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Numerical linked-cluster expansions allow one to calculate finite-temperature properties of
quantum lattice models directly in the thermodynamic limit through exact solutions of small clusters.
However, full diagonalization is often the limiting factor for these calculations. Here, we show that
a partial diagonalization of the largest clusters in the expansion using the Lanczos algorithm can
be as useful as full diagonalization for the method while mitigating some of the time and memory
issues. As test cases, we consider the frustrated Heisenberg model on the checkerboard lattice and
the Fermi-Hubbard model on the square lattice. We find that our approach can surpass state of the
art in performance in a parallel environment.

I. INTRODUCTION

Over the past decade, the numerical linked-cluster
expansion (NLCE) [1–3] has become a versatile and
powerful technique for solving quantum lattice models
and studying finite-temperature properties of strongly-
correlated systems in the thermodynamic limit. So far, it
has seen applications to a variety of problems including
magnetic models [2, 4–6], itinerant electron models on
several different geometries [3, 7–9], quantum quenches
in the thermodynamic limit [10, 11], entanglement [12–
14], driven-dissipative open systems [15], disordered
systems [11, 16], and even the hard problem of
nonequilibrium dynamics [17, 18] or dynamical properties
for systems in equilibrium in the thermodynamic
limit [19].

At the heart of the method lies the exact solution of
model Hamiltonians on relatively small clusters, which
can have unusual topologies, using exact diagonalization.
This step is the most computationally expensive and
therefore the limiting factor of the method. For models
such as the Fermi-Hubbard model, the growth in the size
of the Hilbert space with cluster size puts the calculations
quickly up against an exponential wall. In other cases,
the factorially growing number of clusters that need to
be diagonalized is the limiting factor.

In cases where only the ground state is of interest,
and in the absence of long-range entanglement, which
is unfavorable to the convergence of NLCEs, other
techniques such as the Lanczos algorithm or the density
matrix renormalization group have been employed [6, 14].

The main idea behind our study is to employ the
Lanczos technique to obtain not only the ground state,
but also a part of the low-energy spectrum of the model in
order to access nonzero, but low, temperatures for large
clusters in the NLCE. The goal is to combine the partial-
diagonalization for solving clusters in the last order of
the series with the traditional full diagonalization of
smaller cluster at lower orders to push the convergence
beyond temperatures that have been accessible before.
The larger the clusters at higher orders, the lower
the temperatures they contribute to in the NLCE [20],
and the smaller the percentage of the lowest-lying

eigenenergies that is needed.

We benchmark our results from this technique against
those obtained from full diagonalization in the NLCE
for the antiferromagnetic Heisenberg model on the
checkerboard lattice with frustration and the Fermi-
Hubbard model on the square lattice. We find that
in a massively parallel environment, the Lanczos-
based method even with the very expensive full re-
orthogonalization step can offer a significant speedup
over the traditional diagonalization method.

The exposition is as follows. In Sec. II, we introduce
the models. In Sec. III, we provide the basics of the
NLCE and discuss how it can benefit from the Lanczos
algorithm. We discuss the results for the two models,
scaling and some details of the parallelization scheme in
Sec. IV

II. MODELS

A. Checkerboard Lattice Heisenberg Model

As the first case study, we consider the spin-1/2
quantum Heisenberg model on the checkerboard lattice
whose Hamiltonian is written as

Ĥ =
∑
ij

JijŜi · Ŝj , (1)

where Ŝi is the spin-1/2 vector at site i, and Jij = J
for nearest neighbor i and j and Jij = J ′ for next
nearest neighbor i and j on every other plaquette in
a checkerboard pattern as shown in Fig. 1. J ′ = 0
represents the square lattice Heisenberg model. Here,
we consider the test case J = 0.5 and J ′ = 1.0. So, J ′

sets the unit of the energy when this model is discussed
in the paper.



2

FIG. 1. A 3×3 section of the checkerboard lattice Heisenberg
model. J is the strength of the exchange interaction on
nearest neighbor bonds and J ′ is the interaction on next
nearest neighbor bonds in every other 2 × 2 plaquette.

B. Square Lattice Fermi-Hubbard Model

As a second case study, we consider the Fermi-Hubbard
model on the square lattice, expressed as

H = −t
∑
〈ij〉σ

c†iσcjσ + U
∑
i

ni↑ni↓, (2)

where ciσ (c†iσ) annihilates (creates) a fermion with spin

σ on site i, niσ = c†iσciσ is the number operator, t is the
hopping integral and the unit of energy for this model,
U is the onsite Coulomb interaction, which we take to
be 8t, and 〈..〉 denotes nearest neighbors. We choose the
chemical potential to be 4t, corresponding to an average
density of one fermion per site (the half-filled limit).

III. NUMERICAL LINKED-CLUSTER
EXPANSION

In the numerical linked-cluster expansion a given
extensive property P (L ) of the lattice model is expressed
as a sum over the contributions to that property from
every cluster that can be embedded in the lattice L .
While a version of the method can be employed for
finite system sizes, its main advantage has been in its
applications to the models in the thermodynamic limit,
L →∞. In that limit, the series expansion is given as:

P (L )/L =
∑
c

L(c)WP (c) (3)

where c are topologically-distinct clusters that can be
embedded in L , L(c) is the number of ways per site
cluster c can be embedded in the lattice, and WP (c) is the
contribution to property P computed via the inclusion-
exclusion principle:

WP (c) = P (c)−
∑
s⊂c

WP (s), (4)

where s is a cluster that can be embedded in c (a sub-
cluster of c), and P (c) is the property calculated for
cluster c using exact diagonalization (ED). L(c) can

FIG. 2. Square expansion for the checkerboard lattice
Heisenberg model, where clusters at higher orders are
generated by adding corner-sharing 2 × 2 blocks with next
nearest neighbor bonds to smaller clusters in lower orders.
Shown are the topologically distinct clusters up to the third
order of the expansion.

be thought of as the number of point group symmetry
operations for the underlying lattice that give the cluster
a distinct orientation. More information on how L(c)
are calculated and other details of the algorithm can be
found in Ref. [20].

The calculation of properties P (c) using ED is the
most computationally expensive part of the NLCEs. For
example, in a site expansion, for which order l of the
series includes all clusters up to l sites, calculations for
the square or honeycomb lattice Fermi-Hubbard models
have so far been limited to l = 9 [7, 8, 21, 22]. Even
though there are only 112 topologically-distinct clusters
to diagonalize for the square lattice in the 9th order
in that case, the calculations are limited by memory
and time requirements for diagonalization of the largest
matrices for clusters with a size larger than 9 sites.
For quantum magnetic models in which the size of the
Hilbert space (nHilbert) grows significantly slower with
the system size than for Fermi-Hubbard models, the
calculations have been limited to about 15 orders on the
square lattice [20, 23], not by memory requirements, but
by the large number of clusters that need to be solved in
higher orders.

In those cases, one can put the limitation back on the
ED and push the convergence to lower temperatures by
employing expansion schemes that access much larger
clusters more quickly as the order increases. That is
accomplished through increasing the size of the building
block used to generate clusters. For example, an
expansion with squares as building blocks was used to
study the checkerboard and square lattice Heisenberg
models with clusters up to 19 sites in only 6 orders [5].
Figure 2 shows the first five topologically-distinct clusters
in the square expansion. In previous studies, triangular
building blocks were used to study magnetic models
on the Kagome lattice [6, 24], and rectangular clusters
were considered in the study of entanglement at a two-
dimensional critical point [12].

Here, we aim to address, to the extent possible, the
limitation on time and memory for full diagonalization,
which remains the main issue in the NLCE. We
combine the site and square expansion NLCE with an
efficient partial diagonalization offered by the Lanczos
algorithm to access low temperatures much faster than
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previously possible. We base our approach on a key
observation that only small clusters in low orders of
the expansion contribute to properties at the highest
temperatures; the inclusion of larger clusters in the series
at higher orders does not change the results at high
energies/temperatures. Therefore, a partial knowledge
of the eigenvalues and corresponding eigenvectors at the
low-energy end of the spectrum may be sufficient to
deduce new information from larger clusters

A. Efficiency of the Lanczos Algorithm for the
NLCE

The Lanczos algorithm [25] has had profound
applications in solving discrete quantum systems,
notably when the ground state is of interest. The
following section will give an overview of the Lanczos
method in terms of its applicability to the NLCE.
For further information concerning the mechanics and
derivation of the Lanczos algorithm, see Ref. [25]

The algorithm in its most basic form is an iterative
Krylov subspace method in which an orthogonal basis
is built and approximations of eigenvectors are found by
projecting our matrix onto the subspace. It is well known
for its superior space and time efficiency in solving for
the ground state of very large systems. However, the
method is known to have numerical instabilities in finite-
precision mathematics [26], which manifest themselves in
a loss of orthogonality of the Lanczos vectors which define
the subspace. This leads to spurious degeneracies of the
largest-magnitude eigenvalues, which means that while
the ground-state behavior may be fully captured, finite-
temperature properties are very difficult to ascertain.

The solutions to maintaining orthogonality are
varied [27], however, the most basic in capturing
the whole set of eigenvalues to high precision is
the application at every iteration of a Gram-Schmidt
orthogonalization with all previous vectors, a full
reorthogonalization scheme. Figure 3 shows the exact
eigenvalues of the Heisenberg Hamiltonian for a 16-site
cluster in the spin sector with four spin-ups and twelve
spin-downs compared with the values from the Lanczos
method with and without full reorthogonalization and
two different numbers of iterations (niter). It is expected
that with niter = nHilbert the Lanczos algorithm
can find most (but not all) eigenvalues with high
degree of precision. The severe degeneracy of the
lowest eigenvalues in the basic Lanczos method and its
resolution after reorthogonalization can be seen in the
figure.

The reorthogonalization process requires the storage of
about niter Lanczos vectors, which has similar memory
requirements to storing the Hamiltonian matrix when
niter ∼ nHilbert, and also greatly increases the time
complexity of the process due to a n2iter × nHilbert
scaling. The question thus raised is whether or not the
reorthogonalized Lanczos scheme is in fact advantageous
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FIG. 3. Sorted first 400 eigenvalues of the Heisenberg
Hamiltonian for a 16-site cluster in the four spin-up
sector with nHilbert = 1820. Results from the Lanczos
algorithm deviate from the exact ones very early on in the
spectrum due to the existence of degeneracies and the loss
of orthogonalization between vectors in the Krylov space.
A full re-orthogonalization step in the algorithm restores
orthogonality of the Lanczos vector at every iteration and
captures a larger percentage of the exact spectrum as the
number of iterations increases.

over full diagonalization. Figure 3 includes a plot for the
case where the number of iterations is half the size of the
Hilbert space. It can be seen that a large fraction of low-
energy states have been captured with high accuracy in
that case.

A key feature of the NCLE is that with the first
few orders, the series is already convergent at high
temperatures where correlations in the system are
short ranged. Larger clusters in higher orders provide
information for properties in the thermodynamic limit
only at lower temperatures where correlations grow
larger. On the other hand, the Lanczos algorithm
can provide very accurate information about the low-
temperature behavior of the largest clusters in the series
even when the number of iterations is less than the
size of the Hilbert space as low-lying eigenvalues can be
converged, leading to much smaller memory and time
requirements in comparison with full ED. In other words,
as system sizes increase by increasing the order, and the
region of convergence of the series is pushed to lower
temperatures, one can also expect that fewer iterations
are necessary. Furthermore, the Lanczos algorithm is
readily parallelizable both in the Hamiltonian operation
and in the reorthogonalization step in order to further
reduce the diagonalization time. We provide a discussion
about scaling in Sec. IV A.
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FIG. 4. Energy per site of the Heisenberg model on a
checkerboard lattice with J = 0.5 and J ′ = 1.0 as a function
of temperature. The results within the convergence region
are valid in the thermodynamic limit. Thin dotted lines are
bare sums in the 5th and 6th orders. The latter is taken
from Ref. [5]. Thick black lines are results in the 4th, 5th,
and 6th orders from Euler resummations after regular sum of
the first three terms in the series. These results are obtained
through full diagonalization using a Lapack routine. Color
lines show the results from our Lanczos algorithm for the 5th
or 6th orders with different number of iterations. As the latter
increases, a larger percentage of the low-lying eigenvalues for
every cluster in that order approach their exact values and
the corresponding curves match the exact curve up to higher
temperatures. Blue dashed line represents results from ED for
the case where 90% of the eigenvalues are used in the thermal
averages.

IV. RESULTS

To benchmark the performance of the Lanczos-boosted
NCLE, we start with the energy per site of our
Heisenberg model with J = 0.5 and J ′ = 1.0 calculated
up to the sixth order of the square expansion NLCE
(see Fig. 4). We use Intel’s math kernel library (MKL)
for full ED as well as our Lanczos method with full
reorthogonalization. Full ED results for the sixth order
are taken from Ref. [5] where ScaLapack, a distributed-
memory version of the linear algebra package (Lapack),
was used for diagonalization to meet the enormous
memory and time demands. We have used the Lanczos
diagonalization for clusters only in the last order of the
expansion while other smaller clusters were solved using
MKL. We have also used MKL to diagonalize matrices
smaller than 2,000 in linear size in the last order to avoid
issues in Lanczos that may arise with small matrices. We
have used the Euler method for numerical resummation
of the series [2, 20]. Results for the fifth and sixth orders
before the resummations are also shown as thin dotted
lines. Results from another resummation method agree
with the outcome of the Euler resummation in its region
of convergence.
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FIG. 5. (a) The heat capacity, and (b) entropy of the
Heisenberg model on a checkerboard lattice with J = 0.5 and
J ′ = 1.0 as a function of temperature. Lines are the same as
Fig. 4. In case of the heat capacity, partial diagonalization
using the Lanczos algorithm barely reaches the minimum
convergence temperature of the series with 6 orders. However,
a niter of 50% of the size of the Hilbert space is enough to
reach the convergence temperature for the entropy with 5 or
6 orders.

We find that Lanczos with niter = 0.5nHilbert is
sufficient to reach the lowest convergence temperature
of the series with five or six orders. They are shown
as green and red curves in Fig. 4. One can see that
they agree with results from MKL up to temperatures
around 0.3J ′, slightly above the temperature at which the
convergence of the series with six orders is lost. The exact
energies in the thermodynamic limit beyond this point
are already accessible to lower orders. We also show that
by increasing niter one can systematically reach higher
temperatures. With niter = 0.9nHilbert the agreement
with exact results extends to T ∼ 0.4J ′.

As noted above, niter does not represent the number
of exact eigenvalues obtained in the Lanczos algorithm.
We demonstrate that by using the smallest 90% of exact
eigenvalues from MKL in the Boltzmann average of
the energy in the fifth order, which results in the blue
dashed curve in Fig. 4, surpassing the performance of
the Lanczos algorithm with niter = 0.9nHilbert.

As the order increases and the convergent region is
extended to lower temperatures, the number of iterations
can be increasingly smaller fractions of nHilbert, leading
to the superiority in both space and time complexity of
the Lanczos-assisted diagonalization over MKL. This is
due to the ability of the Lanczos method to capture the
lowest eigenvalues with the least number of iterations.
The calculation of properties in the sixth order with
clusters up to 19 sites was only possible previously
through the use of Scalapack routines as done in Ref. [5].
Here, we have obtained results for the sixth order with
niter = 0.5nHilbert in significantly less time. As one
can see in Fig. 4, those results already capture the
average energy before the series loses convergence around
T = 0.3J ′.

The efficiency of our approach in using the Lanczos
algorithm for treating clusters in the last order of the
NLCE depends on the property of interest, and most
likely, on the model under investigation. In Fig. 5(a),
we show that using half as many iterations in Lanczos as
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Thick color lines are the bare results of the square expansion
with 2 and 3 squares. The two clusters in the third order,
shown in Fig. 2, have 10 sites each and are diagonalized using
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regular sum of the first six terms in the site expansion for the
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obtained using the Lanczos partial diagonalization algorithm
with niter equal to 50% and 30% of nHilbert, respectively.
Results from order 3 of the square expansion and the 10th
order of the site expansion agree down to T ∼ 0.15t.

the size of the Hilbert space is insufficient to capture the
heat capacity of the same system studied in Fig. 4 around
the lowest convergence temperature of the series with
up to six orders. The same is not true for the entropy,
shown in Fig. 5(b), where we observe a behavior similar
to that of the energy in terms of temperature access with
the Lanczos algorithm. We note that properties such as
heat capacity, which are higher order derivatives of the
partition function than the energy, usually have a worse
convergence in comparison to the energy in the NLCE or
high-temperature series expansions since nontrivial terms
enter the series at higher orders. This is true even with
full diagonalization. For example, the base sums for the
energy in Fig. 4 converge to T ∼ 0.4J ′, whereas for Cv in
Fig. 5(a), they converge to a slightly higher T ∼ 0.6J ′.

To demonstrate that our approach is not limited to
quantum magnetic models in which the local Hilbert
space size grows as 2N , where N is the system size,
we apply the method to the half-filled Fermi-Hubbard
model to obtain the average energy as a function of
temperature. As mentioned above, previous NLCE
calculations for the model have been limited to 9 orders in
the site expansion. Here, we are able to obtain results for
the 3rd order of the square expansion, containing two 10-
site clusters as shown in Fig. 2. As can be seen in Fig. 6,
this is enough to push the convergence temperature below
that achieved with 9 orders in the site expansion (T ∼
0.18t) even after resummations are used for the latter.

Moreover, using niter equal to 50% of the size of the
Hilbert space (again, for cases where nHilbert > 2, 000)
in order 3, allows us to include contributions from 10-
site clusters to a NLCE for the Hubbard model for the
first time. We discuss the performance of our method in
Sec. IV A.

We also apply our Lanczos partial diagonalization
algorithm to orders 9 and 10 of the site expansion for the
same model. Results are shown as thin dashed and solid
lines in Fig. 6 and demonstrate that niter of only 50%
and 30%, respectively for orders 9 and 10, are needed
for obtaining new information in those orders. Results
from order 3 of the square expansion and order 10 of
the site expansion agree down to T ∼ 0.15t. Note that
result from order 8, which take only few tens of seconds
to compute using 51 cores, already contain the exact
information at T > 0.7t.

Results away from half filling can be obtained as well
by properly adjusting the chemical potential [7]. In that
case, the convergence temperature is generally higher
than that at half filling, and hence, higher percentage
of excited energy levels may be needed.

A. Parallelization and Scaling

We use message passing interface (MPI) parallelization
for full ED in our NLCE implementation. We assign
a collection of clusters in a given order to a different
core to be diagonalized. This works insofar as we do
not reach the random access memory (RAM) capacity
(128 gigabytes) of a node with 28 cores in the high-
performance computer cluster we have used for our
calculations. In this picture, the run time is expected
to be proportional to the number of clusters assigned to
each core for diagonalization, or inversely proportional
to the number of cores requested, in the limit of large
number of clusters. In Fig. 7, we show the run time as a
function of inverse number of cores for MKL in the fifth
order of the square expansion for the Heisenberg model.
Since there are only 11 clusters in that order, run time
generally decreases with increasing the number of cores,
until we reach 11 cores. Beyond that, there cannot be
any improvement in the run time of MKL.

We also use MPI to parallelize the inner loops of our
Lanczos algorithm. Noting that the largest matrices we
diagonalize for the Heisenberg model in the fifth order
have a linear size of 12870, and therefore, every core
can store at least up to nHilbert double-precision Lanczos
vectors in the RAM, we distribute the computational
tasks for both the operation of the Hamiltonian on a
Lanczos vector and the reorthogonalization step over
all cores available. For this reason, ideally the run
time would be inversely proportional to the number
of cores. However, as shown in Fig. 7, we find that
the overhead due to communication rapidly increases
beyond one node and the run time eventually saturates.
Nevertheless, for niter = nHilbert our Lanczos-based
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algorithm with full re-orthogonalization for up to the 5th
order. For comparison, we also show the same scaling for
ED for which we use the Intel’s MKL to diagonalize every
cluster on a core. The performance of MKL improves rapidly
by increasing the number of cores until we have as many
cores as the number of clusters in the last order of the
series. No speedup can be achieved beyond that. The
Lanczos algorithm with niter = nHilbert quickly surpasses
MKL in performance and continues to offer some speedup by
increasing the number of cores. Choosing niter = 0.5nHilbert

reduces the computational time by roughly a factor of three.

method is already faster than our MKL scheme when
using 2 nodes and remains faster than MKL as the
number of nodes increases. The reorthogonalization step
scales like n2iter × nHilbert and is the most expensive
part of our routine. Therefore, decreasing niter can
significantly speed up the calculations. We find that
choosing niter = 0.5nHilbert, cuts the run time by about
a factor of three in the case of the fifth order as shown
in Fig. 7.

For the Hubbard model, using niter = 0.5nHilbert in
Lanczos for the third order cuts the computational time
by a factor of eight when using two nodes in comparison
to MKL. So, as expected, the gain is even higher when
the local size of the Hilbert space is larger.

In the site expansion for the Hubbard model, there are
300 clusters to be diagonalized in the tenth order. The
largest matrices in the tenth order will take 16 times
more RAM (∼16 gigabytes) to be stored, and about
64 times longer to be diagonalized, than the largest
matrices in the ninth order. Therefore, we know that
the 43 nodes required to simultaneously diagonalize all
the clusters in the tenth order will need about 28 hours.

Using 10 nodes, we were able to complete the partial
Lanczos diagonalization with niter = 0.3nHilbert for all
the clusters in that order sequentially in about 78 hours.
So, while in this case, our method slightly reduces the
overall computational resources needed, it does not lead
to a faster access to the results in the tenth order, if 43
nodes are available. This demonstrates that the efficiency
of our scheme depends on how quickly one reaches to
cluster sizes that are expensive to solve, and how many
they are, as the expansion order increases.

In summary, we have shown that the Lanczos
algorithm can be an efficient and flexible technique
to partially diagonalize Hamiltonian matrices
corresponding to the largest clusters in the NLCE,
allowing one to access temperatures not previously
accessible using Lapack full diagonalization routines.
We benchmark our approach using the square expansion
for the checkerboard lattice Heisenberg model with
frustration and the half-filled square lattice Fermi-
Hubbard model and show that by computing less than
50% of the eigenvalues, through a parallelized Lanczos
algorithm in significantly less time than with MKL,
we can reach temperatures relevant to the convergence
regions of the energy and entropy of the models in the
thermodynamic limit.

More efficient implementations of the Lanczos
algorithm, such as restart Lanczos or smart partial
reorthogonalization, can be employed in the future to
further reduce the computational cost. Our Lanczos
approach can be generalized to produce eigenvectors in
addition to eigenvalues, at an additional cost, for the
calculation of other properties of interest. It can also
be employed for NLCE studies of other quantum lattice
models. Finally, highly precise results from quantum
Monte Carlo methods in limited temperature regions
can also be used in the last order in a similar fashion
to speedup the calculations, at least in cases where
the calculations are not hindered by the fermion sign
problem.
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