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We present a direct-forcing fictitious domain method for simulating non-Brownian
Squirmer particles with both the hydrodynamic interactions and collisions being fully re-
solved. In this method, we solve the particle motion by distributing collocation points inside
the particle interior domain that overlay upon a fixed Eulerian mesh. The fluid motions,
including those of the “fictitious fluids” being extended into the particle, are solved on the
entire computation domain. Pseudo body forces are used to enforce the fictitious fluids to fol-
low the particle movement. A direct forcing approach is employed to map physical variables
between the overlaid meshes, which does not require additional iterations to achieve conver-
gence. We perform a series of numerical studies at both small and finite Reynolds numbers.
First of all, accuracy of the algorithm is examined in studying benchmark problems of a free-
swimming Squirmer and two side-by-side Squirmers. Then we investigate statistic properties
of the quasi-2D collective dynamics for a monolayer of Squirmer particles that are confined
on a surface immersed in a bulk flow. Finally, we explore the physical mechanisms of how a
freely-moving short cylinder interacts with a monolayer of active particles, and find out that
the cylinder movement is dominated by collision. We demonstrate that a more directional
migration of cylinder can be resultant from an inhomogeneous distribution of active particles
around the cylinder that has an anisotropic shape.

I. INTRODUCTION

There has been an increasing interest during the past decade in exploring non-equilibrium
physics of “wet” active matter systems where suspended self-driven microparticles move collectively,
featuring fascinating pattern formation, non-equilibrium order transitions, anomalous fluctuations
and mechanical properties [1]. Examples include bacterial swarms [2, 3], collections of synthetic
colloidal particles [4, 5], and mixtures of cytoskeletal filaments driven by molecular motors [6]. In
these systems, the motile microswimmers exert forces upon the ambient liquid which itself provides
a coupling medium for generation of complex dynamics.

Modeling and simulation of active matter is challenging due to the multiscale nature of the un-
derlying unstable dynamics. Earlier theoretical studies have investigated several aspects of active
matter systems at different scales, from the dynamics and mechanical properties of single particle
motion to the macroscopic behavior and stability of active suspensions [1, 7–10]. While continuum
models have been successfully used in capturing collective behaviors that are qualitatively similar
to experimental observations, these models often rely on assumptions of specific geometries (e.g.,
spherical, rod-like), as well as mono-dispersed shape and homogeneous particle distribution [11–17].
Alternatively, particle-based simulations [3, 18, 19] can represent microscopic interactions in detail,
their computational costs typically limit cross-scale studies when both long-ranged (e.g., hydrody-
namic) and short-ranged (steric interactions, contact, etc.) need to be resolved simultaneously for
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a large number of particles.
Numerous numerical methods have been developed to solve small particle motion in viscous

flows at different Reynolds (Re) number regimes. For relatively slow moving biological/synthetic
swimmers of micron size or even smaller, the estimated Re number is typically close to zero (e.g.,
Re ∼ 10−3), and hence the inertia effect is negligible. In this regime, fluid motion is governed
by the incompressible Stokes equation, and the fluid-structure interactions (FSIs) can be modeled
by using the boundary integral method that integrates the singularity solutions distributed on
the particle surface via Green’s functions [20]. Truncated multipole expansions are commonly
used to facilitate numerical evaluation of the integrals with desired accuracy [21–23]. For rod-like
microparticles such as bacteria (e.g., E. coli) or biopolymers (e.g., microtubule), a special type
of boundary integral method, the so-called slender body theory [24], is preferred to use. In this
method, singularity solutions are appropriately distributed along particles’ centerline so that the
no-slip velocity condition on the rod surface is satisfied for matched asymptotic expansions of
solutions. Various different types of slender body models were developed, from the local models
[25] that adopt a linear relation between the local centerline velocity and the force per unit length
exerting upon the fluid, to the global models [26] that incorporate self-interactions of rods as
well as their hydrodynamic interactions with other structures and obstacles. To further facilitate
large-scale simulations for many particles that are hydrodynamically interacting, fast summation
methods such as the Ewald method [27] and fast multipole method [28] have been implemented to
speed up numerical calculation of boundary integrals with the Stokesian kernels (e.g., Stokeslet,
Rotlet, Stresslet).

For swimmers of a larger size (e.g., hundreds of microns), the resultant inertial force can be non-
negligible compared to the Stokes drag. In fact, some small organisms are able to take advantage
of the inertial forces to achieve enhanced free-swimming, escaping, energy saving, as well as mixing
in collections [29–33]. At a finite Re, the incompressible Navier-Stokes (N-S) equation is used to
describe the fluid motion, and FSIs are typically solved by using the grid-based methods (e.g.,
finite difference, finite elements). Compared to the sharp-interface methods that employ body-
fitted meshes to resolve interfaces or fluid-solid boundaries, Cartesian grid methods that employ
non-body-fitted meshes are more convenient in handling moving boundaries or large deformations
of particles that have complex geometries. For example, the Immersed Boundary (IB) type methods
have been widely used in simulating swimming organisms such as nematode and amoeboid [34,
35]. Moreover, Ardekani et al. have developed the distributed Lagrange-multiplier-based finite-
volume method to study various aspects of active particles, including wall-effect, pair-interactions,
collective behaviors and unsteady inertial effects in both Newtonian and viscoelastic liquids [3, 31,
32, 36, 37].

To explore non-equilibrium physics of active suspensions at different Reynolds number regimes,
especially at high concentration where the collective behaviors are prominent due to the enhanced
particle-particle interactions, it is desirable to develop accurate and efficient simulation tools that
are capable of resolving the long and short range interactions simultaneously for a large number
of hydrodynamically-mediated active particles with complex shapes. In this paper, we present a
direct-forcing fictitious domain (FD) method to study dynamics of swimming microparticles at
small and finite Re numbers. The direct-forcing FD method was originally developed by Yu and
Shao [38], and has been successfully used in studying various types of fluid-structure interactions.
In particular, it has been used in resolving how neutrally buoyant particles interact with turbulent
flows in a horizontal channel, as well as investigating the impact of particle-fluid coupling on the
flow instability and turbulence transition in pipe flows and heat transfer [39–41]. Very recently, a
parallel strategy has been implemented by Lin et al. [42] to investigate particle-laden turbulent
duct flows and the effects of particle inertia on the turbulent channel flow [42, 43]. The method
presented here is an extension of the direct-forcing FD method in simulating active matter systems
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via the classical “Squirmer” model in which microswimmers are treated as rigid spheres with a
prescribed surface velocity field [44, 45]. We perform a series of numerical studies to examine the
algorithm’s performance at both low and finite Reynolds numbers, including the dynamics of a
free-swimming Squirmer and two side-by-side Squirmers, statistic properties of quasi-2D collective
dynamics, as well as transport behavior of macro obstacles in active suspensions.

The rest of paper is organized as follows: In Section II we briefly describe the details of the
mathematical model and the numerical algorithm, including the Squirmer model that mimics the
microswimmer motion, the computation scheme of the FD solver, as well as the contact model for
collisions between particles and obstacles. In section III, a series of numerical simulations are per-
formed for the “Pusher” and “Puller” particles. We first study the benchmark problems of a single
free-swimming particle and their pair interactions when moving side-by-side. Then we investigate
the collective dynamics of a monolayer of active particles immersed in a bulk fluid by examining
the flow patterns and particle structures at various different concentrations through spatiotempo-
ral correlation functions. The inertia effect on collective dynamics at a finite Re is also examined.
Finally, at a low Reynolds number, we study migration of a freely-moving short cylinder (circular
and wedge-like) when interacting with a Pusher monolayer, and reveal the physical mechanisms of
the observed directional movement that is dominated by cylinder-particle collision resultant from
an anisotropic shape. Conclusions are made in Section IV.

II. MATHEMATICAL MODEL AND NUMERICAL METHOD

A. Squirmer model for near-body dynamics

To begin with, we briefly introduce the micromechanical model. A classical Squirmer model is
implemented in our algorithm, where the microswimmers are treated as spherical rigid particles
[3, 32, 36, 44, 46–48]. In general, two types of motion, i.e., “Pusher” and “Puller”, are modeled by
prescribing a surface velocity field, depending on whether they gain thrust from rear (e.g., E. coli)
or front (e.g., Chlamydomonas) body movement. In this approach, generation of the near-body
fluid motion is projected on an effective spherical “envelope” around the swimmer to represent
various different modes of rigid-body motion and deformation [47]. The induced fluid velocity field
can be represented as:

u = e ·
(rr

r2
− I
)∑
n≥1

2

n(n+ 1)
BnPn

′(
e · r
r

), (1)

where e is the orientation vector of the Squirmer, Bn represents the nth mode of the tangential
surface motion [46], Pn and P ′n are the nth Legendre polynomial and its derivative, and r is the
position vector and r = |r|. Following previous studies [3, 32, 36, 48], we adopt a reduced model
with two “squirming modes” that describe a steady tangential surface velocity field in the body
frame:

usθ (θ) = B1 sin θ +B2 sin θ cos θ, (2)

where θ = arccos (e · r/r) is the polar angle between the position vector r and the swimming
direction e, and B1 and B2 are the coefficients for the two squirming modes. While simple, Eq. (2)
is adequate to distinguish the basic swimming types of microorganisms by choosing the sign of the
parameter β = B2/B1. The Pusher (Puller) particles corresponds to situations when β is negative
(positive); while the neutral particles with a symmetric surface velocity distribution is defined when
β = 0. In the Stokes flow regime, the steady-state swimming speed U0 of a Squirmer in free space
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can be analytically calculated as U0 = 2B1/3 [3, 44, 49]. Since in our FD method body forces are
distributed in the entire interior region of particle, we impose a solenoidal volumetric velocity field
ua which was used by Li et al. [3, 36]

ua =

[(r
a

)m
−
(r
a

)m+1
](

usθ cot θ +
dusθ
dθ

)
er +

[
(m+ 3)

(r
a

)m+1
− (m+ 2)

(r
a

)m]
usθeθ, (3)

where a is the radius of the spherical Squirmer, er and eθ are the unit vectors along the r− and
θ−direction, and m is an arbitrary positive integer. In our simulation, as shown in the schematic
in Fig. 1(a), collocation points are distributed uniformly on layers of concentric spherical surfaces
in the entire particle domain [38].

In addition to hydrodynamic interactions, we implement a soft-sphere collision model to resolve
the short-ranged collisions. It calculates a repulsive force between the ith and jth objects (e.g.,
particles, rigid obstacles and walls) that are close to contact as: [42, 50]:

fij = κ0

(
1− d

dc

)
n (4)

where the constant κ0 is typically chosen as 103 ∼ 104 of particle mass, d is the particle inter-
distance, dc is a cut-off distance to define the “contact” zone which is dependent on mesh size ∆x
(typically dc = ∆x ∼ 2∆x), and n is a unit vector pointing in the direction where contact occurs.
It has to be mentioned that here we consider non-Brownian particle motions by assuming that
swimming micro-organisms are in the high Peclet limit where the advective forces produced by
particle activity dominate over random thermal forces.

B. Direct-forcing fictitious domain method

The micromechanical model of non-Brownian active particles is implemented in the FD method
[38, 39, 43] whose computation scheme is discussed in this section. In general, the FD method
fills the interior domain of rigid particles with fluid, and distribute a pseudo body-force field over
the particle inner domain to enforce the interior “fictitious” fluid movement to follow the rigid
body motion. The FD method was originally developed by Glowinski et al. [50, 51]. It employs a
distribution of body force (or Lagrange multipliers) in the solid domain via a weak formulation, and
enforce the fluid-particle coupling through fluid/solid phase iterations. Alternatively, our method
computes the body forces on the Lagrangian meshes from the no-slip boundary conditions explicitly,
the same as that used in the direct-forcing IB methods [52, 53]. The physical variables are mapped
between the two overlaid meshes through a discrete δ-function. One merit of our method is that
no inner-iterations are needed to achieve convergence when solving the fluid-solid coupling, which,
together with efficient parallelization, significantly improves computation efficiency.

In the following, we use P (t) and ∂P (t) represent the solid particle domain and its boundary,
Ωf the real fluid region, and Ω the entire domain comprising both interior and exterior of the
body. The momentum equation for the fluid flow is governed by the incompressible Navier-Stokes
equation throughout the entire computational domain:

ρf
Du

Dt
= ∇ · σ, in Ωf (5)

where D/Dt = ∂u/∂t+ u · ∇u is a material derivative, ρf is the fluid density, u the fluid velocity,
σ is the fluid stress.
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The rigid-particle motion is governed by the Newton’s law:

M
dUp

dt
=

(
1− 1

ρr

)
Mg + FH ,

d (J · ωp)
dt

= TH , (6)

where d/dt is a Lagrangian time derivative, ρr is the solid-fluid density ratio defined by ρr = ρs/ρf ,
g is the gravitational acceleration. Here M , J, Up and ωp respectively correspond to the particle
mass, moment of inertia tensor, translational velocity and angular velocity. In the above FH and
TH are the hydrodynamic force and torque on the particle, respectively, which are defined as

FH =

∫
∂P

n · σdS, TH =

∫
∂P

r× (n · σ) dS (7)

where n is the unit outward normal vector on the solid particle surface ∂P . As mentioned before,
the interior fictitious fluid motion is governed by the momentum-balance relation:

ρf
Du

Dt
= ∇ · σ + λ, in P (t) (8)

and is constrained by the rigid body motion:

u = Up + ωp×r + ua (9)

where λ is the pseudo body-force defined in the solid particle domain (Lagrange-multiplier). Inte-
grating equations (8) and r × (8) over the solid particle interior and substituting into equations
(7) yield:

FH =
M

ρr

dUp

dt
+

∫
P
ρf
dua
dt

dx−
∫
P
λdx, (10)

TH =
1

ρr

d (J · ωp)
dt

+

∫
P
ρf

(
r× dua

dt

)
dx−

∫
P

r× λdx. (11)

Taking into account the fact that the imposed active velocity does not generate net force and torque
(i.e.,

∫
P uadx = 0,

∫
P r× uadx = 0) and substituting Eqs. (10) and (11) into (6), we eventually

derive: (
1− 1

ρr

)
M

(
dUp

dt
− g

)
= −

∫
P
λdx,

(
1− 1

ρr

)
d (J · ωp)

dt
= −

∫
P

r× λdx. (12)

The governing equations can be non-dimensionalized by introducing the following scales: Lc =
a for length, Uc = Up (i.e., particle moving speed) for the velocity, Lc/Uc for time, ρfU

2
c for

the pressure, ρfU
2
c /Lc for the pseudo body-force. The dimensionless governing equations for the

incompressible fluid and particle are summarized as follows (Note that we use the same notation
for the dimensionless variables as the dimensional ones):

∂u

∂t
+ u · ∇u =

1

Re
∇2u−∇p+ λ, ∇ · u = 0 in Ω (13)

u = Up + ωp × r + ua, in P (t) (14)

(ρr − 1)V ∗p

(
dUp

dt
− Frg

g

)
= −

∫
P
λdx, (ρr − 1)

d (J∗ · ωp)
dt

= −
∫
P

r× λdx. (15)

In the above equations, p represents the fluid pressure, the Reynolds number defined by Re =
ρfUcLc/µ the fluid viscosity, the Froude number defined by Fr = gLc/U

2
c , the dimensionless

particle volume defined by V ∗p = Uc/L
3
c , and the dimensionless moment of inertia tensor defined

by J∗ = J/ρsL
5
c . In all the cases studied here, we only consider micro-swimmers to be neutrally-

buoyant particles with ρr=1.0, and hence neglect the gravitational force by choosing Fr = 0.
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C. Computational scheme

A fractional-step time scheme is used to decouple the combined system (13)-(15) into two sub-
problems.

(1)Fluid sub-problem for u∗ and pn+1 :

u∗ − un

∆t
− 1

2Re
∇2u∗ = −∇pn+1 − 1

2
[3(u · ∇u)n− (u · ∇u)n−1

]
+

1

2Re
∇2un + λn, (16)

∇ · u∗ = 0. (17)

We employ a standard fractional step procedure to solve the above N-S equation system in fixed
Eulerian domain with a uniform grid size ∆x. Eqs. (16) and (17) are decomposed into three steps:

(a) Helmholtz velocity equation:

u#−un

∆t
− ∇

2u#

2Re
= −∇pn − 1

2
[3(u · ∇u)n− (u · ∇u)n−1

]
+
∇2un

2Re
+ λn. (18)

(b)Poisson pressure equation:

∇2φ =
∇ · u#

∆t
, (19)

(c)Correction of velocity and pressure:

u∗ = u# −∆t∇φ, pn+1 = pn + φ. (20)

A second-order half-staggered finite difference scheme is used for spatial discretization. And the
multi-grid iterative method is performed to solve Eqs. (18) and (19).

(2) Particle sub-problem for Un+1
p , ωn+1

p , λn+1, un+1 :

un+1 − u∗

∆t
= λn+1 − λn (21)

un+1 = U
n+1
p + ωn+1

p × r + ua (22)

(ρr − 1)V ∗p

(
Un+1
p −Un

p

∆t
− Fr

g

g

)
= −

∫
p
λn+1dx (23)

(ρr − 1)

[
J∗ ·

(
ωn+1
p − ωnp

)
∆t

+ ωnp ×
(
J
∗ · ωnp

)]
= −

∫
p

r× λn+1dx (24)

Substituting (21),(22) into (23),(24) yields

ρrVp
∗U

n+1
p

∆t
= (ρr − 1)Vp

∗(
Un
p

∆t
+ Fr

g

g
) +

∫
P

(
u∗ − ua

∆t
− λn

)
dx, (25)

ρr
J∗ · ωn+1

p

∆t
= (ρr − 1)[

J∗ · ωnp
∆t

− ωnp × (J∗ · ωnp )] +

∫
P

r×
(

u∗ − ua
∆t

− λn
)
dx. (26)
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In the above equations (25)-(26), all the right-hand side terms are known quantities, so Un+1
p

and ωn+1
p are obtained directly. Then λn+1 that are defined at the Lagrangian nodes can be

determined by:

λn+1 =
Un+1
p + ωn+1

p × r + ua − u∗

∆t
+ λn. (27)

Finally, the fluid velocity un+1 at the Eulerian nodes are determined as follow:

un+1 = u∗ + ∆t(λn+1 − λn). (28)

We use a tri-linear function to serve as the discrete delta function that maps quantities between
the Lagrangian and Eulerian nodes in the equations (25)-(28). It has been shown that with
the explicit direct-forcing scheme for solving the particle sub-problem, we are able to avoid the
singularity at ρr = 1 [38]. Then particle position can be determined from the kinematic equation:

dX

dt
= Up. (29)

Additionally, it is important to mention a few useful numerical techniques in dealing with the
coupling of Eulerian and Lagrangian meshes. First of all, distribution of the Lagrangian collocation
points on the spherical particle has to be approximately homogeneous, and the average distance
between them needs to be close to the background Eulerian grid size. Secondly, retraction of
Lagrangian points from the particle surface need to be tuned in order to reduce system stiffness, in
order to eliminate numerical oscillations caused by interpolations between the two overlaid meshes
[38]. While the optimal distance is case-dependent, we find for a finite Re the typical retraction
length is approximately ∆x/5 ∼ ∆x/3. Thirdly, we need to use a small time step (e.g., one tenth
of the time step of the N-S solver) for the collision model due to the fact that the repulsive forces
between approaching particles are computed explicitly. An efficient parallel algorithm based on
Message Passing Interface (MPI) has been implemented to speed up computation. The reader is
referred to the previous work by Lin et al. [43] for more details about parallelization.

III. NUMERICAL RESULTS

A. Benchmark problems: single particle dynamics and pair interactions

We first examine the migration velocity of a single free-swimming Squirmer (a = 1.0) in an
infinite domain at Re = 0.01, 1.0, for Pusher (β < 0), Puller (β > 0), and neutral (β = 0) particle.
Here we impose a far-field condition in its swimming (z) direction (i.e., ∂u

∂z = 0), and assume
periodicity in both the x and y directions. Starting from a zero initial velocity, all three types of
Squirmer particles eventually approach steady state with a constant moving speed Up = |Up| shown
in Fig. 1(a). The velocities are normalized by the steady moving speed of the neutral particle which
is independent of the Reynolds number. At the two Re numbers, we find excellent agreements with
the previous numerical studies [3, 54] and analytical predictions [32, 49]. As shown in panels(b-d)
of Fig. 1 for the in-plane fluid velocity fields plotted in the co-moving coordinates with the motile
particle, the induced flow field is axisymmetric with a pair of vortex rings attached in front of
(behind) the Pusher (Puller) particle, and approximately symmetric for the neutral particle.

Robustness of our simulation results has been examined in convergence tests. In general, we
find accurate results can be obtained when choosing the square computational domain size 15 times
bigger than the particle diameter, time step ∆t less than 0.002, the Eulerian grid size ∆x(= ∆y =
∆z) smaller than a/8, and the ratio of the two sets of mesh (Lagrangian/Eulerian) between 1.0 and
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TABLE I: Benchmark problem for single particle dynamics (Re = 1.0;β = −3, 0, 3)

Domain size Number of grid points Time step

Mesh1 32× 32× 32 256× 256× 256 0.002

Mesh2 32× 32× 32 512× 512× 512 0.001

TABLE II: Benchmark problem for pair interactions (Re = 0.1, β = −5, 5, δy = 1.0, δz = 10.0)

Domain size Number of grid points Time step

32× 32× 32 256× 256× 256 0.002

1.2. Depending on the size of the problem, we use 256 - 512 grid points in each spatial direction to
resolve the background Eulerian mesh, and perform parallel computations on 64 - 128 Intel cores.
We have summarized the relevant computation parameters in Table I and II.

Next we examine the pair interactions between two side-by-side Squirmers (a = 1.0) that
are initially co-located in the y − z plane, and move in the z−direction. Figure 2(a) shows the
trajectories of the two Squirmers moving towards each other with the initial separation distance
δy = 1.0 at Re = 0.1. For two Pullers (β = 5), it is seen that as the two particles move very
close, they contact and move away from each other. The calculated particle trajectories agree well
with those obtained by Ishikawa et al. [55]. For Pushers (β = −5), an unstable “trapping” state
(dotted lines) is observed, during which the two particles stay close to contact for a long time after
contact, and may eventually separate along arbitrary directions, which also agrees with the results
reported by Li and Ardekani [36].

We then take a close look at the cases where two Squirmers move side-by-side. In panel(b) of
Fig. 2, the two Pushers (β = −3, δy = 2.5) are seen to first attract to each other, due do the
hydrodynamic interactions of the resultant near-body extensile flows. Then they contact and glide
for a while until they move away. Similar attractive interactions have been observed when the
Pusher particle is swimming close to a rigid wall [3]. The particle trajectories are qualitatively
similar before separation, although it is noticed that they experience a longer gliding motion at a
small Re. In the inset of (b), we show that a series of results at Re = 0.01 by gradually increasing
δy gradually to inhibit the pair interactions, and find the two particles eventually move in straight
lines when δ is large, e.g., δy = 8.0.

On the other hand, the pair interaction of Pullers shown in panel(c) of Fig. 2 is somewhat
complicated. When inertia is negligible at a low Re, the two side-by-side Pullers are immediately
pushed away from each other, due to the hydrodynamic interactions of the near-body contracting
flows, and then approximately move straight together. At finite Re numbers, however, after the
initial separation, the two particles are able to make turns and come close again. By slightly shifting
their positions (not reported here), we also find the two Puller particles approximately move in
the same direction and keep interacting with each other, which agree with the observations in Ref.
[55]. In the inset of panel(c), we show that at Re = 1.0 the hydrodynamic interactions indeed
generate net pulling forces (i.e., y−component of the hydrodynamic force FH in Eq. (10)) between
the co-moving Pullers.
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FIG. 1: Free-swimming motion of a single Squirmer particle at Re = 1.0. (a) Translational velocity Up as
a function of time for Pusher (β = −3), Puller (β = 3), and neutral (β = 0) particle, respectively. Solid
lines and open circles represent the simulation results obtained by choosing the Eulerian grid size and time
step as (∆x = a

8 ,∆t = 0.002) and (∆x = a
16 ,∆t = 0.001), respectively. The black dashed lines represent

the analytical predictions [49]. Inset: Lagrangian collocation points distribution. Panels(b,c,d) show the
in-plane velocity field for (b) Pusher, (c) Puller and (d) neutral particles superimposed on the u velocity
component (colorfield) when choosing (∆x = a

8 ,∆t = 0.002).

z

y

-4 -2 0 2 4

4

2

0

2

4 Re=0.1,β=−5
Re=0.1,β=5
Ref [55]

(a)

z

y

-2 -1 0 1 2 3-8

-4

0

4

8
Re=0.01
Re=0.1
Re=1
Re=10

(b)

z

y

-2 -1 0 1 2 3-8

-4

0

4

8
Re=0.01
Re=0.1
Re=1
Re=10

(c)

time

δy

0 2 4 6
0

4

8

δy = 2.5

δy = 8

δy = 5

time

F
y

0 2 4 6

0

1 Re=0.01
Re=1

FIG. 2: (a) Comparison of the trajectories of two colliding Squirmer particles (β = ±5, a = 1.0). (b)
Trajectories of two side-by-side Pushers (β = −3, a = 1.0) at various Re numbers. Inset: variation of the
separation distance between the two particles as a function of time by changing δy. (c) Trajectories of two
side-by-side Pullers (β = 3, a = 1.0) at various Re numbers. Inset: net force exerted on the Puller particle
in the y direction as a function of time.

B. Collective dynamics

In this section, we study quasi-2D collective dynamics of N Pusher and Puller particles (β = ±3,
a = 1.0) that are confined in a monolayer [56, 57]. We carefully examine the spatio-temporal
coherent structures and their statistic properties. In the meantime, we characterize the inertia effect
by comparing the computation results at small and finite Re. The simulations are performed over
long time periods at various (area) concentrations in a periodic cubic domain of size Lx = Ly = Lz.
The squirmers’ swimming motions (i.e., translation and rotation) are confined at the central plane
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FIG. 3: The normalized velocity-velocity correlation function Cuu (a) and pair-distribution function g(r)
(b) computed when using two different domain sizes with Lz = 51.2, 102.4 at Re = 0.01 for a concentrated
Puller suspension when choosing β = 3, a = 1.0, φ = 24%.

immersed in a 3D bulk flow, with their initial center-of-mass (C.O.M.) positions and orientations
distributed on the x− y plane.

As suggested by Ishikawa and Pedley [56] who chose a domain size much longer in the third
dimension (z−direction, i.e., Lz = 10Lx) to guarantee the mobility matrix to be positive definite
in their Stokesian dynamics simulations, we perform convergence tests by comparing statistic mea-
surements (see further discussions below) at Re = 0.01 obtained on the two computation domain:
(i) Lx = Ly = Lz = 51.2 and (ii) Lx = Ly = 51.2, Lz = 102.4. As shown in Fig 3 and thereafter,

we examine the normalized velocity-velocity correlation function of the fluid flow u(x, t) (panel
(a)),

Cuu (r) =
< u (x + r, t) · u (x, t) >

< |u(x, t)|2 >
, (30)

where the angle bracket <> denotes time average and the overbars denote spatial average, as well
as the pair-distribution function g(r) (panel (b)),

g(r) =
LxLy

N(N − 1)S(r)

N∑
m=1

N∑
n=1,n 6=m

δ(rmn − r) (31)

where rmn is the distance between squirmers m and n, N is the total number of the squirmers, S(r)
is the area of ring of radius r and thickness ∆r [3]. The function δ(rmn − r) is defined as 1 when
|rmn−r| < ∆r/2, and 0 otherwise. Note that mathematically, ρ0g(r)2πrdr, where ρ0 = N/L2 is the
bulk number density of particles, is the average number of particles whose distance from a central
particle is between r − 4r/2 and r + 4r/2 [58]. Excellent agreements between the simulation
results suggest that the domain size is sufficiently large to minimize the boundary effect.

In Fig. 4, we show the in-plane (i.e., u and v component) velocity vector field of Pusher sus-
pensions at three different concentrations at Re = 0.01. As a typical case of low concentration
(φ = 6%, N = 50) shown in panel(a) of Fig. 4, the induced fluid is seemingly weak and only signif-
icant in the particle vicinity owing to their fast decay. More correlated structures are observed at
a finite concentration as shown in panel(b) when φ = 24% (N = 200). Further increasing particle
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concentration (e.g., φ = 48%, N = 400, panel(c)) nevertheless leads to small and seemingly dis-
connected flow structures, which is likely due to the enhanced steric interactions between particles
with more frequent collisions.

Likewise, we show the flow fields of Puller suspensions in panels(e-f) of Fig. 4 for the same three
concentrations. Compared to Pusher particles, one significant difference is that while interacting
hydrodynamically, Puller particles tend to move together to form clusters [56], which effectively
facilitates separation of the fluid and the particle phases. Especially at a high concentration as
shown in panel(f), near-body interactions lead to a 2D hexagonal lattice, similar to the active
crystalline structures observed for colloidal surfers [59]. For both Pusher and Puller suspensions,

we quantify the local sixfold structure by calculating the so-called bond parameter, |q(k)6 |2 ∈ [0, 1],

in order to measure of the orientational order of particle k, where q
(k)
6 = 1

6

∑
j∈N(k)

6

exp (i6αkj)

[60]. The sum goes over the six nearest neighboring particle k; while the parameter αkj represents
the angle between the relative position rk − rj and a randomly selected axis. Not surprisingly, for
the Pushers in panels(a-c), |q6|2 is low (|q6|2 less than 0.4) at all concentrations, which reflects the
local disorder due to mixing. In panels(e-g), |q6|2 effectively captures the concentration-dependent
hexagonal lattice formation, with the highest value (|q6|2 ∼ 0.9) occurring within the particle
granules where microparticles are tightly packed.

As the result of fluid-solid phase separation at high concentrations (e.g., panels(f) and (g)),
the in-plane velocity field exhibit source-like structures as the flow moves from bulk towards the
moving boundaries of particle granules, suggesting that the surface flow is highly compressible. In
panels(d) and (h), more complex 3D flow structures can be visualized through the (u,w) velocity
field projected on the x − z plane extracted at y = 25.6 (marked by the black dashed lines in
panels(c) and (g)). Apparently, the induced flows are seen to be much stronger for the Puller case
with slow decays in the z−direction (see inset in panel(h)).

In Fig. 5, the above 2D velocity fields are characterized via probability density functions (PDFs)
for fluctuations of the u− velocity component u′ = u− < u >, which can be normalized by multi-

plying the root mean square value σ′ =

√
< u′2 >, i.e., σ′×PDF . Here the angle bracket and the

overbar denote a time and a spatial average, respectively. (Note that here we only use the data
outside of the spherical shapes and have ignored the internal fictitious fluid motions.) For both
Pushers and Pullers, the standard deviations are seen to be nearly symmetric and independent of
the Reynolds number. For the dilute cases, their disturbance deviations appear to be significantly
different from a standard Gaussian distribution, with sharper peaks around zero. As the concen-
tration increases, the PDFs exhibit wider and wider spectrum due to the enhanced active flows.
For the dense cases at φ = 48% for both Puller and Pusher cases, the PDFs approximately fit a
Gaussian curve, somewhat reminiscent of the chaotic flows induced by active rod suspensions [61].

To obtain more quantitative understandings of the collective dynamics, as well as the inertia
effects on the pattern formation and particle structures, we further examine the spatial and tem-
poral correlation functions that are measured at late time as the system reaches quasi-steady state.
Figure 6 exhibits the measured Cuu in (30) for the in-plane flows at different concentrations which,
again, suggest enhanced collective behaviors for dense Pusher and Puller suspensions, especially at
a low Reynolds number. As suggested by the velocity vector fields in Fig. 4, apparently the flow
structures are more correlated for Puller suspensions. Particle “crystallization” and the resultant
phase separation is reflected by a slow decay of Cuu in panel(a) of Fig. 6 at φ = 24%, 48% and
Re = 0.01, leading to a much longer correlation length. Interestingly, the negative values of Cuu
(or anti-correlation) at φ = 48% suggests that oppositely directed flow patterns appear when r
is larger than certain cut-off length rc (in this case rc ≈ 15). It is largely due to the emergent
source-like bulk flows set within the particle granules. The cut-off length rc somewhat character-
izes the length scale of the mean spatio-temporal patterns, as suggested by Fig. 4(g) where the
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FIG. 4: Velocity vector fields for a monolayer of Pushers (β = −3, top row) and Pullers (β = 3, bottom
row) at three concentrations (area fraction) at Re = 0.01. Panels(d,h): In-plane velocity fields on the (x, z)
plane extracted at y = 25.6 (marked by the dashed line in panel(c) and (g)) at φ = 48% to reveal the 3D
flow structures. Inset in (h): Comparison of velocity decay in the z−directionl for the Pusher and Puller

cases. For panels(a-c) and (e-g), the particle color shows the bond parameter |q(k)6 |2 ∈ [0, 1] [60].
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FIG. 5: Normalized Probability density function PDF × σ′ as a function of in-plane fluctuation quantity
u′/σ′ at the different concentrations and Re = 0.01, 1.0: (a)Puller (β = 3), (b)Pusher (β = −3).

flow velocities are approximately in the opposite direction along the two sides of the fluid-solid
boundaries. As Re increases, the induced flows appear to more uncorrelated for both Pusher and
Puller cases. Especially for the Pusher suspensions shown in panel(b), the values of Cuu sharply
drops to zero in all cases, and even collapse onto a certain universal curve at Re = 1 independent
of concentration.



13

r

C
uu

0 5 10 15 20 25-0.2

0

0.2

0.4

0.6

0.8

1

Re=0.01,φ=6%
Re=0.01,φ=24%
Re=0.01,φ=48%
Re=1,φ=6%
Re=1,φ=24%
Re=1,φ=48%

(a)

rc

r

C
uu

0 5 10 15 20 25-0.2

0

0.2

0.4

0.6

0.8

1
(b)

Re=0.01,φ=6%
Re=0.01,φ=24%
Re=0.01,φ=48%
Re=1,φ=6%
Re=1,φ=24%
Re=1,φ=48%

FIG. 6: Normalized velocity-velocity correlation function Cuu at the different concentrations and Re =
0.01, 1.0: (a)Puller (β = 3), (b)Pusher (β = −3).

After analyzing the induced flows, we then present the spatial correlation function of particle
velocity Up in Fig. 7, which is defined by

Ip(r) =

〈
Up(x, t) ·Up(x + r, t)

〉
〈
|Up(x, t)|2

〉 (32)

where r = |r| ≥ 2 represents the relative distance between two particles. The angle bracket <>
represents a time average while the overbar denotes an average taken for all particles. Here we
only consider suspensions with a finite or high concentration (i.e., φ = 12%, 24%, 48%) where non-
trivial particle structures are formed. For the less-concentrated cases at φ = 12% (N = 100) in
panels(a) and (b), Ip is maximum at r = 2 (i.e., swimmer diameter) due to pair-interaction, and
then quickly drops to zero. Particle velocities are strongly correlated for the dense Puller cases
(e.g., φ = 48%) in panel(a) with multiple peaks, which suggests that neighboring swimmers tend
to move collectively in an approximately similar direction. The corresponding particle topological
structures are characterized by the pair-distribution function in (31) in Fig. 8. For most cases for
different swimmers and Reynolds numbers, g(r) shows an initial peak at r = 2 and then quickly
decays to zero, suggesting a near-body cluster formation which has been observed in both Brownian
and non-Brownian active particle systems [3, 62]. Especially, Pusher particles are seen to easily
become uncorrelated when r goes beyond 2. On the other hand, for dense Puller suspensions,
their hexagonal lattice is reflected by the main peak at r = 2, following by a series of double-peak
structures at r = 4, 6, 8, ... [3, 58, 62].

Furthermore, we measure the PDFs of the particle speed magnitude |Up|, as shown in Fig. 9.
Generally speaking, its distribution approximately centers around the single-swimmer velocity
computed in section III A. For both Pushers and Pullers, we observe that increasing the particle
concentration leads to wider velocity spectrums as particle swim collectively. Different from the
induced flows, the PDFs of the Pushers and Pullers are seen to be very similar at Re = 0.01 for
all concentrations. According to the theoretical predictions at a finite Reynolds number by Li and
Ardekani [3, 36], the single particle moving speed is approximately Up ≈ 1−0.15βRe. Therefore, at
least for a dilute suspension, the inertia effect tends to shift the single-swimmer speed towards left
(i.e., close to zero) for Pullers and towards right (i.e., larger velocity) for Pushers, with narrower
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FIG. 7: Particle velocity correlation function Ip at the different concentrations and Re = 0.01, 1.0: (a)Puller
(β = 3), (b)Pusher (β = −3).
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FIG. 8: Pair distribution function g(r) at the different concentrations and Re = 0.01, 1.0: (a)Puller (β = 3),
(b)Pusher (β = −3).

distributions. It is significantly reduced in the dense cases, especially for the Pusher suspension at
φ = 48% where the two PDFs almost coincide with each other.

As shown in Fig. 10, we combine the results of the time-averaged velocity magnitude for the
induced in-plane flows < |u| > and all swimmers < |Up| > at quasi-steady state. For both Pushers

and Pullers, < |u| > grows monotonically as φ increases, and can get close to or even be higher
than < |Up| > for the dense cases. Comparing to < |u| >, variations of < |Up| > at different
concentrations are much smaller, and only fluctuate around the single swimmer speed as shown by
the PDFs in Fig. 9. For the Pusher cases shown in panel(a) of Fig. 10, < |Up| > are higher at a
small Re, and increase monotonically with concentration. For the Pusher cases shown in panel(b),
however, < |Up| > remains approximately to be a constant at a small Re while monotonically
decreases with φ at a finite Re, again suggesting that the inertia effect gradually diminishes as the
particle concentration increases.
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and Re = 0.01, 1.0: (a)Puller (β = 3), (b)Pusher (β = −3).
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FIG. 10: Average speed of the Squirmers < |Up| > and the in-plane fluid flow < |u| > computed at the
different concentrations and Re = 0.01, 1.0: (a)Puller (β = 3), (b)Pusher (β = −3).

C. Transport Of Obstacles In Squirmer Monolayer

To further demonstrate our FD method’s capability of handling interactions of active particles
and geometric boundaries with complex geometries, in this section we study transport behaviors
of a large obstacle when placed in the Squirmer monolayer. We expect the obstacle will be driven
into motion when simultaneously subject to the viscous forces due to the induced flows and the
collision forces arising from contacts with the swimming active particles. This is also inspired
by recent experimental studies of active matter systems where self-driven microparticles, when
appropriately guided by boundaries, can be used to pump/mix fluids [63–66], cargo transport
[67, 68], and power microgears [69]. While strong collective dynamics have been observed for Puller
suspensions, however, particle crystallization and the resultant surface flows are unsuitable for
obstacle transport. We find that obstacles are usually trapped along the fluid/particle boundaries



16

instead of being pushed away towards the bulk flow (see an example in Supplemental Movie S1
[70]). Therefore, in the following we focus on the Pusher suspensions at a low Reynolds number
(Re = 0.01) where motile particles are well-mixed when interacting collectively.

As sketched in Fig. 11(a), we consider a short cylinder of height h = 5∆x, and has either a
symmetric (circular) or an asymmetric (wedge-like) cross section shape. For the circular cylinder
(CC), we set its radius to be 5a. For the wedge-like cylinder (WC), we set the arm length ` to be
10a and the thickness w to be 5∆x. (The geometric parameters for WC are selected such that it
has the same volume as the Squirmer particle.) Moreover, in the x−y plane, the Lagrangian grid of
WC has the same size (∆x) as the Eulerian mesh; while in the z−direction, the mesh size is chosen
as 5∆x/3 when using three layers in discretization along h. Meanwhile, as described in Section
II C, retraction of Lagrangian points from the cylinder surface is enforced. Such Lagrangian grid
leads the effective volume ratio (Lagrangian vs. Eularian) about 1.6, which (i.e., the volume ratio
between 1 and 2) has been proven to be critical to avoid numerical instabilities [71–73]. The total
number of Lagrangian points is between 2500 and 2800, depending on the opening angle γ which
determines the shape anisotropy.

The cylinder is initially placed in a monolayer of Pushers with a zero speed. We have performed
simulations over a long period of time to track its motion. In Fig. 11, simulation results are
compared at φ = 12%, 36% for both shapes. As shown in panel(a), the C.O.M. trajectories of
CC at φ = 12% and 36% appear to be similar, only drifting around the initial position. On the
other hand, in a less-concentrated suspension (i.e., φ = 12%), noticeably directional migrations
characterized by relatively long travel distances (i.e., end-to-end distance) have been observed
for WC when varying γ between π/6 and 2π/3. Here we only show the trajectory for WC with
γ = π/3; see Supplemental Movie S2 [70]. For the dense case (i.e., φ = 36%, see Supplemental
Movie S3 [70]), however, WC motion is seemingly to become less directional, similar to those of
CC. In panel(b), we compare the corresponding measurements of the mean-square-displacement
(MSD). All the cases first exhibit a ballistic behavior in a short time scale. For WC swimming
in a less-concentrated monolayer, the MSD remains to be ballistic for a long time t ≈ 100; while
for the other cases, the MSD switches to be diffusive when t ≈ 10 or even earlier, especially for
the case of WC in a dense suspension. As shown in the inset of panel(b), WC’s time-averaged
migration speed magnitude < |Ucyl| > decreases as γ changes from acute to obtuse. And for each
γ, < |Ucyl| > increases as φ increases, due to the enhanced particle-particle interactions and more
frequent collisions.

The above transport behavior of short cylinder, especially the observed directional migration
of WC in a less-concentrated Pusher monolayer, can be further understood by examining the
directions of its velocity Ucyl, the resultant hydrodynamic (FH , see Eq. (10)), and collision (FC =∑
i

∑
j,i6=j

fij , see Eq. (4)) forces. As shown in the schematic in Fig. 12(a), we measure the probability

distribution of the projected angle pθ measured from the axis of symmetry in the moving frame
fixed on the cylinder during the entire history, with θ = π pointing towards the right-front direction.
For the cases of CC shown in Fig. 12(a) and (b), the pθ distribution for Ucyl suggests that it moves
in random directions (at a long time scale), and the migration velocity and the applied forces are
uncorrelated. However, in panel(c) where WC moves in a less-concentrated suspension, the pθ for
Ucyl exhibit strong biases in the direction between π/2 and 3π/2, with two peaks approximately
at θ = 2π/3 and θ = 4π/3. It suggests that the WC tends to move along either the upper-left or
upper-right direction relative to its own body axis. Interestingly, the pθ for FC (FH) appears to
be in (or out of) phase with that of Ucyl. It can be understood that such directional migration
of WC is in fact driven by the (statistically) anisotropic collision force which is balanced by the
viscous drag. Similar but much smaller biases are seen for the PDFs in panel(d), corresponding
to the case when WC moves in a more concentrated suspension, which, again, is consistent with a
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FIG. 11: Comparison of transport of a short circular cylinder (CC) and wedge-like cylinder (WC, γ = π/3)
in a Pusher monolayer (β = −3, a = 1.0,Re = 0.01, φ = 12%, 36%): (a) Trajectory and (b) MSD. Inset in
(a): Schematic for WC as well as the in-plane Lagrangian points distribution. Inset in (b): Mean migration
velocity (i.e., C.O.M. velocity) magnitude of WC as a function of γ at two different concentrations.

much weakened directional motion of WC observed in Fig. 11.
In Fig. 13, we reveal the physical mechanism of anisotropic collision force generation by showing

the time-averaged density distribution that is centered around the cylinder in the moving body
frame. Compared to the cases of CC where the concentration field is nearly homogeneous, for the
WC cases, a “hot” area highlighted by the maximum particle concentration robustly occurs near
the cusp of the inner surface, which is consistent with the experimental observation by Kaiser et
al. [67]. As mentioned earlier in Section III A, the Pusher particles tend to stick to and glide
along the wall for a certain distance, which facilitates creation of such “trapping zone” near the
cusp. Again, such particle accumulation effect near obstacle walls or surfaces is dominated by the
local interactions, and has also been observed for active particle systems without hydrodynamic
interactions [74]. It becomes prominent (weakened) in less (more) concentrated suspensions where
local particle accumulation yields an anisotropic (homogeneous) spatial distribution.

Following the previous studies for Brownian active particles [22, 75, 76], here we seek further
quantitative connections between the collision force FC and the non-Brownian active particle num-
ber density n via a surface integral form:

FS (t) = −α0

∫
∂C
n (x, t) ndS (33)

where n is the outer normal of the body surface (∂C), and α0 is an energy scaling factor (e.g.,
α0 ∝ KBT for Brownian particles and α0 ∝ µUpa2 for Squirmer particles considered here). Here we
have also simplified our analysis by assuming that the force magnitude |FC | is approximately the
same for each collision. Corresponding to the cases in Fig. 13(a-d), a highly anisotropic number
density distribution with a trapping zone near the cusp facilitates generation of a net forward
force. In comparison, while the mean speed of WC in a dense suspension is generally larger,
it easily loses direction control due to a more homogeneous number density distribution as the
trapping zone fades away as shown in the panels(f-h). To evaluate the directional statistics of Fs,
we have numerically computed the surface integral in Eq. (33) (without the unknown coefficient
α0) and shown the corresponding p(θ) for both CC and WC in Fig. 12 (green solid lines). Not
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FIG. 12: Orientation probability distribution pθ for the in-plane migration velocity Ucyl, the applied viscous
(FH) and collision (FC) force, as well as the estimated contact force through a surface integral FS (in
Eq. (33)) for the cases in Fig. 11: (a, b) CC at φ = 12%, 36%; (c, d) WC with γ = π/3 at β = −3, a =
1.0,Re = 0.01, φ = 12%, 36%.

surprisingly, while appearing to be more or less uncorrelated for CC in panels(a,b) of Fig. 12, the
orientation distribution of Fs in panels(c,d) approximately follow that of Fc and Ucyl. Therefore,
we have confirmed that Eq. (33) reasonably capture the geometrically-dependent nature of the
collision-driven process for non-Brownian active particles.

IV. CONCLUSION

In this work we present a direct-forcing fictitious domain method to solve dynamics of non-
Brownian Squirmer particles that mimic swimming micro-organisms in the high-activity limit
where the advective forces produced by particle activity dominate over random thermal forces.
Compared to other similar Cartesian grid methods that often require iterations to achieve conver-
gence [3, 77, 78], this algorithm employs a discrete δ-function to map physical variables between the
overlaid Lagrangian and Eulerian meshes, which does not require additional iterations to achieve
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FIG. 13: The time-averaged number density field of Pusher particles (β = −3, a = 1.0,Re = 0.01): (a,e) CC
at φ = 12%, 36%; (b,f) WC with γ = π/3, φ = 12%, 36%; (c,g) WC with γ = π/2, φ = 12%, 36%; (d,h) WC
with γ = 2π/3, φ = 12%, 36%.

converged solutions. In addition, an efficient MPI-based parallel algorithm is implemented to speed
up computation. We have examined the performance (e.g., accuracy and robustness) of the method
through a series of numerical studies at both small and finite Reynolds numbers, and have found
excellent agreements with previous studies of free-swimming motion of a single Squirmer and pair
interactions between two side-by-side Squirmers.

Since both the hydrodynamic interactions and collisions are fully resolved, we have demonstrated
that our method is particularly useful in exploring collective dynamics of active suspensions across
Reynolds numbers by measuring detailed statistic properties of a monolayer of confined Pusher
particles immersed in a bulk flow. As discussed in Section III B, the enhanced particle-particle
interactions in concentrated suspensions lead to emergent coherent quasi-2D structures which can
be drastically different for Pullers and Pushers (i.e., phase separation vs. mixing). As Re increases,
the collective dynamics for both Pushers and Pullers are seen to be weakened (or less correlated),
suggesting that the inertia effect tends to suppress the collective dynamics. More interestingly, as
inspired by the experiment by Kaiser et al. [67], we have demonstrated that directional motions of
short cylinder in the Pusher monolayer is feasible when employing a wedge-like shape. By analyz-
ing the direction correlation between the cylinder’s (in-plane) migration velocity and the applied
viscous and collision force for long time, we have revealed that transport of cylinder is driven by
the resultant collision force due to the shape anisotropic (i.e., wedge-like). As Pusher particles
interact with the cylinder collectively, attractive particle-wall interactions lead to a trapping zone
with the maximum particle number density near the cusp of the inner surface. Such an inhomoge-
neous particle distribution along the cylinder surface effectively yields biases of the collision force
approximately in the forward direction, especially in a less-concentrated suspension where accumu-
lation of swimming particles near surface is more prominent compared to the dense suspensions.
While only a wedge-like shape is studied, the same strategy can be used to design and optimize
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geometries for self-driven obstacles to achieve effective migration driven by active suspensions.
Beyond the Squirmer model of a spherical shape, it is straightforward to extend our method to

incorporate more elaborate micromechanical models by employing various arrangements of collo-
cation points and active velocity fields in the particle domain, especially for non-spherical particles
(ellipsoidal or rod-like) [37, 79, 80]. In general, it is desirable for us to perform fully resolved dis-
crete particle simulations to reveal fascinating coherent structures of various active systems with
or without topological confinements at high dimensions, which may suggest novel mechanisms of
exploiting anomalous non-equilibrium properties of active matter for useful mechanical work.
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bacterial turbulence. Phys. Rev. Lett., 112, 158101 (2014).
[68] P.K. Purohit P.E. Arratia A.E. Patteson, A.Gopinath. Particle diffusion in active fluids is non-

monotonic in size. Soft Matter, 12, 2365 (2016).
[69] A. Sokolov, M. Apodaca, B. Grzybowski, and I. Aranson. Swimming bacteria power microscopic gears.

Proc. Natl. Acad. Sci., 107, 969 (2010).
[70] See supplemental material at [url] for movie s1-s3 that show details of swimmer-obstacle interactions.
[71] Z. Yu. A DLM/FD method for fluid/flexible-body interactions. J. Comput. Phys., 207, 1 (2005).
[72] Z. Yu, Y. Wang, and X. Shao. Numerical simulations of the flapping of a three-dimensional flexible

plate in uniform flow. J. Sound Vib., 331, 4448 (2012)
[73] Z. Lin, A. Hess, Z. Yu, S. Cai, and T. Gao. A fluid-structure interaction study of soft robotic swimmer

using a fictitious domain/active-strain method. J. Comput. Phys., 376, 1138 (2019).
[74] L. Caprini and U. M. B. Marconi. Active particles under confinement and effective force generation

among surfaces. Soft matter, 14, 9044 (2018).
[75] T. Squires and J. Brady. A simple paradigm for active and nonlinear microrheology. Phys. Fluids, 17,

073101 (2005).
[76] W. Yan and J. Brady. The force on a boundary in active matter. J. Fluid Mech., 785, R1 (2015).
[77] N. Sharma and N. A.Patankar. A fast computation technique for the direct numerical simulation of

rigid particulate flows. J. Comput. Phys., 205, 439 (2005).
[78] A. Ardekani, S. Dabiri, and R. Rangel. Collision of multi-particle and general shape objects in a viscous

fluid. J. Comput. Phys., 227, 10094 (2008).
[79] E. Lushi, H. Wioland, and R. Goldstein. Fluid flows generated by swimming bacteria drive self-

organization in confined fluid suspensions. Proc. Nat. Acad. Sci., 111, 9733 (2014).
[80] K. Kyoya, D. Matsunaga, Y. Imai, T. Omori, and T. Ishikawa. Shape matters: Near-field fluid me-



23

chanics dominate the collective motions of ellipsoidal squirmers. Phys. Rev. E, 92, 063027 (2015).


