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The dynamic structure factor (DSF) of the Yukawa system is here obtained with highly converged
molecular dynamics (MD) over the entire liquid phase. The data provide a rigorous test of theo-
retical models of ion-acoustic wave-dispersion relations, the intermediate scattering function and
the high-frequency response. We compare our MD results with seven diverse models, finding good
agreement among those that enforce the three basic sum rules for dispersion properties, although
one of the models has previously unreported spurious peaks. The MD simulations reveal that the
high-frequency response ∼ ωp of the DSF at intermediate frequencies ω, and p shows non-trivial
dependencies on the wavevector q and the plasma parameters κ and Γ. In contrast, among the seven
comparison models, the predicted high-frequency response is found to be independent of {q, κ,Γ}.
This high-frequency power suggests a useful fitting form. In addition, these results expose limita-
tions of several models and, moreover, suggest that some approaches are difficult or impossible to
extend because of the lack of finite moments. We also find the double plasmon resonance peak in
our MD simulations that none of the theoretical model predicts.

I. INTRODUCTION

The dynamic structure factor (DSF) plays a central
role in our understanding of strongly coupled plasmas
because it provides a clean description of the equilibrium
dynamics of correlations that occur in white dwarfs [1],
giant planets [2], dusty plasmas [3], ultracold plasmas [4]
and dense plasmas [5]. In particular, the DSF contains
dynamical information needed to properly describe and
model collective modes and transport [6–9], while also
providing information on stopping power [10, 11], neu-
tron scattering [12], X-ray Thomson Scattering (XRTS)
[13], and microfields [14]. Increasingly accurate DSF
models improve our understanding of dynamical corre-
lations and provide an additional rationale for the use of
XRTS as an experimental diagnostic, as well. A sur-
vey of extant DSF models reveals a wide diversity of
approaches, including early work on memory functions
by Hansen and co-workers [15, 16], the dynamic local
field correction (DLFC) models of Tanaka and Ichimaru
[17] and Hong and Kim [18], the sum-rule approaches of
Adamjan et al. and others [19–23], Mermin’s relaxation-
time approximation [24] and Murillo’s modified Navier-
Stokes equation (NS) [6], to name only a few.

A comprehensive comparison across diverse models
and detailed molecular dynamics (MD) validation are
needed to exclude less accurate models from consider-
ation and to suggest research directions with the largest
potential impacts on applications. Several reports have
compared theoretical models with MD data, but, to our
knowledge, all such studies used a specific set of plasma
parameters or very limited plasma regimes, and used at
most three models [25–28]. Here, we compare seven mod-
els with new, highly accurate MD simulations across the
entire liquid phase. We find that for some quantities,
many models are in agreement, but for other properties,
none of the models are accurate.

Most models of the DSF are formulated with pair po-
tentials to avoid dependencies on spatial correlations that
are of higher order than the order of the radial distri-
bution function g(r); therefore, we similarly limited our
study to systems described by pair potentials, and we also
consider only three-dimensional plasmas. We chose the
Yukawa potential both because it is the most widely used
pair potential, and because it very accurately describes
ultracold plasmas [29], dusty plasmas [30], dense plasmas
[31, 32] and white dwarfs [1]. The Yukawa potential is

φ(r) =
Q2

r
exp(−r/λs), (1)

where Q is the effective ion charge, and λs is an appro-
priate screening length associated with free-electron po-
larization. In equilibrium at temperature T , the Yukawa
system is described through two dimensionless parame-
ters, the screening parameter κ = a/λs, and the cou-
pling parameter Γ = Q2/aT , where a = (3/4πn)1/3 is
the ion-sphere radius in terms of the ionic density n; the
one-component plasma (OCP) model is the κ = 0 case.
For this study, we examined a wide range of (κ,Γ) pairs,
with κ = 0 ∼ 3, and Γ = 10 ∼ 1510; this parameter space
covers long- and short-range interactions, as well as mod-
erate to strong coupling. Because the plasmas we model
are in equilibrium, it is not necessary to include dynam-
ical corrections [33] to the Yukawa potential, as the ions
always move more slowly than the electron thermal ve-
locity. In some scenarios, modifications of the Yukawa
potential may be beneficial, for example, when consid-
ering wake potentials [34] in dusty plasmas near sheath
regions; however, we do not include such field-specific
corrections to keep our results as general as possible.

The rest of this paper is organized as follows. In Sec.
II, several theoretical models, together with our meth-
ods, are described. In Sec. III, we discuss our numerical
simulations in detail. Simulation parameters that we ob-
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tained by testing a variety of simulation conditions are
given in Sec. IV. In Sec. V, we compare the theoretical
models with our numerical simulations, and finally, we
offer our conclusions in Sec. VI.

II. MODELS AND METHODS

MD plays a key role in establishing our confidence
in models for the DSF [16, 35, 36]. MD simulations
have been performed here using standard methods (e.g.,
velocity-Verlet integration), with the addition of an effi-
cient generalization of the particle-particle particle-mesh
(PPPM) method to Yukawa interactions [36]. We care-
fully examined convergence issues related to particle
number, time step and number of time steps, using pri-
marily N = 10, 000, ∆t = 0.01 and Nsteps = 80, 000.
The Fourier-transformed density n(q, t) was extracted
from simulation data to form the intermediate scatter-
ing function (ISF) F (q, t) and its Fourier transform, the

DSF S(q, ω). Wavevectors q = 2πl̂/L, where l̂ is vec-
tor formed from integers, were chosen from periodicity
constraints set by the simulation cell size, which is indi-
rectly determined by the density and number of particles
through L = (N/n)1/3. Because the plasmas we consider
are isotropic, we compute quantities in several directions
and average to improve the statistics. We use reduced
units in which the wave number q is in units of a−1, the
frequency ω is in units of ωp, with the ion plasma fre-

quency ωp = (4πnQ2/m)1/2 for ionic mass m, and the
time t is in units of ω−1

p . With these quantities, the DSF
and its frequency moments are defined as

S(q, ω) =

∫ ∞
−∞

dt F (q, t)eiωt, (2)

Sl(q) =

∫ ∞
−∞

dω

2π
ωlS(q, ω), l = 0, 2, 4.... (3)

The odd-order moments vanish because of the symmetry
of the DSF. If several of the Sl(q) are known, models of
S(q, ω) can be constrained; with only g(r) as an input,
three frequency moments can be constructed that con-
strain the area, mean and variance of S(q, ω). For the
Yukawa model, these constraints yield the sum rules

S0(q) = S(q),

S2(q) = q2/3Γ,

S4(q) = S2(q)

[
q2

q2 + κ2
+
q2

Γ
+ I(q)

]
,

I(q) =
1

12π

∫ ∞
0

f(q, q̃)(1− S(q))q̃2d̃q,

f(q, q̃) =
2(3q2 − κ2 − q̃2)

q2
+

(q2 − κ2 − q̃2)2

2q3q̃

× ln

(
κ2 + (q + q̃)2

κ2 + (q − q̃)2

)
− 8q̃2

3(κ2 + q̃2)
,

(4)

where S(q) is the static structure factor, and I(q) is the
static local field correction in the high-frequency limit.

We now describe seven theoretical approaches that we
will compare with our MD simulations. We begin with
Mermin (M) [24], who proposed a relaxation-time ap-
proximation to include collisions in the susceptibility,
χ(q, ω). The M model satisfies only S2(q) = q2/3Γ, the
“f -sum rule,” and it can be written as

χ(q, ω) =

(
1− iω

ν

)
χRPA(q, ω + iν)χRPA(q, 0)

χRPA(q, ω + iν)− (iω/ν)χRPA(q, 0)
,

(5)
where ν is a collision frequency, the only input, and χRPA

is the random-phase approximation (RPA) susceptibility.
The DSF is obtained through the fluctuation-dissipation
theorem,

S(q, ω) = −2T

nω
χ′′(q, ω), (6)

where χ′′(q, ω) is the imaginary part of χ(q, ω). The M
model contains no information about correlations beyond
the mean field. The appeal of the M model is that it in-
cludes collisions beyond the mean field without violating
particle conservation; however, inclusion of other con-
servation laws reveals [10, 37] that particle conservation
alone may decrease accuracy. Here, because of our inter-
est in the functional form of the model, we fit M to the
MD data to obtain the “best” value for ν.

Next, we review three models that exploit the
frequency-moment sum rules. Because the models ex-
ploit the same three sum rules, they yield very similar
predictions. The promise of such models is that, in prin-
ciple, more sum rules can be included to systematically
improve accuracy. However, this approach fails when no
moments exist; such situations are discussed below. Stay-
ing within a susceptibility model, the dynamic local field
correction G(q, ω) can be used to model both collisions
and correlations through

χ(q, ω) =
χ0(q, ω)

1− v(q)[1−G(q, ω)]χ0(q, ω)
, (7)

where χ0(q, ω) is the susceptibility of the ideal gas, and
v(q) is the Fourier transform of the pair potential. The
DLFC is defined such that when G(q, ω) = 0, one obatins
the mean-field (RPA) result. Simple models for the
DLFC can be obtained by replacing it with the static lo-
cal field correction G(q) or with its high-frequency limit,
I(q) ≡ G(q, ω = ∞). However, it is well known that
these simpler models are accurate only under limited con-
ditions [38–40].

Tanaka and Ichimaru (TI) developed a model that in-
cludes high- and low-frequency limits using a viscoelastic
formalism [17], writing

G(q, ω) =
G(q)− iωτM (q)I(q)

1− iωτM (q)
, (8)

where τM (q) is the viscoelastic relaxation time. This
model satisfies the three moment relations, which are not
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sufficiently constraining to obtain τM (q). TI suggest ei-
ther a Gaussian or Lorentzian form for τM (q); here, we
fit to the MD data for each q, and this approach allows us
to examine the TI ansatz for the “best” possible τM (q).

Hong and Kim (HK) proposed a related model [18] that
also enforces the three moments. They adopted the first-,
second- and third-order approximation parameters to ob-
tain the DLFC. The first-order approximation is simply
to replace G(q, ω) with G(q). The second-order approx-
imation is to set η3 = 0. The third-order approximation
is

G(q, ω) = G(q)− q2 + κ2

3Γ

[η2 − η3R(x)]Q(x)

1 + η3R(x)
, (9)

where x =
√

3Γ
2
ω
q , Q(x) = 1/Z(x) + 2x2 − 1, R(x) =

1− 1
2Q(x), Z(x) = (1−2xD(x))+i

√
πx exp(−x2), D(x) is

the Dawson function, η2 = (3Γ)/(2(q2+κ2))[G(q)−I(q)],
and η3 involves the sixth moment of the DSF, S6(q). Be-
cause theoretical calculation of S6(q) requires correlation
information beyond g(r), HK treated η3 as a fitting pa-
rameter. Note that, because χ0(q, ω) appears in the nu-
merator of the M, TI and HK models, there is an ex-
ponential decay in the weakly coupled limit, allowing an
arbitrary number of moments to be used; this property
is lost, however, when collisions are included, as we will
see below.

Adamjan et al. developed another sum-rule approach,
based on the Nevanlinna formula of the classical theory
of moments method, to construct the OCP DSF [19], and
this approach has been explored for hydrogen-like two-
component plasmas [20–22]. Recently, Arkhipov et al.
(A) expanded this sum-rule approach to Yukawa OCPs
(YOCPs) [23], finding

S(q, ω)

S(q)
=

√
2ω3

1ω
2
2(ω2

2 − ω2
1)

2ω2ω2
1(ω2 − ω2

2)2 + ω4
2(ω2 − ω2

1)2
, (10)

where ω2
1(q) = S2(q)/S(q), and ω2

2(q) = S4(q)/S2(q).
While this form satisfies the same sum rules as the M,
TI and HK models, it does not contain the RPA or ideal-
gas limits.

Murillo constructed a modified Navier-Stokes equation
(NS) model [6] that yields

S(q, ω) =
8
√

3ωE
9Γ

q4η̃(
ω2 − q2

3ΓS(q))

)2

+
(

4
√

3ωE

3 q2ωη̃
)2 ,

(11)
where η̃ is the dimensionless viscosity, and ωE is
the Einstein frequency in units of ωp, where ωE =
κ2

3

∫∞
0
r exp(−κr)g(r)dr for the YOCP, and ωE = 1

3 for
the OCP. While this model has the correct hydrodynamic
limit and includes correlations and collisional damping,
it does not describe the ideal-gas limit; it also does not
satisfy the high-frequency sum rule [1].

Finally, the DSF can also be obtained from general-
ized hydrodynamics [15, 16, 41] by modeling the memory

function, giving

S(q, ω)

S(q)
=

2ω2
1q

2φ′MF (q, ω)

[ω2 − ω2
1 − ωq2φ′′MF (q, ω)]2 + [ωq2φ′MF (q, ω)]2

,

(12)
where φ′MF (q, ω) and φ′′MF (q, ω) are the real and imagi-
nary parts of the Laplace transform of the memory func-
tion φMF (q, t), respectively. For φMF (q, t), either the
Gaussian (G) or exponential-function (E) model is usu-
ally used. Note the resemblance to the NS model given
in Eq. (11).

Table I summarizes properties of the seven models dis-
cussed above, including the moments that each satisfies
and the predicted form of the high-frequency tail. The
seven models yield three – significantly different – pre-
dictions of the form of the tail: exponential decay, and
two power-law (ωp, p = −4 and p = −6) forms of decay.
Even though the TI and HK models use the DLFC, they
show very different asymptotic powers, because G′′(q, ω),
the imaginary part of the DLFC, is proportional to ω−1

in the TI model, while it decays exponentially in the HK
model at high frequencies.

If the DSF is available, we can obtain the susceptibility
via Eq. (6) and Kramers-Kronig relations

χ′(q, ω) = P
∫ ∞
−∞

dω̃

π

χ′′(q, ω̃)

ω̃ − ω
,

χ′′(q, ω) = −P
∫ ∞
−∞

dω̃

π

χ′(q, ω̃)

ω̃ − ω
.

(13)

However, in reality, it is very difficult to obtain the
susceptibility via the Kramers-Kronig relations using the
DSF from the MD data because of noise. For the MD
results, we can obtain the susceptibility via the Laplace
transform of F (q, t),

g(q, ω) ≡
∫ ∞

0

dtF (q, t)eiωt

=

∫ ∞
−∞

dtF (q, t)H(t)eiωt

= g′(q, ω) + ig′′(q, ω),

(14)

where H(t) is the Heaviside step function, and

g′(q, ω) =
1

2
S(q, ω),

g′′(q, ω) =
1

2π

∫ ∞
−∞

dω̃
S(q, ω̃)

(ω − ω̃)
.

(15)

From Eqns. (6), (15) and the Kramers-Kronig rela-
tions (13), we can express g(q, ω) as

g′(q, ω) = − T

nω
χ′′(q, ω),

g′′(q, ω) =
1

ω
S(q) +

T

nω
χ′(q, ω).

(16)
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Model Source Key physics Focus Moments Asymptotic power of ω
M [24] collisions χ(q, ω) 2 -4
TI [17] viscoelastic formalism G(q, ω) 0, 2, 4 -6
HK [18] recurrence relation method G(q, ω) 0, 2, 4 exponential decay
A [23] Nevanlinna S(q, ω) 0, 2, 4 -6
NS [6] structure and viscosity S(q, ω) 0, 2 -4
G [15, 16] memory function S(q, ω) 0, 2, 4 exponential decay
E [41, 42] memory function S(q, ω) 0, 2, 4 -6

TABLE I: Summary of the theoretical models. M: Mermin’s collision approach, TI: Tanaka & Ichimaru’s DLFC model, HK:
Hong & Kim’s DLFC model, A: Arkhipov et al.’s momentum approach, NS: Murillo’s modified Navier-Stokes model, G:
Gaussian memory function, E: Exponential memory function.

III. SIMULATIONS

We used a range of (κ,Γ) pairs across coupling regimes:
(κ = 0, Γ = 10, 50, 150), (κ = 1, Γ = 14, 72, 217), (κ =
2, Γ = 31, 158, 476), and (κ = 3, Γ = 100, 503, 1510).
Fig. 1 shows the (κ,Γ) pairs, together with the lower
and upper boundaries of the liquid regime [6]. The (κ,Γ)
pairs were chosen to approximately follow contours of
constant effective coupling.

0 1 2 3

101

102

103

FIG. 1: The (κ, Γ) pairs for which the DSF was computed
using MD simulations. The solid blue and dashed green lines
are the lower and upper limits of the liquid regime, respec-
tively, and red dots indicate data points used in this study.
Note that the points were chosen to span the strongly coupled
liquid regime, and they roughly follow contours of constant
effective coupling.

Our MD simulations employed standard methods,
including velocity-Verlet integration using a PPPM
Yukawa force algorithm [36]. For all results presented,
104 particles were simulated, giving the required conver-
gence at long wavelengths. For the PPPM algorithm,
the Ewald parameter was 0.46 (distances are in units of
a−1). For the particle-particle portion of the calculation,
the cut-off radius was 7.8; for the particle-mesh portion,
the grid dimensions were 64×64×64, and B-splines were
of order 6. These parameters correspond to an error
of ∼ 10−6 (e2/a2) in the computed forces. The simu-

lations were carried out with the Berendsen thermostat
for the first 10, 000 steps to reach the equilibrium state.
For the next 80, 000 steps, we turned off the thermo-
stat and collected data. For a whole simulation times-
pan, the time step ∆t was chosen to be 0.01 (times are
in units of ω−1

p ) to ensure the required energy conser-
vation. The time step was dictated by the lowest Γ at
κ = 0 because hard collisions are more prominent at
smaller Γ for a given κ. The quality of energy conser-
vation was quantified using an error metric defined as

∆E(%) = 100
M

∑M
j=1

∣∣∣E(tj)
E(0) − 1

∣∣∣ (%), which is the percent-

age error accumulated in time with respect to the initial
energy of the system after equilibration. Energy conser-
vation was excellent for all of the simulations, with ∆E
∼ 10−6%.

To evaluate the theoretical models, it is necessary to
estimate the static structure factor S(q); in general, we
attempted to obtain S(q) directly from a frequency inte-
gration of S(q, ω), which was obtained from the Fourier-
transformed density [36]. However, when q is very small,
the DSF has a very narrow peak, and therefore, there is
a possibility that S(q) obtained from MD is not accurate.
To compensate for this inaccuracy, we also employed the
hypernetted-chain approximation with a bridge function
(HNCB) [43] to obtain S(q) at small q.

Most theoretical models in this study require three sum
rules, S(q), S2(q), and S4(q). S(q) can be calculated
easily from the DSF, and S2(q) = q2/3Γ. S4(q) is a
function of I(q) and S(q). However, the behavior of I(q)
is rarely described. Here, we present S(q) and I(q) from
MD simulations; our results are shown in Fig. 2. In
addition, we used HNCB [43] to obtain S(q), and we
compare the MD and HNCB results. In Fig. 2, our MD
simulations are shown with solid blue lines, our HNCB
results are shown with dashed red lines, and the HNCB
results, with Gaussian random noise added to mimic the
MD simulations, are shown with dotted green lines. Fig.
2(a) and (c) show that the MD and HNCB results yield
very similar static structure factors, and the addition of
noise results in even closer agreement. Fig. 2(b) and
(d) show I(q) obtained from S(q). We can see that the
HNCB and MD approaches give very different I(q) for
large q. However, the addition of noise to the HNCB
results moves them much closer to the MD simulations
at large q. Moreover, we see that adding noise to the
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HNCB results may either reduce or increase I(q); this
suggests that a very large number of particles are required
to obtain accurate I(q) at large wave numbers.

q0.0

0.5

1.0

S(
q)

(a)

MD
HNCB
HNCB with noise

q0.0

0.5

1.0

I(q
)

(b)

0 10 20 30
q

0.0

0.5

1.0

1.5

2.0

S(
q)

(c)

0 10 20 30
q

0.0

0.5

1.0

I(q
)

(d)

FIG. 2: S(q) and I(q) calculated from the MD and HNCB
results. S(q) is shown in the left panels, and I(q) is shown
in the right panels. The MD results are shown with solid
lines, the HNCB results are shown with dashed lines, and
dotted lines indicate the HNCB results with Gaussian random
noise added to mimic the MD simulations. Panels (a) and
(c) show that the static structure factor from the MD and
the HNCB results are in close agreement, and the addition
of noise results in even better agreement. Panels (b) and
(d) show that I(q) obtained from the MD simulations is very
different from I(q) from the HNCB results at large q. Adding
noise to the HNCB results yields an I(q) similar to the MD
result at large q, revealing the large sensitivity to statistical
averaging; moreover, these results show that the addition of
noise can either reduce or increase I(q).

IV. MD CONVERGENCE TESTS

To obtain accurate MD simulation results, it is im-
portant to determine reasonable simulation parameters,
including the number of particles (N), the time step (dt),
and the timespan (Ts = Nstep × dt). In this section, we
present the results of convergence tests for our MD sim-
ulations under various conditions. All simulations were
performed with κ = 3 and Γ = 1500, and all results
are averaged over 20 runs. The frequency bin size dω is
2π/T .

Fig. 3 shows the DSFs for three different numbers of
particles for q = 1.86 and q = 3.40. Since we use peri-
odic boundary conditions (PBCs), the direct calculation
of the DSFs when q = 1.86 and q = 3.40 is not available
for N = 5, 000 and N = 10, 000 ; therefore, the DSFs
for each wave number when N = 5, 000 and N = 10, 000
were obtained through a linear interpolation of DSFs at
the nearest available wave numbers. These interpolated
DSFs are compared with the DSFs for N = 2, 000. The

solid (N = 10, 000), dashed (N = 5, 000), and dotted
(N = 2, 000) lines in Fig. 3 indicate smoothed results
obtained using a Savitzky-Golay filter [44], with the win-
dow length set to 13 and the polynomial order set to 3.
Fig. 3 shows that the simulations for all three numbers of
particles are in good agreement; small differences in the
results for different numbers of particles may be due to
statistical noise and fluctuations resulting from small dω.
These results show that 10, 000 particles are sufficient to
describe the dynamic characteristics of the Yukawa po-
tential.

10 1 100
0.0

0.5

1.0

S(
q,

)

q = 1.86

(a)
N = 10000
N = 5000
N = 2000

10 1 100
0

5

10

q = 3.40

(b)

FIG. 3: The DSF for three different numbers of particles:
N = 2, 000, 5, 000, and 10, 000. All simulations were per-
formed with the plasma parameters (κ = 3, Γ = 1, 500), and
the wave number was set to either q = 1.86 (left panel) or
q = 3.40 (right panel). The results of all three simulations are
in good agreement, indicating convergence of the simulations
at a modest particle number. The raw data are shown as indi-
vidual points in both panels. The solid (N = 10, 000), dashed
(N = 5, 000), and dotted (N = 2, 000) lines are smoothed
using a Savitzky-Golay filter.

Fig. 4 shows the DSF for three different numbers
of time steps. We chose Nstep = 40, 000, 80, 000, and
160, 000. The time step dt and the number of parti-
cles were fixed for all three simulations, with dt = 0.01,
and N = 10, 000. Small differences in the DSF can
be observed for the different numbers of time steps pri-
marily near the peaks, which occur at ω ∼ 0.1 for
q = 0.54, and at ω ∼ 0.27 for q = 1.81. These differ-
ences occur because dω is determined by Nstep such that
dω = 2π/(Nstep × dt). Away from this peak region, the
results for Nstep = 80, 000 and Nstep = 160, 000 are in
very good agreement. Because determining the precise
peak amplitude of the DSF is beyond the scope of this
work, we chose Nstep = 80, 000 for simulations, as the
DSF converges sufficiently for the purposes of this study
with this value of N .

Fig. 5 shows the DSF calculated using three time steps
(dt = 0.01, 0.02, and 0.04) with the system simulated for
a fixed timespan Ts = 800. The number of particles was
chosen to be 10, 000 for all simulations. We can see that
all DSFs are in very close agreement. Thus, we chose
dt = 0.01 for simulations in this study.

Based on these tests, we conclude that N = 10, 000,
Nstep = 80, 000, and dt = 0.01 yield accurate results.
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10 2 10 1
0.0

0.5

1.0
S(

q,
)

q = 0.54

(a)

Nstep = 1.6x105

Nstep = 8x104

Nstep = 4x104

10 2 10 1
0.0

0.5

1.0

q = 1.81

(b)

FIG. 4: The DSF for three different numbers of time steps.
All simulations were performed with plasma parameters (κ =
3, Γ = 1, 500), and the wave number was set to either q = 0.54
(left panel) or q = 1.81 (right panel). The results of all three
simulations exhibit very close agreement. These results reveal
the importance of long runs for capturing the correct peak
value of the DSF.

10 2 10 1
0.0

0.5

1.0

S(
q,

)

q = 0.54

(a)

dt = 0.01
dt = 0.02
dt = 0.04

10 2 10 1
0.0

0.5

1.0

q = 1.81

(b)

FIG. 5: The DSF for three different choices of the time step.
All simulations were performed with the plasma parameters
(κ = 3, Γ = 1, 500), and the wave number was set to either
q = 0.54 (left panel) or q = 1.81 (right panel). The DSFs for
all cases are in very close agreement.

V. RESULTS

As described above, we ran 20 MD simulations of
N = 104 particles, with Nstep = 80, 000 and dt = 0.01,
for each (κ,Γ) pair studied across the liquid regime, as
shown in Fig. 1. From these results, we calculated the
DSF, S(q, ω), across the liquid regime for values of q rang-
ing from less than 0.5 to nearly 30 and ω ranging from
10−2 to 102. Dispersion relations for given (κ,Γ) pairs
were found by determining, across a range of values of q,
the value of ω at which the peak DSF value occurred for
a given value of q. The intermediate scattering function
was also calculated from the DSF results for given (κ,Γ)
pairs. These DSF, dispersion relation and intermediate
scattering function results, calculated from our MD data,
were then compared with DSFs, dispersion relations and
scattering functions calculated using the seven theoreti-
cal models examined in this study. All data can be found
at https://github.com/MurilloGroupMSU.

In subsection V A, we compare our MD results with

the theoretical models for a range of parameter values
that cover the entire Yukawa liquid regime. In subsec-
tion V B, we offer an empirical fitting form, designed to
be of practical use, for the DSF that captures many of
the new features we have explored, and we show that
this fit is in good agreement with our MD results. Fi-
nally, in subsection V C, we examine the double-plasmon
resonance peak that appears in the MD DSF, although
none of the theoretical models predict this peak.

A. Comparison of theoretical models and the MD
results

In this subsection, we compare our MD results with
results calculated using the seven theoretical models dis-
cussed in Sec. II. First, we examine the dispersion rela-
tion for two (κ,Γ) pairs that represent extreme limits of
the effective coupling and screening. Next, we compare
the DSF calculated from our MD data with those from
the theoretical models. We then investigate the predicted
high-frequency tail of the DSF. Finally, we compare, for
a fixed value of q, the intermediate scattering function
F (q, t) obtained from the DSF calculated from the MD
data with those calculated using the theoretical models.

Dispersion relations obtained using MD are compared
with those predicted by the theoretical models in Fig. 6;
the dispersion relations for κ = 0, Γ = 150, correspond-
ing to a plasma oscillation, and for κ = 2, Γ = 31, corre-
sponding to an ion-acoustic wave, are shown. The peak
of the DSF arises from the collective plasma oscillations
and its location is the plasmon frequency [26, 28, 45],
plasmon damping is characterized by the width of the
peak (full-width-half-maximum of MD) and is shown as
a light pink band. We do not include the HK model,
which yielded poor predictions, in Fig. 6 for reasons that
will be explained below. The M model fails to predict
the dispersion relation because the collision frequency ν,
treated here as a constant for a given wave number q, is
independent of structural information contained in S(q).
The NS model predicts a slightly lower peak frequency
than the MD simulations because of its neglect of elas-
tic physics [1]. (The viscosity was obtained from a best
fit to the MD data to remove any errors arising from an
inaccurate viscosity input; thus, the error shown is in-
dicative of a poor functional form.) In general, the other
four models are indistinguishable, with the exception of
A, for which the results are slightly higher than the MD
results for the ion-acoustic wave.

Next, in Fig. 7, we compare the full DSF the interme-
diate screening and high coupling case (κ = 1, Γ = 217),
and two wave numbers, q = 1.27 and q = 2.71. Even
though we calculate the DSF up to q = 30, we focus
on the DSF at low wave numbers, q . 5, because our
main interest is collective modes. This figure reveals that,
while the location of the peak is accurate (Fig. 6), damp-
ing is somewhat poorly predicted by all of the models. As
mentioned above, serious problems were found with the
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FIG. 6: Dispersion relations obtained from the theoretical
models and the MD data. The plasma parameters are (κ = 0,
Γ = 150) in panel (a), and (κ = 2, Γ = 31) in panel (b).
The red band reflects damping and corresponds to the full-
width-half-maximum of the MD results. The failure of the M
model reflects the importance of including a g(r) dependency;
similarly, the lower frequencies in the NS model reflect the
lack of the high-frequency sum rule in that model. Results
for the ion-acoustic wave in panel (b) show that all models
except the M model predict the MD results well.

HK model. The HK model [18] satisfies the same three
sum rules as the three other models discussed here and
should thus yield results similar to those of the other
sum-rule-based models; however, the HK model predicts
two peaks, thereby shifting the main peak to lower fre-
quencies to compensate for spectral weight in the higher-
frequency peak. To our knowledge, this behavior of the
HK model has not been seen before; however, a care-
ful examination of their results [18] reveals an incipient
shoulder on the high-frequency side, which we find bifur-
cates into a secondary peak at q values larger than those
authors present. While we do not know the source of this
spurious behavior, we do not recommend the HK model
without further analysis.

0.0 0.5 1.00.0

0.1

0.2

0.3

0.4

S(
q,

)

q = 1.27(a)

M
G
E
TI

HK
NS
A
MD

0.0 0.5 1.0

q = 2.71(b)

FIG. 7: The DSF S(q, ω) obtained from the theoretical mod-
els and the MD data. The plasma parameters are (κ = 1,
Γ = 217), and the wave numbers are either q = 1.27 (left
panel) or q = 2.71 (right panel). The HK and Mermin mod-
els fail to predict the MD results. In particular, the HK model
predicts two peaks, which suggests that their third-order ap-
proximations may not converge fast enough.

Fig. 8 shows the DSF obtained from HK for (κ = 0,
Γ = 150) and wave numbers q = (1.45, 1.63, 2.17, 2.35),

which are consistent with the box size and span a range
that reveals the unusual behavior of the HK model. The
parameter η3 is obtained from the MD results using the
least squares fitting method. The HK results exhibit two
clear peaks in the low wave-number regime; the right
peak weakens as the wave number increases. The DSF
obtained from the HK model gives better results when q
is large.

0.0

0.5

1.0

S(
q,

)

q = 1.45

(a)

MD
3 = 2.17

q = 1.63

(b)

MD
3 = 1.32

0.0 0.5 1.0 1.50.0

0.5

1.0

S(
q,

) q = 2.17

(c) MD
3 = 0.65

0.0 0.5 1.0 1.5

q = 2.35

(d) MD
3 = 0.57

FIG. 8: The DSF obtained from the HK model. The plasma
parameters are (κ = 0, Γ = 150), and the wave numbers
are q = 1.45, 1.63, 2.17, 2.35 in panels (a) through (d), respec-
tively. The parameter η3 was obtained from the MD results
using the least squares fitting method. The HK model shows
two peaks when the wave number is small; as the wave num-
ber increases, the second peak (on the right) weakens, while
the left peak dominates the spectrum and yields a more rea-
sonable result.

All of the models examined in this work predict that
the DSF exhibits a high-frequency tail (see Table I). Our
MD results support the existence of this high-frequency
tail, the form of which reveals that many sum rules are
finite. Figure 9(a) and (b) show the DSF for moderate
coupling [(κ = 1, Γ = 72) and (κ = 2, Γ = 158)], and
(c) and (d) show the asymptotic power of the DSF at the
mid-to-high frequency limit for κ = 0 and κ = 3. In Fig.
9(a) and (b), we denote a portion of our MD results with
square shapes to illustrate a spurious result, ω−2, which
arises from limitations in the numerical Fourier trans-
forms. We verified that the DSF results obtained using
other simulation tools (e.g., LAMMPS [46] and Quantum
Espresso [47]) also yield this spurious result, regardless
of the plasma parameters. Careful control of Fourier-
transform error allows us to extract the high-frequency
tail at intermediate frequencies. To our knowledge, the
tail has only been examined by Selchow et al. [48], who
reported that the DSF has an asymptote of ω−7.5. The
DSF from Donko et al. [45] also showed an asymptotic
tail, but its properties were not examined. Here, in our
more complete study, we see that the asymptotic power
varies as a function of κ, Γ, and q. In general, the power
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varies between −∞ and ∼ −6, in disagreement with all
of the theoretical models and indicating that only a small
number of finite moments exist.
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FIG. 9: The DSF from the seven theoretical models and our
MD results for different parameter values (upper panels) and
the asymptotic power of the DSF from the MD results at the
mid-high-frequency limit (lower panels). Panels (a) and (b)
show the DSF with (κ = 1, Γ = 72) and (κ = 2, Γ = 158), re-
spectively, and panels (c) and (d) show the asymptotic power
of the DSF from the MD results at high frequency for κ = 0
and κ = 3, respectively. We denote a portion of our MD
results in square shapes to indicate a spurious result, ω−2,
which arises from limitations when using numerical Fourier
transforms. At intermediate frequencies, the power p is ob-
tainable from MD simulations and varies from p = −∞ to
p ∼ −6. Table I shows that none of the theoretical models
can predict the asymptotic power variation seen in the MD
simulation results.

It is interesting to examine these results in the time
domain, through the intermediate scattering function
F (q, t). Figure 10 shows the magnitude of F (q, t) ob-
tained from the DSF. In Fig. 10, we remove the spuri-
ous results caused by numerical Fourier transforms. Fig.
10(a) shows that all models fail to predict the MD re-
sults. However, in Fig. 10(b), it is interesting to note
that only the M model shows fairly good agreement with
the MD results at large t, despite its poor performance
for the properties described above.

B. Fit of the DSF and the susceptibility

The plasmon-pole approximation is often used to pro-
vide a simple functional form for S(q, ω) based on sharp
peaks (delta functions) that satisfy the basic sum rules
[49]; however, examining panels (a) and (b) of Fig. 9
suggests the following fitting form, which includes finite

100 101 102

t
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t)
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t
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FIG. 10: Log-log plot of the intermediate scattering func-
tion (ISF) F (q, t) calculated using several theoretical models
and from our MD data for different plasma parameter values.
Panel (a) shows the ISF at the lower boundary of the liquid
regime (κ = 0, Γ = 10), and panel (b) shows the ISF near
the upper boundary of the liquid regime (κ = 3, Γ = 1, 510).
The wave number is set to q = 5.6 in both cases. Only the
Mermin model shows fairly good agreement with the MD re-
sults (shown in red) at large t; all of the other models decay
quickly.

peak widths and a power-law high-frequency tail:

S(q, ω) = A1S0(q, ω)+
A2

(ω2 − ω2
o)p/2 + γ(ω2)p1/2

, p > p1,

(17)
where S0(q, ω) is the DSF of the ideal gas, p is the power-
law exponent of the high-frequency tail, and A1, A2, γ,
ωo and p1 are fitting parameters. The criterion p > p1

should be satisfied to guarantee that the leading power
at the high-frequency limit is p. Suitable initial guesses
would be ωo ∼ the peak frequency from the dispersion
relation, A1 ∼ S(q, 0), A2 ∼ the peak amplitude of the
dispersion relation, and γ ∼ the width of the dispersion
relation. Fig. 11 shows the DSF from the MD simula-
tions, together with curve-fitting results using (17). In
Fig. 11, panels (a) and (b) show the MD DSF in two
moderate coupling regimes, and panels (c) and (d) show
the MD DSF in two strong coupling regimes. The wave
number is q = 1.99 for all panels. In addition to the MD
DSF curves, We plot the contribution to the DSF of each
term of (17). The results show that coupling shifts the
wave number q boundary between collective and random
behavior to a lower value, and that the ideal gas term
plays an important role at very low frequencies when
the screening or coupling is strong. While the MD DSF
and the fit obtained using (17) differ around ω ∼ 0.15
in panels (c) and (d), overall, the fitting form in (17)
gives good agreement with the MD results. However,
close to the melting transition, intermediate frequencies
in S(q, ω) are important and are not captured by our
fitting form.

The susceptibility χ(q, ω) represents an alternate rep-
resentation of the linear response of the system, and con-
tains more information that the DSF through its real
and imaginary parts. Fig. 12 shows the susceptibility
from the MD simulations, and curve-fitting results. For
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FIG. 11: A comparison of the DSF otained from the MD data
and the fitting form for the DSF in (17). The MD DSF and
the fitting form for the DSF are shown for moderate coupling
regimes in panels (a) and (c), and for strong coupling regimes
in panels (c) and (d); the wave number was set to q = 1.99 in
all cases.

the MD simulations, we use Eq. (16) to obtain the real
and imaginary parts of the susceptibility. For the fit-
ting form, we use Eq. (17) to obtain the DSF first, then
the fluctuation-dissipation theorem (Eq. (6)) to obtain
the imaginary part of χ(q, ω). Lastly, Kramers-Kronig
relations (Eqs. (13)) are used to obtain the real part
of χ(q, ω). Fig. 12 shows the susceptibility in moderate
coupling regimes in panels (a) and (b), and in strong cou-
pling regimes in panels (c) and (d). The wave number
is q = 1.99 for all panels. These results for the suscepti-
bility also show that the fitting form in (17) gives good
agreement with the MD results. Further investigation is
needed to determine relations among the fitting parame-
ters A1, A2, γ, ωo, and p1 via frequency moments of the
DSF.

C. Double-plasmon peak

Fig. 13 shows the DSF obtained from MD results for
different plasma parameters and wave numbers. In panel
(a), we can see that the DSF exhibits a second peak at
ω = 2, following a first peak at ω = 1 for an OCP. This
second peak is the double-plasmon resonance peak, as re-
ported by Korolov et al. [50]. This peak is damped as the
wave number increases. Panels (b) – (d) show the DSF
for YOCP cases. The double plasmon peak amplitude
is small and is increasingly damped as κ is increases. In
fact, for κ = 2, and 3, no double-plasmon peak is ob-
served. In Fig. 13 (a) ∼ (d), we select coupling parame-
ters which are close to the lower liquid boundary values
in Fig. 1, and therefore, the effective coupling parameter
is almost constant. It suggests that this double plasmon
peak has a strong dependence on κ and weak dependence
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FIG. 12: The real and imaginary parts of χ(q, ω) obtained
from the MD and from the fitting form in (17). Panels (a)
and (b) show moderate coupling regimes, and panels (c) and
(d) show strong coupling regimes; the wave number was set
to q = 1.99 in all cases. These results show that the fitting
form in (17) gives good agreement with the MD results.

on q.
The sound speed of the OCP is infinity, and therefore,

the second peak in Fig. 13(a) does not occur as an ar-
tifact of the PBC; to prove this, we further investigated
whether the double-plasmon peak is an artifact of the
PBC for the YOCP. If the second peak occurs as a result
of the PBC, then the peak location would depend on the
size of the simulation box. Fig. 14 shows the DSF cal-
culated from MD data obtained using different box sizes.
The plasma parameters (κ = 0.1, Γ = 10) were chosen
for these simulations because, as we can see in Fig. 13,
it is difficult to observe the second peak when κ ≥ 1. In
Fig. 14, we see that the properties of the second peak
do not change with the size of the simulation box. The
amplitude of the second peak decreases as the wave num-
ber increases, as expected. Therefore, we conclude that
the double-plasmon peak is not an artifact of the size of
the simulation box and is a real, physical phenomenon
missed by all of the models.

VI. CONCLUSIONS

We have compared seven diverse theoretical models
with highly accurate MD simulation results. These com-
parisons, which include dispersion relations, the interme-
diate scattering function F (q, t), and the DSF S(q, ω),
reveal that none of the models can predict these three
quantities well even within a limited range of plasma pa-
rameters. The M model, which lacks correlation infor-
mation and satisfies only the particle-conservation law,
poorly predicts dispersion properties; this model is there-
fore limited to weakly coupled plasmas, where it adds lit-
tle value [10, 37]. The HK model satisfies the same three
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FIG. 13: The double-plasmon resonance peak in the DSF ob-
tained from the MD results. The DSF is shown for several
wave numbers for each of four different sets of plasma pa-
rameters. Panel (a) shows that the OCP exhibits the double-
plasmon resonance peak at ω = 2. The peak amplitude of the
double-plasmon resonance peak decreases as the wave num-
ber increases. Panels (b) through (d) suggest that the rela-
tive strength of the double-plasmon resonance peak decreases
(larger width and smaller peak) with larger κ.
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FIG. 14: The DSF calculated from MD data obtained using
different simulation-box sizes. The plasma parameters are
κ = 0.1, and Γ = 10

. The properties of the second, double-plasmon resonance
peak do not change with the size of the simulation box. The
amplitude of the second peak decreases as the wave number

increases, as expected.

sum rules as most of the other models but exhibits a
spurious second peak in the DSF at moderate to large q;
further work is needed to understand this poor behavior.
The TI, A, E and G models all predict approximately
the same dispersion, with a small error in A for the ion-
acoustic wave.

Perhaps surprisingly, these theoretical models have
very different high-frequency behaviors and thereby ex-
pose limitations to employing only the three basic sum
rules. Moreover, in contrast with the high-frequency pre-
dictions of the sum-rule models, the MD results reveal
that the DSF has an asymptotic power-law tail, with non-
trivial dependencies on the plasma parameters κ and Γ,
as well as the wave number q. The power p approaches
−∞ as q → 0, increasing very rapidly for small q and then
decreasing slowly as q → ∞. This asymptotic power-
law behavior severely limits extensions to the sum-rule
approaches because there are a finite number of finite
moments. This power law suggests a fitting form of the
DSF which can be applied to a wide range of plasma pa-
rameters and wave numbers. In addition, we uncovered
numerical issues in the course of this study; the compu-
tational Fourier transform gives a fictitious power −2 of
ω in the high-frequency tail, which makes it challenging
to directly obtain other dynamic properties, such as the
response function and the DLFC.

The results of this work motivate further studies to
extend the theoretical models examined here to include
more information beyond three moments and a damping
parameter, and to examine the sensitivity of the models
in specific applications, such as stopping power [10] and
XRTS at intermediate (q, ω).
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