equa-
tions is computed, and a linear system is solved based
on this Jacobian, whose solution provides estimates for
the arrays of parameters λ and µ. These new estimates
are then used to assess how well the SPA equations are
satisfied. Once the errors on the SPA equations fall be-
low a tolerance TOL (usually set to 10−8), the optimal

transport plan Goptβ and the corresponding transport en-

ergy UMF (β) are computed. If the latter falls within the
tolerance TOL of the corresponding value computed for
the previous β value, the procedure is deemed to have
converged and the program is stopped. Note that the
converged values of λ and µ at a given β serve as input
for the following β.

The time complexity of FreeOT is dominated by step
(2) in its algorithm, namely solving the non linear system
equations defined by the SPA. Let us rewrite the saddle
point equations Eqn. 27 as functions of the parameters
λ and µ only:∑

l

Ḡ(k, l) =
∑
l

exp−β(C(k, l) + λ(k) + µ(l))

exp−β(C(k, l) + λ(k) + µ(l))− 1

+
∑
l

1

β(C(k, l) + λ(k) + µ(l))
= m1(k)

∑
k

Ḡ(k, l) =
∑
k

exp−β(C(k, l) + λ(k) + µ(l))

exp−β(C(k, l) + λ(k) + µ(l))− 1

+
∑
k

1

β(C(k, l) + λ(k) + µ(l))
= m2(l)

(29)

Let us then define

Aλ(k) = −
∑
l

exp−β(C(k, l) + λ(k) + µ(l))

exp−β(C(k, l) + λ(k) + µ(l))− 1

+
∑
l

1

β(C(k, l) + λ(k) + µ(l))
+m1(k)

(30)

and

Aµ(l) =−
∑
k

exp−β(C(k, l) + λ(k) + µ(l))

exp−β(C(k, l) + λ(k) + µ(l))− 1

+
∑
k

1

β(C(k, l) + λ(k) + µ(l))
+m2(l)

(31)

The SPA equations become:

Aλ(k) = 0 ∀k
Aµ(l) = 0 ∀l (32)

Those equations form a system of 2N−1 equations with
2N−1 variables, N λ(k) values, and N−1 µ(l) values (as
a reminder µ(N) is set to zero to ensure that the free en-
ergy functional is concave). Let us assume that we know
an initial solution X0 = (λ0,µ0) for this system. Taylor
expansions of the predicates (A) in the neighborhood of
this solution leads to the following system of equation:

J(X0)δX = −A(X0) (33)

where δX = (δλ, δµ) is the correction to be applied to
X0, A(X0) is the vector of values of the 2N−1 predicates
(Aλ,Aµ) at X0, and J(X0) is the Jacobian of A taken at
X0. We note that this Jacobian J is equal to the opposite
of the Hessian of the free energy function F . As this free
energy is concave, the Jacobian is then positive definite.
It can be written in block form:

J(X0) =

[
Dλ G′

G′T Dµ

]
(34)

where G′(k, l) = βφ′(β(C(k, l) + λ(k) + µ(l)), Dλ is the
diagonal matrix defined by Dλ(k, k) =

∑
l

G′(k, l), Dµ

is the diagonal matrix defined by Dµ(l, l) =
∑
l

G′(k, l),

and φ′(x) is the derivative of the function φ(x) defined in
Equation 28 (see Appendix C). The system of equations
33 can then be rewritten as[

Dλ G′

G′T Dµ

] [
λ
µ

]
= −

[
Aλ

Aµ

]
(35)

or equivalently as:{
Dλλ +G′µ = −Aλ

G′Tλ +Dµµ = −Aµ
(36)

Multiplying the bottom equation by G′D−1µ , and sub-
tracting from the top equation, we get

(Dλ −G′D−1µ G′T )δλ = Ak −G′D−1µ Al (37)

Once this system is solved for δλ, we can solve for δµ
using the equation G′T δλ + Dµδµ = Aµ. Note that
Dλ−G′D−1µ G′T is the Shur complement of Dµ in J . Us-
ing this representation reduces the problem of solving a
system of size (2N − 1) × (2N − 1) to that of solving a
system of size N × N . Note that since the Jacobian J
is positive definite, the Shur complement of Dµ in J is
also positive definite. To solve the system in Equation
37, we have implemented both a direct method based on
a LDLT decomposition of the Shur complement and an
iterative method based on conjugate gradient. The per-
formances of these two methods will be compared below
in computational experiments.

V. COMPUTATIONAL EXPERIMENTS

A. Comparing protein sequences using finite
temperature optimal transport

We present some computational examples that illus-
trate the use of our framework. We consider the problem
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of comparing protein sequences. A protein sequence is
usually represented as a string of letters, where each let-
ter corresponds to an amino acid. This representation
has proved very useful, especially in the context of se-
quence alignment [36, 37] that is usually performed using
string-matching algorithms [38]. When comparing two
sequences, these algorithms proceed in two steps, first the
generation of the alignment between the two sequences,
then the derivation of a statistical score for that align-
ment. It should be noted that this score is not a metric
in sequence space. “Alignment-free” methods have been
proposed as alternate solution to measure the similarity
of two protein sequences that enforce the metric prop-
erty (for review, see [39–42]). Most of these methods
compute the frequencies of words of a fixed length, k,
also denoted as k-mers. Once the frequency distribution
functions of such k-mers have been computed for two
sequences, the distance between those two sequences is
assigned to be the distance between those distributions
[40, 43]. The finite temperature optimal transport frame-
work allows us to combine the benefits of those two ap-
proaches. It is adapted to comparing protein sequences as
follows. We first consider a kernel for amino acid pairs,
namely a symmetric, positive definite matrix K1 such
that K1(i, j) gives a quantitative value for the similar-
ity between amino acid of type i and amino acid of type
j. To build such a kernel, we consider the matrices rep-
resenting the raw data SM of any BLOSUM matrices,
namely the raw count of how often an amino acid of type
i is substituted by amino acid j in a set of selected pro-
tein sequence alignments [44]. This matrix is normalized
by considering its row sums P (i):

P (i) =

20∑
j=1

SM(i, j)

SM2(i, j) =
SM(i, j)

P (i)p(j)
(38)

We have checked that when SM is a raw count BLOSUM
matrix, then SM2 is symmetric, positive, and definite.
Smale and colleagues [45] noticed that for a strictly pos-
itive real number β, the matrix K1 defined as:

K1(i, j) = SM2(i, j)β (39)

is also symmetric, positive, and definite. In the following,
we will use the BLOSUM62 matrix, with each element
raised to the power 0.1, as suggested by Smale et al. [45].
The second step is to define a kernel for comparing two

k-mers, namely two strings of the same length, k. Let
Sk = (s1, . . . , sk) and Tk = (t1, . . . , tk) be such strings.
The function K2 defined by:

K2(Sk, Tk) =

k∏
l=1

K1(sl, tl) (40)

is a kernel on the space of strings of length k. This kernel
is normalized,

K̂2(Sk, Tk) =
K2(Sk, Tk)√

K2(Sk, Sk)K2(Tk, Tk)
(41)

and converted into a distance, or cost C between Sk and
Tk using

C(Sk, Tk) =

√
2− 2K̂2(Sk, Tk) (42)

A pair of sequences S1 and S2 is represented with their
sets of k-mers, the cost matrix C between those k-mers,
with C computed as described above. The masses of
the k-mers are set uniform. The k-mers are contiguous
stretches of sequences, i.e. we do not consider gaps. In
addition, k-mers may be overlapping, i.e. there are N −
k + 1 k-mers of length k for a sequence with length N .

We focus on classifying proteins into structural folds
based on sequence information only. We considered pro-
tein sequences from the SCOPe/ASTRAL database [46].
The SCOPe database is designed to provide a comprehen-
sive description of the structural and evolutionary rela-
tionships between all proteins whose structure is known.
It defines a classification of those protein structures at
four levels namely class, folds, superfamilies, and fami-
lies. Here we only considered the first two levels, as they
are directly related to structures. ASTRAL is a com-
pendium to SCOPe that provides databases of protein
sequences and/or structures, as well as tools useful for an-
alyzing protein structures and their sequences. We used
a representative subset of the current SCOPe/ASTRAL
database that contains protein sequences sharing less
than 40% identity. This subset includes 12 different folds,
three for each of the four classes. Using the SCOP ter-
minology, we considered 3 mainly helical folds, a.1, a.25,
a.121, 3 mainly β folds, b.6, b.29, b.42, 3 α/β folds, c.1,
c.66, c.69, and three α + β folds, d.17, d.38, d.108, with
48, 46, 34, 43, 51, 30, 60, 41, 63, 46, 60, and 80 represen-
tatives, respectively for a total of 602 protein sequences.
We refer to this set is SCOP12.

We computed a set of matrices D(β) for β ranging
between 1000 and 1010, such that D(β)(k, l) is the opti-
mized transport energy UMF

β between the two sequences

Sk and Sl in the set SCOP12. We also computed D(∞),
namely the matrix of distances at convergence (usually
reached for β > 109).

In order to assess the discriminative power contained in
the different distance matrices D(β), we considered a set
of classification tasks as follows: We randomly selected
half the sequences from each fold to form a training set
and use it for performing 1-nearest neighbor classification
(where nearest is with respect to the distance D(β)) to
the remaining sequences. By simple comparison between
the class predicted by the classifier and the actual class
to which the image belongs we obtain an estimate for the
probability of correct classification P (β) using D(β). We
then repeat this procedure for 10000 random choices of
the training set. In figure 1, we plot P (β) as a function
of β for classification at the fold level for different values
of the size of the k-mers. Note that the lower the tem-
perature (or alternatively the higher the parameter β),
the more discriminative the distance UMF

β . The high-
est level of correct classification is already obtained for
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FIG. 1. Discriminative power of the temperature-
based optimal transport distances for protein fold
recognition. The probability of correct classification of a
protein sequence into its fold defined by SCOPe based on the
distance measure D(β) = UMF

β (see text for details) is plotted
against β = 1/T for different size of the k-mers used to repre-
sent the sequences. All the curves are arithmetic means over
10000 classification experiments (see text for details). Shaded
areas represent standard deviations.

β = 107 for all values of k-mers, i.e. much before conver-
gence to the optimal transport distance, usually reached
for β > 109. In addition, the discriminative power of the
temperature-based OT distance improves as the size of
the k-mers representing the sequences increases.

TABLE I. Classification powers of different distances between
protein sequences

Distance SCOPe Class
P (SD) a

SCOPe Fold
P (SD) a

OT k-mer 1 b 50.0 (2.4) 31.2 (2.2)
OT k-mer 5 77.2 (2.2) 68.9 (2.4)
OT k-mer 10 86.7 (1.9) 81.1 (2.1)
OT k-mer 20 90.3 (1.7) 86.2 (1.8)
OT k-mer 30 90.0 (1.8) 86.0 (2.0)
FASTA c 91.0 (1.6) 89.1 (1.6)
Bray-Curtis k-mer 1 d 48.0 (2.1) 29.0 (2.3)
Bray-Curtis k-mer 5 57.2 (2.4) 45.6 (2.3)
Jaccard k-mer 1 e 48.0 (2.4) 30.0 (2.2)
Jaccard k-mer 5 55.0 (2.4) 43.0 (2.3)
a) Mean and standard deviation, SD (in %) of the probabil-

ity of correct classification at the level considered, com-
puted over 10,000 classification experiments

b) Converged OT distance.
c) The FASTA “distance” between two sequences is set to

the raw score of the alignment of the two sequences, using
BLOSUM62 as a substitution matrix, and gap penalties
of -11 for opening, and -1 for extension

d) Alignment-free “distances” between two sequences com-
puted as the dissimilarities between the frequencies of
their k-mer types. These distances where computed using
the program Alfree [42].

In table I, we report the probabilities of correct classi-
fications for D(∞) at the SCOPe class and fold levels at
different k-mer sizes, and compare them with the success
rates of the alignment-based method FASTA [47] and of
two alignment-free methods that compare the distribu-
tions of k-mers using either Jaccard index distance or the
Bray-Curtis dissimilarity [48].

FASTA is a standard procedure in bioinformatics for
comparing protein sequences that is based on dynamic
programming. It proceeds in two steps, first with the gen-
eration of the alignment between the two sequences, then
with the derivation of a score for that alignment. It relies
on a weighting scheme to measure the cost of matching
pairs of amino acids. Many such weights have been pro-
posed, from substitution matrices such as the BLOSUM
matrices [44], to matrices that capture physico-chemical
properties of amino acids [49]. Using this score, an align-
ment is derived following a dynamic programming algo-
rithm, either the local method of Smith and Waterman
[50], or the global method of Needleman and Wunsch [51].
This alignment is then scored by summing the individual
weights of the matching pairs of amino acids and adding
penalties for the presence of gaps. In our experiments, we
have used the BLOSUM62 matrix, for consistency with
the results based on optimal transport (see above), and
gap penalties of -11 for opening and -1 for extension (the
default values when using the BLOSUM62 matrix). We
used the SSEARCH tool within FASTA that is based on
the Smith and Waterman dynamic programing method.
The “distance” between two sequences is then set to the
raw score of the alignment. It should be noted that this
score is not a metric in sequence space.

As alternates to dynamic programing methods such as
FASTA, many “alignment-free” methods have been pro-
posed over the past three decades (for review, see [39–
41]). Most of these methods compute first the frequen-
cies of words of a fixed length within a protein sequence,
k, usually denoted as k-mers. Once the frequency distri-
bution functions of such k-mers have been computed for
two sequences, the distance between those two sequences
is assimilated to the distance between those distribu-
tions, using different definitions of distance [40]. We have
considered two such methods based on two different dis-
tances, the Jaccard index distance and the Bray-Curtis
dissimilarity. The Jaccard distance is based on the pres-
ence or absence of k-mer types in the sequences. Briefly,
let us consider two sequences S1 and S2, and let us con-
sider that there are N types of possible k-mers in each
of these sequences (for example, if k = 2 then N = 202).
We then compare the two sequences by computing four
indices M11, M10, M01, and M00, representing the num-
ber of types of k-mers that are found in S1 and S2, in S1

but not in S2, in S2 but not in S1, and neither in S1 nor
in S2, respectively. The Jaccard distance between the 2
sequences is then

dJ(S1, S2) =
M01 +M10

M01 +M10 +M11

In contrast to the Jaccard distance, the Bray-Curtis dis-



10

similarity measure takes onto account the actual number
of k-mers of each type. If there are Xi k-mers of type i
in S1 and Yi k-mers of the same type i in S2, then

dBC(S1, S2) = 1− 2

∑
i min(Xi, Yi)∑
i(Xi + Yi)

Note that the Jaccard distance induces a metric on the
sequence space, while the Bray-Curtis distance does not.
We used the program Alfree [42] to compute these string-
based, alignment-free distances between sequences.

In table I, we report the probabilities of correct classi-
fications for D(∞) at the SCOPe class and fold levels at
different k-mer sizes, and compare them with the success
rates of the alignment-based method (FAST) and of two
alignment-free methods (Jaccard and Bray-Curtis) pre-
sented above. As already illustrated in Figure 1, the dis-
criminative power of the OT distance increases as the size
of the k-mers increases up to 20, and reaches a plateau
after that. The corresponding optimal OT distance for
k-mers of size 20 is equivalent to the discriminative power
of the Smith and Waterman alignment method. The sig-
nificant difference however is that the OT distance is an
actual distance, while the Smith and Waterman score is
not. The two alignment free methods based on k-mer
frequencies within the sequences show significantly lower
performances on this dataset.

The experiments described above highlight the clas-
sification powers of the finite temperature OT distance
that we have introduced. Interestingly, when we compute
the OT distance between two sequences, we also derive
the optimal transport plan between the k-mers of those
two sequences. In Figure 2, we show visual representa-
tions of the optimal transport plan G for the optimal
transport between the sequence of concavalin A (PDB
code 2cnaA, 237 amino acids) and of a peanut lectin
(PDB code 2pelA, 232 amino acids) for two k-mer sizes,
3 and 10. The FASTA alignment between those two se-
quences does not identify a single alignment; instead it
finds that region 1-115 of concavalin A aligns well with
region 114:229 of lectin A, while region 2-102 of lectin A
aligns well with region 124-227 of concavalin A: there has
been a domain swap between the two sequences. Clearly,
the transportation plan between the two sequences cap-
tures that domain swap, especially for large k-mer sizes.
This visualization of the transport plan is akin to the con-
cept of dot plot representation of the similarity between
two sequences [52].

B. Computing time

As described in the Implementation section above, the
main computing cost of our implementation of the finite
temperature optimal transport problem, FreeOT, is as-
sociated with solving the non linear set of equations cor-
responding to the SPA at each value of β. We solve this
system of equation using an iterative Newton-Ralphson
method. At each iteration, we solve a linear system of
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FIG. 2. Optimal transport plans between concavalin A (hor-
izontal axis) and peanut lectin (vertical axis), for k-mer sizes
of 3 (a) and 10 (b). The local alignments of the two domains
of these sequences, as well as the domain swap, appear clearly
from the transportation plans

equation based on the Jacobian of the non linear equa-
tions. As described in the Implementation section, this
system can be rearranged to be of size N ×N , where N
is the number of points considered. We considered two
methods for solving this system. First, we use a direct
method with which we decompose the matrix describing
the system using a LDL decomposition, as implemented
in the program dsysv from the LAPACK packages [53].
The corresponding time complexity is expected to be
O(N3). Second, we implemented an iterative conjugate
gradient (CG) method. Each iteration of the CG meth-
ods involves two matrix-vector multiplications, which are
of order O(N2). The CG method will converge in at
most N iterations, and in many cases in many less itera-
tions. As such, it is expected to be faster than the direct
method if the total number of CG iterations is small. We
refer to these two implementations as FreeOT(direct) and
FreeOT(iter).

Based on theorem 1 and the two propositions 5 and
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6, FreeOT is expected to provide a fast and robust so-
lution to the OT problem. To check that it is indeed
the case, we have compared FreeOT, with our own im-
plementation of the entropy regularized approach to the
OT problem. The latter, dubbed EntropyOT, is based on
a log-domain stabilization and eta-scaling heuristic [32]
and an overrelaxation scheme [54]. These two modifica-
tions to the original algorithm of Cuturi [24] are expected
to improve convergence of the iterative scaling algorithm,
as well as robustness for small values of the relaxation
parameter ε through the use of logarithmic stabilization.
We have experimented with applications of FreeOT and
EntropyOT to compare protein sequences, as described
above. We have compared each sequence in the SCOP12
dataset defined above against five other sequences of sim-
ilar lengths. The computing time for one sequence is then
reported as the average over those five neighbors. Each
comparison is made based on the BLOSUM62 matrix,
with the size of the k-mers set to 1. The optimization
is performed until convergence, i.e. until the relative
change in the energy falls below a tolerance of 10−6. Such
convergence is usually reached for β = 1011 (or equiva-
lently for ε = 10−11 for EntropyOT). All computational
experiments were performed on an iMac computer with a
4.0 GHz Intel Core I7 processor, with 64 GB of memory.
The computing times for FreeOT (both the direct and it-
erative versions) and EntropyOT are plotted against the
sizes of the protein sequences in Figure 3.
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FIG. 3. Time complexity for FreeOT and EntropyOT.
The running times for the finite temperature procedure
(FreeOT) and for the entropy regularized procedure (En-
tropyOT, blue circles) used for comparing two sequences are
plotted against the size of the sequences, including two op-
tions for the inner solver of the linear system of equations
(see text for details), namely a direct solver (black circles), or
an iterative conjugate gradient solver (red circles). The cor-
responding solid lines shows the best fit to a cubic polynomial
for the direct solver data, and to a quadratic polynomial for
the iterative solver. The timings are computed on a single
Intel Core I7 processor running at 4.0 GHz with 64 GB of
RAM.

With the exceptions of only small sequences, both ver-
sions of FreeOT are found to be faster than EntropyOT.

We have assigned this difference to the fact that En-
tropyOT was found to slow down significantly for very
small ε values. While convergence with high precision
may not be needed, we observe that FreeOT is free of
those convergence problems.

The running times for FreeOT based on the direct lin-
ear solver are consistent with a O(N3) time complexity,
while the equivalent running times for the iterative CG
solver are consistent with a O(N2). Note that those run-
ning times are reported for the full procedure that in-
cludes scaling the β parameter from a small value (high
temperature), to a large value (low temperature). Inter-
estingly, the differences between the two solvers is small
for the sizes of protein sequences considered here. In fact,
up to size 400, the direct solver is found to be faster than
the iterative solver. This is due to the fact that we are
using an efficient, parallelized version of dsysv from LA-
PACK that uses all 8 cores available on the computer on
which we ran those experiments. For those small values
of N , the apparent time complexity of the parallelized
direct solver is of order O(N2). When N becomes larger,
the apparent complexity becomes closer to O(N3), and
then the iterative solver becomes faster.
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FIG. 4. Convergence of the non linear solver in
FreeOT for successive values of β. The number of
Newton-Ralphson iterations needed for solving the SPA con-
ditions is plotted against the value of β, for the standard
implementation of FreeOT with transfer of variables between
two consecutive β values (in black), and for the reset ver-
sion of FreeOT in which the variables are reset to 0 at each
value of β. The solid line corresponds to the arithmetic means
over the 602 sequence comparison experiments (see text for
details). Shaded area represents standard deviations

Both FreeOT and EntropyOT include a scaling of their
regularization parameter, β and ε, respectively. This
scaling is akin to an annealing procedure. As the values
of the variables λ and µ at one value of the regulariza-
tion parameter are used as input to the next value of the
regularization parameter considered, it is expected that
convergence at this new step be faster. To check if this
is true, we repeated those calculations by resetting the



12

variables to 0 at each step, and compared the number
of iterations needed to converge at each value of the re-
laxation between the scaling version, and reset version
of FreeOT and EntropyOT. Most experiments using En-
tropyOT failed due to numerical instabilities for ε < 10−5

In contrast, FreeOT was able to converge even with reset
of the variables, over the whole range of β values. The
average numbers of iterations for the regular and reset
version of FreeOT (both based on the iterative solver)
are shown in Figure 4.

For the regular version of FreeOT we see significant
fluctuations for the number of iterations over the 602
sequencess considered for β in the range [104, 107]. Above
107, this number remains small and constant (5). In
comparison, the number of iterations needed at each β
step increases as β increases when the variables are reset
for each β value (FreeOT(reset)). The ranges of values
observed over all experiments are large for large values
of β, highlighting difficulties to converge for those values.
Notwithstanding, all computations converge, even with
β = 1011, thereby validating the stability of FreeOT.

VI. DISCUSSION

In this paper, we have proposed a statistical physics
framework to solve the discrete optimal transport prob-
lem. Given two sets of weighted points S1 and S2, and
a cost matrix between those sets, assumed to be met-
ric, we have shown first that the free energy computed
over the polytope of all possible transport plans between
those two sets defines a temperature dependent distance
between the sets that satisfies the symmetry and trian-
gular inequality properties of a metric. While the free
energy cannot be computed exactly, it can be estimated
using a saddle point approximation. The saddle point ap-
proximation is derived by constructing a weakly concave
effective energy function that captures the constraints
of the optimal transport problem. This effective energy
function is parameterized by temperature. Its maximum
defines an optimal transport plan. We have shown that
the transportation energy corresponding to this trans-
port plan defines a temperature dependent distance be-
tween the two sets of points considered. We proved also
that this energy decreases monotonically as a function of
β (the inverse of temperature) to the standard optimal
energy distance, providing a robust framework for tem-
perature annealing. We described an application of our
framework in bioinformatics, in which we have rephrased
the problem of comparing two protein sequences as an
optimal transport problem. We have shown that with
this formulation we can derive an actual distance between
two sequences, as well as a “transport plan” between the
two sequences that is akin to a dotplot between those
sequences.

The starting point that defined the OT problem is the
original problem of Monge [21]: finding a one-to-one as-
signment between points in a source domain and points in

a target domain, knowing the cost of pairing points from
the two domains. As originally phrased by Monge, how-
ever, the OT problem was deceptively simple. It proved
hard to fully characterize, such as validating the exis-
tence of a solution and how this solution can be charac-
terized. It was only when this problem was relaxed by
Kantorovich [55], to the form described in equations 1
and 2 (namely with a transport plan that does not re-
quire a one-to-one assignment but allows for splitting)
that a better mathematical characterization was made
possible. In particular, the problem could then be de-
scribed as a linear problem and it became possible to
prove the existence of a solution that can be character-
ized using techniques from convex optimization. Since
Kantorovich, there has been many ways in which the
OT problem has been described, sometimes simplified
for specific cost functions, and analyzed (see for example
[16–18, 20]). it is worth to mention for example the “in-
visible hand algorithm” [33], which solves the assignment
problem (namely the Monge formulation of the OT prob-
lem) using a statistical physics approach similar to the
one we have proposed here for the more general relaxed
OT problem. Of direct relevance to our framework, how-
ever, is the entropy-regularized formulation of the OT
problem proposed by Cuturi [24] that has significantly
helped popularizing OT and increased the range of its
applications. This formulation is briefly described in sec-
tion II. Both the entropy-regularized OT and the statis-
tical physics framework we have introduced considered a
modified optimization problem in which the original cost
function of the OT problem is either supplemented with
an entropy term for the regularized OT, or replaced with
a physical free energy function in our formulation. The
modified optimization problems are both solved over two
sets of unconstrained real continuous variables, which we
write here as λ(k) and µ(l) where the indices k and l
run over the points in the source domain, S1, and target
domain, S2, respectively. While the two formulations,
regularized OT and our framework, have different func-
tionals, their solutions share a similar set of equations
to described how the continuous variables λ(k) and µ(l)
are computed. Namely, the optimal transport plan G is
written as a function of the cost matrix C and of the
parameters λ(k) and µ(l)

G(k, l) = g(α(C(k, l) + λ(k) + µ(l))), (43)

which are then computed by satisfying the constraints,∑
l

G(k, l) = m1(k) (44)∑
k

G(k, l) = m2(l) (45)

In both formulations, the optimal transport plan is a
function of a parameter α, with α = 1/ε, the weight
given to the entropic term in the regularized OT, and
α = β = 1/(kBT ) i.e. the inverse of the temperature,
in our statistical physics formalism. The similarities end
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there and we will discuss now the differences and their
impact on solving the OT problem.

First, the mapping g between the variables λ(k) and
µ(l) and the transport plan differs significantly between
the two approaches, with

g(x) = g1(x) = e−x (46)

for the regularized OT, and

g(x) = φ(x) =
e−x

e−x − 1
+

1

x
(47)

for our formulation. Both mapping functions ensure that
the entries G(k, l) of the transport plan remain positive.
The function g1(x) however is not bounded above, while
the function φ(x) ensure that G(k, l) belongs to [0, 1].
This constraint, built in the construction of the func-
tional free energy we have introduced, provides better
control over the variations of G during the optimization.
It is unclear how a similar constraint can be considered
for the regularized OT problem.

Second, the finite temperature OT framework is nu-
merically more stable than the regularized OT. The ratio
of exponentials in the definition of φ(x) makes this func-
tion numerically more stable than g1(x). This question
of numerical stability is of concern as the value of α is in-
creased in an attempt to get close to the traditional OT
problem (both formulations compared here map to the
traditional OT problem when α → +∞). For the regu-
larized problem, log-domain stabilizations have been pro-
posed [32], though those stabilizations still need improve-
ment for large α, i.e. small ε, or small regularization. For
the framework proposed here, we have run routinely com-
putations with α (i.e. β, the inverse of temperature) of
the order of 1011 without numerical instabilities.

The key advantage of the regularized OT formulation
that it can be solved at “lightning speed”, paraphrasing
the title of the paper that introduced it [24]. Indeed, it
can be solved with a time complexity of O(N2), com-
pared to the O(N3) for the linear programming solution
of the traditional OT problem. We have shown that the
finite temperature OT problem can also be solved with
a time complexity of O(N2) at each temperature. We
have shown also that the procedure is similar to an an-
nealing process as the temperature decreases, with no
loss of numerical stability, or increase in computing time
for very small values of the temperature. We note that
there is still room for improvement. The time complexity
of O(N2) of our procedure is the result of the application
of an iterative conjugate gradient method for solving the
linear systems that appear when resolving the SPA con-
ditions. Our current version of this method is naive, with
a simple diagonal preconditioner. We will explore more
sophisticated preconditioners, as well as other iterative
methods in future work.

Formulating the OT problem with the addition of a
temperature parameter has many advantages, in addi-
tion to the ones described above. In particular, it en-
ables annealing (referred to as scaling in statistics) with

respect to the temperature. While this is of advantage
when solving numerically the OT problem, it also fits well
with other simulation techniques such as Monte Carlo
sampling to analyse for example the polytope of possible
transport plan G and therefore recover the true values of
the free energy of the system and its internal energy, as
defined in Equations 14 and 15. We will pursue this in
future studies.

Finally, we note that the OT problem considered in
this paper assumes that the two sets of points considered
are embedded in the same metric space, namely that we
can build the cost matrix C that connect them. For ex-
ample, if those two sets of points were discrete represen-
tations of two three-dimensional shapes, it would be diffi-
cult to generate such a cost matrix between them as those
shapes are not “registered”, i.e. the correspondence be-
tween the spaces in which they are embedded may not be
known. Situations like this have led to an extension to the
optimal transport problem with the notion of Gromov-
Wasserstein distances between metric measured spaces
[35]. We believe that the concept of finite temperature
optimal transport can be extended in the same way into
a finite temperature Gromov-Wasserstein distance. We
are currently working on this problem.

Appendix A: Proof of property 3: metric properties
of the free energy

We prove that the free energy defined in equation 14
satisfies all triangular inequalities. Let us consider three
sets of points S1, S2, and S3, in a metric space M with
associated mass vectors m1, m2, and m3, respectively.
For a pair (i, j) of those sets, we associate a cost matrix
Cij derived from the distance d on M and a transport
plan polytope G(Si, Sj). Recall that any matrix Gij in
this polytope satisfies the three conditions,

∀(k, l) 0 ≤ Gij(k, l) ≤ 1

∀k
∑
l

Gij(k, l) = mi(k)

∀k
∑
k

Gij(k, l) = mj(l) (A1)

The partition function for all possible transport plans
between Si and Sj is given by

Zβ(Si, Sj) =

∫
Gij∈G(Si,Sj)

dµij exp (−βUij(Gij))(A2)

where Uij(Gij) =
∑
kl Cij(k, l)Gij(k, l). The correspond-

ing free energy is given by:

Fβ(Si, Sj) = − 1

β
ln(Zβ(Si, Sj)) (A3)

We first note that the volume of the transport plan
polytope G(Si, Sj) for any (i, j) ∈ [1, 3]2 is smaller than 1.
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Indeed, taking into account the nature of this polytope,
we have ∫

G∈G(Si,Sj)
dµij =

∫ 1

0

∏
kl

dG(k, l)×

∏
k

δ

(∑
l

G(k, l)−mi(k)

)
×

∏
l

δ

(∑
k

G(k, l)−mj(l)

)
(A4)

As the G(k, l) are integrated between 0 and 1, and as
the constraints set by the delta functions restrain the
space of possible transport plans, we have indeed that
0 ≤

∫
G∈G(Si,Sj) dµij ≤ 1.

We can prove the triangular inequality of the free en-
ergy defined in Eqn. A3 using the same proof strat-
egy than that used for the standard optimal trans-
port distance. We consider a “glued” partition function
Zgbeta(S1, S3) between S1 and S3:

Zgβ(S1, S3) =

∫
G12∈G(S1,S2)

∫
G23∈G(S2,S3)

dµijdµij

exp

−β∑
ijk

C13(i, k)
G12(i, j)G23(j, k)

m2(j)

 (A5)

Let A =
∑
ijk C13(i, k)G12(i,j)G23(j,k)

m2(j)
. As the cost matri-

ces are derived from the distance on the metric space in
which S1, S2, and S3 are embedded, we have:

C13(i, k) ≤ C12(i, j) + C23(j, k), (A6)

for all (i, j, k), and, therefore,

A ≤
∑
ijk

C12(i, j)
G12(i, j)G23(j, k)

m2(j)
+

∑
ijk

C23(j, k)
G12(i, j)G23(j, k)

m2(j)
. (A7)

Note that ∑
ijk

C12(i, j)
G12(i, j)G23(j, k)

m2(j)

=
∑
ij

C12(i, j)G12(i, j)

m2(j)

∑
k

G23(j, k)

=
∑
ij

C12(i, j)G12(i, j)

m2(j)
m2(j)

=
∑
ij

C12(i, j)G12(i, j) = U12(G12). (A8)

Similarly,∑
ijk

C23(j, k)
G12(i, j)G23(j, k)

m2(j)
= U23(G23). (A9)

Combining Eqns. A7, A8, and A9, we get

A ≤ U12(G12) + U23(G23), (A10)

from which we derive

exp (−βA) ≥
exp (−βU12(G12)) exp (−βU23(G23)) (A11)

Therefore,

Zgβ(S1, S3) ≥ Zβ(S1, S2)Zβ(S2, S3). (A12)

Note that the “glued” partition function Zgβ(S1, S3) is
computed over all transport plans between S1 and S3

that are glued from transport plans between S1 and S2

and between S2 and S3. Those transport plans form a
subset of all transport plans between S1 and S3. There-
fore,

Zgβ(S1, S3) ≤ Zβ(S1, S3). (A13)

Combining Eqns A12, and A13, we get

Zβ(S1, S3) ≥ Zβ(S1, S2)Zβ(S2, S3). (A14)

This inequality on the partition functions translates to
the following inequality for the free energy,

Fβ(S1, S3) ≤ Fβ(S1, S2) + Fβ(S2, S3), (A15)

which concludes the proof that F satisfies all triangular
inequalities.

Appendix B: Proof of property 4: monotonicity of
the free energy and average energy

Let us consider two sets of points S1 and S2,in a met-
ric space M with associated mass vectors m1 and m2,
respectively. We associate to this system a cost matrix C
and a transport plan polytope G(S1, S2). Recall that any
matrix G in this polytope satisfies the three conditions in
Eqn 5. The free energy Fβ of this system is related to its
internal energy Eβ and entropy Sβ through the general
relation Fβ = Eβ−TSβ , where T is the temperature and
β = 1/(kBT ).

The internal energy is the thermodynamic average of
the energy U and is given by

Eβ =< U(G) >G∈G(S1,S2)=
d (βFβ)

dβ
(B1)

while the entropy is given by

Sβ = β2 dFβ
dβ

= −dFβ
dT

(B2)

An important implication of these relations is that

dEβ
dβ

= −
(
< U2 > − < U >2

)
, (B3)
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where the thermodynamics averages <> are computed
over the polytope G(S1, S2). The quantity on the left is
minus the variance of the energy and is therefore neg-
ative, for all values of β. As a result, the internal (or
average) energy of the system decreases as β increases.
As U(G) is positive (as both the cost matrix C and the
transportation plan G are positive), Eβ is positive: it
has a limit when β → ∞. This limit is the traditional
optimal transport distance d(S1, S2) (see section II).

The entropy is negative. Indeed, as the total number
of states at an energy U is given by,

N (U) = eSβ(U)

=

∫
G∈G(Si,Sj)

δ

(
U −

∑
kl

G(k, l)C(k, l)

)
dµij (B4)

As the volume of the polytope G(Si, Sj) is smaller than
1 (see Appendix A),

N (U) = eSβ(U) ≤ 1 (B5)

and therefore Sβ(U) ≤ 0. As this is true for all values of
U , we have Sβ(T ) ≤ 0 ∀T . The free energy is related
to the entropy by

dFβ
dT

= −β2 dFβ
dβ

= −Sβ(T ) (B6)

Therefore

dFβ
dβ

=
Sβ(T )

β2
≤ 0 (B7)

Therefore the free energy of the system decreases as β
increases. Its limit for β →∞ is the same as the limit of
Eβ , namely the optimal transport distance d(S1, S2).

Appendix C: Proof of Theorem 1: concavity of the
effective free energy

We first prove that the effective free energy Fβ (λ,µ) is
weakly concave, by showing that its HessianH is negative
semidefinite. H is a symmetric matrix of size 2N × 2N ,
such that its rows and columns correspond to all N λ
values first, followed by all N µ values. Let φ′ be the
derivative of the function φ, i.e.

φ′(x) =
e−x

(e−x − 1)2
− 1

x2
(C1)

We note first that φ′(x) ∈ [−112 , 0) ∀x ∈ R, i.e. that
φ′(x) is always strictly negative. We define the matrix
G′ such that

G′(k, l) = φ′(β(C(k, l) + λ(k) + µ(l)) (C2)

From equations (27), we obtain:

H(k, i) =
∂2Fβ (λ,µ)

∂λ(k)∂λ(i)
= βδki

∑
l

G′(k, l) (C3)

H(k, l) =
∂2Fβ (λ,µ)

∂λ(k)∂µ(l)
= βG′(k, l) (C4)

H(l,m) =
∂2Fβ (λ,µ)

∂µ(l)∂µ(m)
= βδlm

∑
k

G′(k, l) (C5)

where δ are Kronecker functions, the indices k and i be-
long to [1, N ] and the indices l and m belong to [1, N ].

Let x = (x1,x2) be an arbitrary vector of size 2N .
The quadratic form Q(x) = xTHx is equal to:

Q(x) =
∑
i,k

x1(k)H(k, i)x1(i) + 2
∑
k,l

x1(k)H(k, l)x2(l) +

∑
l,m

x2(l)H(l,m)x2(m)

=β
∑
k,l

x1(k)2G′(k, l) + 2β
∑
k,l

x1(k)G′(k, l)x2(l)

+β
∑
k,l

x2(l)2G′(k, l)

=β
∑
k,l

(x1(k) + x2(l))2G′(k, l) (C6)

As G′(k, l) is based on the function φ′ that is strictly
negative, the summands in the equation above are nega-
tive for all k and l, and therefore Q(x) is negative for all
vector x. The Hessian H is megative, semidefinite. As a
consequence Fβ (λ,µ) is (weakly) concave.

As Q(x) is a sum of negative terms, it is 0 if and
only if all the terms are equal to 0. This means that
∀(k, l) x1(k) + x2(l) = 0. This is realized when all
the coordinates to x1 are equal, and set to a parame-
ter K, and all the coordinates to x2 are equal, and set to
−K. Therefore 0 is an eigenvalue of H, with eigenvector
x = (1, . . . , 1,−1, . . . ,−1). This eigenvector corresponds
to the translation invariance for the free energy. It can
be removed by setting one of the parameters λ(k) or µ(l)
to zero; the free energy functional Fβ (λ,µ) on this re-
stricted parameter space is then strictly concave.

Appendix D: Proof of proposition 5: metric
properties of the finite temperature transport

energy

Similar to appendix A, let us consider three sets of
points S1, S2, and S3, in a metric space M with as-
sociated mass vectors m1, m2, and m3, respectively.
For a pair (i, j) of those sets, we associate a cost ma-
trix Cij derived from the distance d on M and a trans-

port plan polytope G(Si, Sj). Let Goptij be the optimal
transport plan between Si and Sj that satisfies the sad-

dle point equations 27 at a set value for β, and let Uoptij
be the associated mean field optimal transport cost, i.e.
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UMF
ij =

∑
kl

Cij(k, l)G
opt
ij (k, l). Goptij and UMF

ij depend on

β. We omit it here for clarity of presentation.
Based on the definitions above, the energy associated

with Gopt13 is

UMF
13 =

∑
kl

C13(k, l)Gopt13 (k, l) (D1)

As the cost matrix is metric,

C13(k, l) ≤ C12(k, j) + C23(j, l) (D2)

for any j in [1, N ] (i.e. j is an index for a point in S2)
and therefore

UMF
13 ≤

∑
kl

C12(k, j)Gopt13 (k, l) +
∑
kl

C23(j, l)Gopt13 (k, l)

≤
∑
k

C12(k, j)
∑
l

Gopt13 (k, l) +∑
l

C23(j, l)
∑
k

Gopt13 (k, l). (D3)

Note that Gopt13 (k, l) ∈ G(S1, S3), i.e. satisfies the trans-
port constraints. Therefore,

UMF
13 ≤

∑
k

C12(k, j)m1(k) +
∑
l

C23(j, l)m3(l)(D4)

for all j ∈ [1, N ]. We rewrite this equation as

UMF
13 ≤ A(j) (D5)

for all j ∈ [1, N ], where we have defined A(j) =∑
k

C12(k, j)m1(k) +
∑
l

C23(j, l)m3(l).

Let us now consider the “glued” transport plan Gg13
defined as:

Gg13(k, l) =
∑
i

Gopt12 (k, i)Gopt23 (i, l)

m2(i)
(D6)

Based on the gluing lemma, Gg13 ∈ G(S1, S3). As such,

m1(k) =
∑
l

Gg13(k, l) ∀k

m3(l) =
∑
k

Gg13(k, l) ∀l (D7)

Replacing in the expression of A(j), we get:

A(j) =
∑
k

C12(k, j)
∑
l

Gg13(k, l) +∑
l

C23(j, l)
∑
k

Gg13(k, l)

=
∑
k,l

(C12(k, j) + C23(j, l))Gg13(k, l)

=
∑
k,l

(C12(k, j) + C23(j, l))×

∑
i

Gopt12 (k, i)Gopt23 (i, l)

m2(i)
(D8)

The set of real numbers {C12(k, j) + C23(j, l)} with j ∈
[1, N ] is finite. According to the well ordering principle,
it has a minimum element with index j0 such that,

C12(k, j0) + C23(j0, l) ≤ C12(k, i) + C23(i, l),∀i(D9)

Then,

A(j0) ≤
∑
k,i,l

(C12(k, i) + C23(i, l))
Gopt12 (k, i)Gopt23 (i, l)

m2(i)

≤
∑
k,i,l

C12(k, i)
Gopt12 (k, i)Gopt23 (i, l)

m2(i)
+

∑
k,i,l

C23(i, l)
Gopt12 (k, i)Gopt23 (i, l)

m2(i)

≤ UMF
12 + UMF

23 (D10)

Since Uopt13 ≤ A(j) for all j (Eqn. D5), Uopt13 ≤ A(j0), and
therefore

UMF
13 ≤ UMF

12 + UMF
23 (D11)

which concludes the proof that UMF satisfies all trian-
gular inequalities.

Appendix E: Proof of proposition 6: Monotonicity
and limits of FMF (β) and UMF (β)

Let us consider two sets of points S1 and S2 in a met-
ric space M with associated mass vectors m1 and m2,
respectively. We associate to this system a cost matrix
C and a transport plan polytope G(S1, S2). In Appendix
B we have established that the exact free energy and in-
ternal energy defined in Eqn. 14 and 15, respectively,
are monotonic functions of the parameter β, and con-
verge to the actual optimal transport distance d(S1, S2)
when β → ∞. Here we consider the approximation of
those quantities obtained with the saddle point approx-
imation, namely the mean field values FMF and UMF ,
and show that they satisfy the same properties.

The effective free energy Fβ (λ,µ) defined in Eqn. 22 is
a function of the cost matrix C and of real unconstrained
variables λ(k) and µ(l). For sake of simplicity, for any
(k, l) ∈ [1, N ]2, we define:

xkl = C(k, l) + λ(k) + µ(l) (E1)

The effective free energy is then

Fβ (λ,µ)= −

(∑
k

λ(k)m1(k) +
∑
l

µlm2(l)

)

− 1

β

∑
kl

ln

(
1− e−βxkl
βxkl

)
(E2)

As written above, Fβ (λ,µ) is a function of the inde-
pendent variables β, λ(k) and µ(l). However, under the



17

-100 -50 0 50 100
x

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

f(
x
)

-100 -50 0 50 100

x

0

0.2

0.4

0.6

0.8

1

(x
)

φ

FIG. 5. The two functions φ(x) and f(x).

saddle point approximation, the variables λ(k) and µ(l)
are constrained by the conditions,

∂Fβ (λ,µ)

∂λ(k)
= 0

∂Fβ (λ,µ)

∂µ(l)
= 0 (E3)

and the free energy under those constraints is written
as FMF (β). In the following, we will use the notations
dFMF (β)

dβ and ∂FMF (β)
∂β to differentiate between the total

derivative and partial derivative of FMF (β) with respect
to β, respectively. Based on the chain rule,

dFMF (β)

dβ
=
∂Fβ (λ,µ)

∂β
+
∑
k

∂Fβ (λ,µ)

∂λ(k)

∂λ(k)

∂β
+

∑
l

∂Fβ (λ,µ)

∂µ(l)

∂µ(l)

∂β
(E4)

Using the constraints E3, we find that

dFMF (β)

dβ
=
∂Fβ (λ,µ)

∂β
(E5)

namely that the total derivative with respect to β is
in this specific case equal to the corresponding partial
derivative, which is easily computed to be

dFMF (β)

dβ
=

1

β2

∑
kl

[
ln

(
1− e−βxkl
βxkl

)
+ βxklφ(βxkl)

]
(E6)

where φ(x) = e−x

e−x−1 + 1
x , as defined in equation 28. Let

f(x) = ln
(

1−e−x
x

)
+ xφ(x). In figure 5, we represent

the two functions φ(x) and f(x). As mentioned in the
main text of the paper, φ(x) is monotonically constrained
in the interval [0, 1] and therefore correctly represent the
possible values for the corresponding transport plan. The
function f(x) is continuous and defined over all real val-
ues x (with the extension f(0) = 0) and is bounded above
by 0, i.e. f(x) ≤ 0 ∀x ∈ R.

As

dFMF (β)

dβ
=

1

β2

∑
kl

f(βxkl) (E7)

we conclude that

dFMF (β)

dβ
≤ 0 (E8)

namely that FMF (β) is a monotonically decreasing func-
tion of β. In addition, we note that FMF (β) is the mean
field approximation of the true free energy Fβ and that
this approximation becomes exact when β tends to ∞.
Therefore,

lim
β→∞

FMF (β) = lim
β→∞

F(β) = d(S1, S2) (E9)

where d(S1, S2) is the traditional optimal transport dis-
tance between the two sets of points S1 and S2.

Let

Uβ (λ,µ) =
∑
kl

CklGβ(k, l) (E10)

and the corresponding meanfield approximation of the
internal energy at the saddle point,

UMF (β) =
∑
kl

CklG
opt
β (k, l) (E11)

Before computing dUMF (β)
dβ , let us first notice that by

replacing equation E2 into E6, we get:

β
dFMF (β)

dβ
=−FMF (β)−

∑
k

λ(k)m1(k)−
∑
l

µlm2(l) +∑
kl

xklφ(βxkl) (E12)
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FMF is the value of the free energy at the saddle point of
the free energy functional and is associated to a transport
plan Goptβ that satisfies the equations 27. Therefore,

β
dFMF (β)

dβ
= −FMF (β)−

∑
kl

λ(k)Goptβ (k, l)−∑
kl

µlG
opt
β (k, l) +

∑
kl

xklG
opt
β (k, l).

(E13)

Therefore,

β
dFMF (β)

dβ
= −FMF (β)−

∑
kl

(xkl − λ(k)− µ(l))Goptβ (k, l)

= −FMF (β) +
∑
kl

C(k, l)Goptβ (k, l)

= −FMF (β) + UMF (β). (E14)

Note that this equation can be rewritten as,

UMF (β) = FMF (β) + β
dFMF (β)

dβ

=
d(βFMF (β))

dβ
, (E15)

i.e. it extends the relationship B1 known between the
true free energy and the average energy to their mean
field counterparts.

Based on the chain rule,

dUMF (β)

dβ
=
∂Uβ (λ,µ)

∂β
+
∑
k

∂Uβ (λ,µ)

∂λ(k)

∂λ(k)

∂β
+

∑
l

∂Uβ (λ,µ)

∂µ(l)

∂µ(l)

∂β
(E16)

Let us compute all partial derivatives in this equation:

∂Uβ (λ,µ)

∂λ(k)
=
∂Fβ (λ,µ)

∂λ(k)
+ β

∂

∂λ(k)

(
∂Fβ (λ,µ)

∂β

)
=
∂Fβ (λ,µ)

∂λ(k)
+ β

∂

∂β

(
∂Fβ (λ,µ)

∂λ(k)

)
= 0 (E17)

where the zero is a consequence of the SPA constraints.

Similarly,

∂Uβ (λ,µ)

∂µ(l)
=
∂Fβ (λ,µ)

∂µ(l)
+ β

∂

∂µ(l)

(
∂Fβ (λ,µ)

∂β

)
=
∂Fβ (λ,µ)

∂µ(l)
+ β

∂

∂β

(
∂Fβ (λ,µ)

∂µ(l)

)
= 0 (E18)

Finally,

∂Uβ (λ,µ)

∂µ(l)
= 2

∂Fβ (λ,µ)

∂β
+ β

∂

∂β

(
∂Fβ (λ,µ)

∂β

)
= 2

∂Fβ (λ,µ)

∂β
+

β

(
−2

β

∂Fβ (λ,µ)

∂β
+

1

β2

∑
kl

βx2klφ
′(βxkl)

)
=
∑
kl

βx2klφ
′(βxkl) (E19)

As x2kl is always positive, and φ′(x) is always negative,
we have

dUMF (β)

dβ
=
∂Uβ (λ,µ)

∂µ(l)
≤ 0 (E20)

and the function UMF (β) is a monotonically decreasing
function of β. In addition, we note that UMF (β) is the
mean field approximation of the true internal energy Eβ
and that this approximation becomes exact when β tends
to ∞. Therefore,

lim
β→∞

UMF (β) = lim
β→∞

E(β) = d(S1, S2) (E21)

where d(S1, S2) is the traditional optimal transport dis-
tance between the two sets of points S1 and S2.
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