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Recent studies suggest that unstable recurrent solutions of the Navier-Stokes equation provide
new insights into dynamics of turbulent flows. In this study, we compute an extensive network
of dynamical connections between such solutions in a weakly turbulent quasi-two-dimensional Kol-
mogorov flow that lies in the inversion-symmetric subspace. In particular, we find numerous isolated
heteroclinic connections between different types of solutions – equilibria, periodic, and quasi-periodic
orbits – as well as continua of connections forming higher-dimensional connecting manifolds. We also
compute a homoclinic connection of a periodic orbit and provide strong evidence that the associated
homoclinic tangle forms the chaotic repeller that underpins transient turbulence in the symmetric
subspace.

I. INTRODUCTION

Turbulent fluid flows are ubiquitous; they can be found
in the atmosphere and the oceans, water and oil pipelines,
and even in the human aorta. Despite its great practical
relevance, a tractable description of turbulent dynamics
has remained elusive. However, recent numerical [1, 2]
and experimental [3–5] studies have shown that unstable
recurrent solutions of the Navier Stokes equation, which
governs fluid flows, may prove pivotal in solving this long-
standing problem. Often termed Exact Coherent States
(ECSs), such solutions exist for the same parameters as
turbulence but are more amenable to numerical analy-
sis given their simple (e.g., steady or periodic) temporal
behavior.

The state space description of turbulence best illus-
trates the dynamical role of ECSs [6, 7]. A turbulent flow
in physical space maps to a winding trajectory in state
space, with each point on it representing a flow field (see
supplementary videos 1-7) [8]. In contrast, ECSs such as
steady and time-periodic flows are simpler objects (fixed
points, closed loops), as shown in Fig. 1. Being unstable,
each ECS is a saddle in state space; trajectories in its
unstable manifold are repelled away, while those in the
stable manifold converge to the ECS [5, 9–11]. Hetero-
clinic (homoclinic) trajectories – which originate in the
unstable manifold of an ECS and terminate in the sta-
ble manifold of another (the same) ECS – connect dif-
ferent ECSs and create a chaotic saddle in state space
[9, 12, 13]. Dynamics on ECSs, their stable manifolds,
and on homo/heteroclinic connections are asymptotically
non-chaotic. In this geometrical picture, turbulence rep-
resents a deterministic walk between neighborhoods of
different ECSs, guided by the corresponding dynamical
connections [5, 14], both homoclinic and heteroclinic.

Substantial numerical evidence has emerged for the dy-
namical relevance of ECSs in recent years, mostly from
research on three-dimensional (3D) wall-bounded shear
flows, such as plane-Couette [15–18], pipe [14, 19–21],
and channel flows [22–24]. Direct numerical simula-
tion (DNS) of flows in small, spatially periodic domains

FIG. 1. Low-dimensional projection of the state space gen-
erated using data from numerical simulation of a weakly tur-
bulent Kolmogorov-like flow. Instantaneous snapshots of the
flow in the physical space are associated with points in the
state space. Turbulent evolution is represented by a trajec-
tory (black curve) passing through neighborhoods of unsta-
ble equilibria (spheres) and periodic orbits (loops). Stable
and unstable manifolds (green curves and light blue surface)
of these solutions constrain the dynamics in their neighbor-
hoods. The projection method is described in Appendix A.

[25, 26] suggests that turbulence at moderate Reynolds
numbers (Re) is organized around unstable solutions
such as equilibria (EQ) [7, 18, 27], traveling waves (TW)
[19–22], periodic orbits (PO) [15, 17, 28], and relative
periodic orbits (RPO) [29, 30]. Here, TWs (RPOs) are
solutions that correspond to steady (time-periodic) states
in a reference frame moving in the direction of a continu-
ous symmetry (e.g., along the axis of a pipe). Flow fields
resembling ECSs were also observed in a few laboratory
experiments [3–5, 31], which further validated their rele-
vance in turbulence.

The geometry of chaotic saddle shaped by invariant
(stable/unstable) manifolds and dynamical connections
between ECSs, however, remains under-explored. In par-
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ticular, the connectivity of different neighborhoods can
be determined by generating a dense set of trajectories
spanning the unstable manifold of an ECS and identi-
fying which neighborhoods are subsequently visited by
each trajectory [7, 14]. In general, dynamically rele-
vant ECSs have several (three of more) unstable direc-
tions [11, 13, 14, 18, 30], which renders this procedure
computationally expensive. To circumvent this challenge
numerical studies to date have analyzed dynamics con-
fined to invariant subspaces (e.g., symmetry subspaces,
laminar-turbulent boundary) which reduces the number
of dynamically relevant ECSs as well as the dimensional-
ity of their unstable manifolds. Using this technique,
several previous studies [9, 14, 15, 24, 28, 32] identi-
fied trajectories that originate at ECSs with only one or
two unstable directions and subsequently approach an-
other ECS. However, such trajectories were not proven
to asymptotically converge to an ECS. Hence, they can
only be regarded as likely signatures of dynamical con-
nections.

Even within invariant subspaces, very few dynamical
connections between ECSs have been found. Gibson et
al.a[7] and Halcrow et al.a[12] computed four heteroclinic
connections between unstable EQs in plane-Couette flow
(PCF). Using low-dimensional projections of state space,
the authors showed that turbulent trajectories are tran-
siently guided by these connections. The structural sta-
bility of these connections – their robustness to small
changes in Re – was also discussed using dimension
counting arguments [33]. Two homoclinic orbits of a
PO in PCF were computed by van Veen et al.a[34] us-
ing a multi-shooting algorithm [35]. The authors sug-
gested that dynamics along these connections resemble
“bursting” phenomenon observed in turbulent boundary
layers [36]. Riols et al.a[37], in a study of subcritical tran-
sition to magnetorotational dynamo in Keplerian shear
flows, computed both homoclinic and heteroclinic con-
nections between unstable POs. Pershin et al.a[38] found
a heteroclinic connection from an EQ to a nearby PO
in PCF. In both Riols et al.aand Pershin et al., con-
nections were computed very close to the saddle-node
bifurcations leading to the formation of these invariant
solutions. Recently, Budanur et al.a[39] computed a ho-
moclinic orbit of a spatially localized RPO in pipe flow
and suggested that the associated homoclinic tangle un-
derlies transient turbulence in this flow. All the con-
nections listed above originate (terminate) at ECSs with
only one/two (one/zero) unstable directions, which facili-
tates the use of simple shooting and bisection algorithms.
Recently, Farano et al.a[13] showed that an adjoint-based
method can be used to find connections between neigh-
borhoods of unstable EQs in PCF where the originating
(destination) EQs has more than two (one) unstable di-
rection.

Despite these advances, an extensive exploration of
state space to detect signatures of connections between
dynamically dominant ECSs has not been carried out
yet. For instance, some previous studies computed con-

nections between ECSs of the same type (i.e., between
EQs or between POs) [7, 12, 34] while others reported
only isolated connections between POs and EQs [37, 38].
The chaotic saddle, however, is shaped by ECSs of dif-
ferent types and a complex network of dynamical con-
nections between them. To address this shortcoming of
previous studies, we report in this article a systematic
and exhaustive exploration of low-dimensional unstable
manifolds of ECSs to detect dynamical connections be-
tween various types on ECSs.

The system we numerically study is the quasi-two-
dimensional (Q2D) Kolmogorov-like flow in a shallow
electrolyte layer driven by a horizontal, (spatially) near-
sinusoidal body force. Q2D flows are computationally
more tractable than 3D flows since they can be accu-
rately described using a 2D model [40, 41]. In fact, the
relative simplicity of 2D DNS has prompted researchers
in recent years to carry out the most systematic explo-
ration of ECSs in 2D turbulence [42–44]. For instance,
Chandler et al.a[42] studied 2D Kolmogorov flow on a
periodic domain to test whether turbulent statistics can
be reproduced using suitable averages over time-periodic
solutions [45]. More recently, Suri et al.a[5, 11] have vali-
dated the dynamical role of EQs and their unstable man-
ifolds, for the first time in laboratory experiments, using
Q2D Kolmogorov-like flow as the test bed. 2D DNS in
these studies [5, 11] were performed on a numerical do-
main with lateral dimensions and boundary conditions
identical to those in the experiment, facilitating quanti-
tative comparison between DNS and experiment.

This article is structured as follows: In Sect. I we dis-
cuss the 2D model for Q2D flows and its numerical im-
plementation. In Sections III A – III D we explore in-
variant manifolds of various EQs and POs and identify
heteroclinic and homoclinic connections. The stability
of dynamical connections to small changes in Reynolds
number is discussed in Sect. III E. In Sect. III F we dis-
cuss the relation between the dynamical connections and
transient turbulence. Finally, we summarize our findings
and discuss their significance in Sect. IV.

II. QUASI-2D KOLMOGOROV-LIKE FLOW

The evolution of weakly turbulent flows in an electro-
magnetically driven shallow electrolyte layer is modeled
here using a strictly 2D equation [41]

∂tu + βu · ∇u = −∇p+
1

Re

(
∇2u− γu

)
+ f , (1)

which is derived by averaging 3D Navier Stokes equation
in the vertical (z) direction [41]. Here, ∇ is the gradient
operator restricted to the horizontal dimensions x, y, and
u(x, y, t) is the velocity field at the electrolyte-air inter-
face which is assumed to be incompressible (∇ · u = 0).
This is an accurate approximation for moderate Reynolds
numbers (Re . 40) [41]. f is the nondimensionalized
depth-averaged horizontal forcing profile, and p plays the
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role of the 2D kinematic pressure. In Q2D flows, the solid
boundary beneath the fluid layer causes a vertical gradi-
ent in the magnitude of the horizontal velocity. The pref-
actor β 6= 1 and linear friction −γu model the effective
change in inertia and the shear stress, respectively, due to
this vertical gradient [40, 41]. For the flow in experiments
detailed in Suri et al.a[5], which we numerically study in
this article, β = 0.83 and γ = 3.22. We note that these
values differ significantly from β = 1 and γ = 0 corre-
sponding to an unphysical strictly 2D flow typically stud-
ied in numerics [42, 44]. The Reynolds number Re de-
scribes the strength of electromagnetic forcing and serves
as the parameter that controls the complexity of flow.
The dimensional form of equation (1) and analytical ex-
pressions for β, γ, and Re as functions of experimental
parameters are provided in references [41] and [46].

DNS of the flow was performed using a finite-difference
code previously employed in studies [5, 11] and [46]. Ve-
locity and pressure fields on a computational domain
with lateral dimensions (Lx, Ly) = (14, 18) were spa-
tially discretized using a 280×360 staggered grid with
spacing δx = δy = 0.05 between grid points. No-slip
boundary conditions were imposed on the velocity field,
and spatial derivatives were approximated using second-
order central finite difference formulas. Temporal inte-
gration of equation (1) was performed using the semi-
implicit P2 projection scheme to enforce incompressibil-
ity of the velocity field at each time step [47]. The lin-
ear (nonlinear) terms in equation (1) were discretized in
time using second order implicit Crank-Nicolson (explicit
Adams-Bashforth) method. A time step δt ≤ 1/100 was
used for temporal integration to ensure the CFL number
max{uxδt/δx, uyδt/δy} ≤ 0.5.

In a 2D Kolmogorov flow, the forcing profile is strictly
sinusoidal, i.e., f ∝ sin(πy) x̂. In experiments detailed
in references [5, 46], however, the electromagnetic forc-
ing is sinusoidal only near the center of the domain and
decays to zero at the boundaries. To replicate this forc-
ing, we used a dipole lattice approximation of the mag-
net array in the experiment and computed the result-
ing electromagnetic forcing. Comparison between exper-
imentally measured forcing profile and the numerically
estimated one was provided in Tithof et al.a[46]. The 2D
forcing profile f computed from the dipole lattice model
is anti-symmetric under the coordinate transformation
I : (x, y) → (−x,−y), i.e., If = −f . This 2-fold inver-
sion symmetry (I2 = 1) is equivalent to rotation by π
about the z−axis passing through the lateral center of
the computational domain. Under I, the velocity field
transforms as Iu(x, y, t) → −u(−x,−y, t), which makes
equation (1) equivariant under I.

A consequence of this equivariance is that the symme-
try of a rotationally invariant flow is preserved during its
time evolution, i.e., the symmetry subspace S = {u ∈
M|Iu = u} of M is invariant. Here, M represents the
full state space. All ECSs and connections between them
we report in this article lie in S. Since trajectories in S
are generally unstable, numerical errors will accumulate

Nu λ

S M\S S M\S
EQ0 0 2 −0.004± 0.020i 0.058± 0.047i

EQ1 1 2 0.017 0.029

EQ2 2 5 0.035± 0.114i 0.022

EQ3 1 2 0.068 0.029± 0.029i

PO0 0 3 −0.003± 0.059i 0.151

PO1 1 2 0.036 0.054± 0.033i

PO2 1 3 0.044 0.049

QP1 1 - - -

TABLE I. The number of unstable directions Nu and the
leading eigenvalue(s) (Floquet exponent(s)) λ for the recur-
rent solutions we computed in S at Re = 22.05.

such that u(t) will eventually leave S even if u(0) ∈ S.
To prevent this, we augmented the numerical integrator
by projecting u(t) back into S after every time step [48].

III. RESULTS

As Re is increased, the Kolmogorov-like flow undergoes
a number of bifurcations before transitioning to weak tur-
bulence at Re ≈ 18 [46]. At Re ≈ 22 the flow in full state
space M is chaotic, which was confirmed by computing
the Lyapunov spectrum of a long turbulent trajectory us-
ing continuous Gram-Schmidt orthogonalization [11, 49].
In this dynamical regime we previously identified 31 un-
stable equilibria of the 2D model [11]. Twenty eight of
these were outside of S. Furthermore, their unstable
manifolds were relatively high-dimensional in M (with
the number of unstable directions as low as three and as
high as twenty) and thus computationally forbidding to
map out. Hence, we instead started our analysis with the
equilibria in S, labeled EQ0, EQ1, and EQ2.

The stability properties of these equilibria and other
recurrent solutions we found in S are summarized in Ta-
ble I. We have listed the number of unstable directions
Nu and the leading eigenvalues λ for EQs (Floquet ex-
ponents for POs) both in the symmetry invariant sub-
space S and in the rest of state space, i.e., M\S. All
ECSs we computed have two or fewer unstable directions
in S, which allows their unstable manifolds to be well-
approximated with a dense set of trajectories [11]. Note
that EQ0 and PO0 are stable in S. Hence, turbulence in
S can be transient, with trajectories converging to one
of these two ECSs asymptotically in time. This is in-
deed what numerical simulations show, as we discuss in
Sect. III F.

Connection(s) from an origin (ECS−∞) to a desti-
nation (ECS∞) lie at the intersection of the unstable
manifold of ECS−∞ and the stable manifold of ECS∞.
Since the dimensionality of stable manifolds is very high
(O(105) in our case), we will search the low-dimensional
unstable manifolds of ECSs for dynamical connections.
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(a) (b) (c) (d)

FIG. 2. Rotationally symmetric equilibrium solutions (a) EQ2 (b) EQ0 (c) EQ1 (d) EQ3. Color (black arrows) indicates
vorticity (velocity).

Such unstable manifolds can be conveniently approxi-
mated by families of trajectories u(p, t) that start near
an ECS, where the unstable manifold is locally tan-
gent to the linear subspace parametrized by the un-
stable and marginal eigenvectors of that ECS. Here, p
parametrizes the family of manifold trajectories. The
specifics of constructing a linear subspace, and conse-
quently its parametrization, depend on the type of ECS
(EQ or PO) as well as the dimensionality of its unstable
manifold, as discussed below.

Table I shows that several solutions we identified have
a single unstable direction in S. The unstable manifold of
such ECS is naturally divided into two halves, which cor-
respond to the positive and negative halves of the corre-
sponding linear subspace (see Fig. 1). We shall hereafter
refer to these halves as u±(p, t). Furthermore, u±(p, t)
lie on the opposite sides of the stable manifold of the ECS,
which serves as a local separatrix and repels trajectories
near the ECS along u+(p, t) or u−(p, t). This allows us
to compute connections terminating at ECSs with one
unstable direction using a simple bisection method [23].
In the following sections we provide a detailed discussion
of connections between various ECSs listed in Table I.

A. Connections originating at EQ2

We start our analysis with equilibrium EQ2, which has
the highest dimensional unstable manifold of all the EQs
in S. The vorticity field (ω = ∇×u) associated with EQ2

is shown in Fig. 2(a). The 2D unstable manifold of EQ2

is locally tangent to the plane spanned by the complex
conjugate pair of unstable eigenvectors ê1, ê2 = ê∗1 asso-
ciated with λ1,2 = σ±iµ, where σ = 0.035 and µ = 0.114.
To construct this 2D surface, which lies entirely in S, we
generated 360 initial conditions u(θ, 0) on a circle around
EQ2 in the plane spanned by ê1, ê2:

u(θ, 0) = ueq + ε cos(θ) ê′1 + ε sin(θ) ê′2. (2)

FIG. 3. Trajectories u(θ, t) (gray curves) approximating the
unstable manifold of EQ2 (red sphere). u(θ, t) originate on a
small circle around EQ2 that lies in a plane spanned by the
complex conjugate pair of unstable eigenvectors ê1 and ê2.
Coordinates c1, c2 are projections of u(θ, t) onto orthonormal
vectors constructed from ê1, ê2.

Here, ueq corresponds to EQ2 and ê′1, ê′2 are real or-
thonormal vectors constructed from the real and imag-
inary parts of ê1, ê2. For numerical convenience we
chose ε = 0.002 · ‖ueq‖ and positioned the initial con-
ditions u(θ, 0) at equal angular intervals ∆θ = 2π/360
on the circle. Numerical integration of initial conditions
u(θ, 0) generates trajectories u(θ, t) that approximate the
2D manifold and parametrize it by θ, t. Each manifold
trajectory u(θ, t) was computed on a temporal interval of
length 25τc, where τc = 12.5 (nondimensional time units)
is the average temporal auto-correlation time [11].

In the neighborhood of EQ2, the various trajectories
u(θ, t) initially evolve spiraling outward, i.e.,

u(θ, t) ≈ ueq+εeσt cos(θ+µt) ê′1+εeσt sin(θ+µt) ê′2. (3)

To illustrate this, we plotted a portion of the 2D unstable
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FIG. 4. State space speeds s(θ, t) along two trajectories in
the unstable manifold of EQ2 that exhibit contrasting dy-
namics. Solid (dashed) curve is speed along a trajectory
that approaches (does not approach) an equilibrium closely
after leaving the neighborhood of EQ2. The lowest speed
sm(θ) = mint s(θ, t) for t/τc ∈ [10, 25] for each curve is
marked using an open circle.

manifold in Fig. 3, projected onto vectors ê′1 and ê′2.
Only one in every ten trajectories generated is shown and
the segment of each trajectory u(θ, t) plotted corresponds
to 0 ≤ t ≤ 11τc. Coordinates c1, c2 in Fig. 3 are the
normalized inner products

ck(t) =
(u(θ, t)− ueq) · ê′k

Dc
, (4)

where, Dc = maxt,t′ ‖u(t) − u(t′)‖ = 300 is the empiri-
cally estimated maximum separation between two points
on an 800τc-long turbulent trajectory in S, which defines
the “diameter” of the chaotic repeller. Normalizing dis-
tances with Dc ensures that points separated by nearly
unit distance in the low-dimensional projection are very
far apart in full state space. Notice that, farther away
from EQ2 (|c1|, |c2| > 0.2) the shape of u(θ, t) becomes
fairly complicated due to the nonlinearity of the govern-
ing equation (1). It is not known a priori which u(θ, t)
approach an ECS (EQ or PO) closely after leaving the
neighborhood of EQ2. Previously, Gibson et al.a[7] and
Halcrow et al.a[12] inferred possible dynamical connec-
tions by inspecting low-dimensional state space projec-
tions. In contrast, Riols et al.a[37] analyzed time-series
of (magnetic) energy and identified close passes to POs
using intervals with “periodic” behavior. Both these
techniques, however, require visual inspection and de-
tecting signatures of dynamical connections cannot be
automated. In this study we tested two methods to de-
tect signatures of dynamical connections that do not re-
quire laborious visual inspection. The method employed
for detecting connections that terminate at EQs proved
very effective and is discussed next. A method for de-
tecting connections to POs using recurrence analysis [9]
is discussed in Appendix B.

0 /2 3 /2 2

0

0.2

0.4

FIG. 5. Minimum state space speed sm(θ) = mint s(θ, t)
along each trajectory u(θ, t) in the 2D unstable manifold of
EQ2. Trajectories corresponding to sm � 1 are possible dy-
namical connections from EQ2 to an equilibrium.

For each trajectory u(θ, t) in the unstable manifold of
EQ2, we computed the normalized instantaneous state
space speed s(θ, t), which we define as [5, 11]:

s(θ, t) =
τc

‖u(θ, t)‖
‖∂tu(θ, t)‖ . (5)

Since ∂tu = 0 (s = 0) for any EQ, s(θ, t) � 1 in-
dicates that a trajectory u(θ, t) in state space is near
an EQ [5, 50]. In the physical space, this corresponds
to the evolution of the flow dramatically slowing down.
Figure 4 shows, as examples, the speed plots for two
different manifold trajectories u(π/2, t) and u(3π/2, t).
Clearly, u(θ, t) lie in the linear neighborhood of EQ2 for
0 < t . 10τc (s � 1) and s(θ, t) grows exponentially
according to equation (3). After this initial transient,
however, dynamics described by various trajectories can
be qualitatively very different. For instance, the shape
of s(3π/2, t) (gray curve) suggests that u(3π/2, t) dis-
plays turbulent evolution. In contrast, s(π/2, t) (black
curve) suggests that u(π/2, t) approaches an EQ closely
after a brief turbulent excursion. Hence, to test if a tra-
jectory u(θ, t) approaches an EQ after it departs from
the neighborhood of EQ2, we computed the minimum
speed sm(θ) = mint s(θ, t) for 10τc ≤ t ≤ 25τc, which is
shown in Fig. 5. The low values of sm(θ) for θ ∈ (θ1, θ2),
θ ∈ (θ3, θ4), and θ = θ5 strongly suggest that the cor-
responding trajectories u(θ, t) closely shadow either het-
eroclinic or homoclinic connections from EQ2 to other
EQs. In Fig. 5, the uncertainty in θ is limited by the
angular resolution ∆θ in the initial conditions u(θ, 0).
Consequently, to compute exact dynamical connections,
the estimates for θ may require refinement in some cases.
The labels θ1 through θ5 in Fig. 5 correspond to these
refined values. Lastly, sm(θ) > 0 even for trajectories
u(θ, t) that correspond exactly to dynamical connections.
This is because, minima in the s(θ, t) are computed on
a finite temporal interval, while dynamical connections
converge (sm = 0) to the destination EQs only in infinite



6

(a) (b)

FIG. 6. Heteroclinic connections from EQ2 to various ECSs. (a) A connection (gray curve) to EQ0 that belongs to the family
DC1 and an isolated connection DC3 (black curve) to EQ1 (b) Family of connections DC2 (gray curves) that terminate at EQ0

and isolated connections DC6, DC7 (black curves) to PO1.

time.
The destination EQs that different dynamical connec-

tions approach were computed using a Newton solver [51–
53] initialized with the flow field u(θ, t) at the instant
when s(θ, t) = sm(θ). For θ ∈ (θ1, θ2) and θ ∈ (θ3, θ4)
the solver converged to EQ0, which is a stable node in S.
For θ = θ5 the solver converged to EQ1, which is a saddle
with one unstable direction in S. The flow fields corre-
sponding to EQ0 and EQ1 are shown in Figs. 2(b) and
2(c). Dimensional arguments (discussed in Sect. III E)
suggest that connections from EQ2 to EQ0 should com-
prise a one-parameter family forming a two-dimensional
manifold, just like those in the interval (θ3, θ4). However,
the difference θ2−θ1 is smaller than the resolution ∆θ in
case of the interval (θ1, θ2). Consequently, θ1, θ2 cannot
be distinguished in Fig. 5. Hereafter, we will refer to θ in
this narrow interval (θ1, θ2) collectively as θn. The wide
interval (θ3, θ4) will be referred to as θw. Lastly, to con-
firm that the dynamical connections originating at EQ2

indeed terminate at either EQ0 or EQ1, we need to make
sure that the distance

D0 = min
t

‖u(θ, t)− ueq‖
Dc

, (6)

vanishes in the limit t → ∞. Here, ueq is the velocity
field corresponding to the destination EQ. For all con-
nections reported in this study, we chose D0 < 0.005 as
the criterion for convergence.

Let us start our analysis with the trajectories u(θn, t)
and u(θw, t) that approach the equilibrium EQ0 which is
stable in S. The eigenvalues of weakly contracting modes
of EQ0 are λ1,2 = −0.004±0.020i, λ3,4 = −0.012±0.42i.
Consequently, most nearby trajectories in S converge to

EQ0 at a rate determined by the real part of λ1 (R{λ1}).
Hence, we computed trajectories u(θn, t) and u(θw, t) for
an interval of duration 350τc � 1/R{λ1} ≈ 10τc. At the
end of numerical integration both u(θn, t) and u(θw, t)
approached EQ0 to within a distance D0 < 10−8, con-
firming that we have indeed found heteroclinic connec-
tions from EQ2 to EQ0. Hereafter, we shall refer to
these dynamical (heteroclinic) connections correspond-
ing to u(θn, t) and u(θw, t) as DC1 and DC2, respec-
tively. A connection from the family DC1 is shown (gray
curve) in Fig. 6(a) and thirty connections from DC2 that
are equally spaced on the interval (θ3, θ4) are shown in
Fig. 6(b). Both figures show the projection of state space
onto an orthogonal basis constructed from the stable
eigenvectors ê1, ê2, and ê5 of EQ0. The vectors ê1, ê2
were chosen to visualize asymptotic dynamics along the
connections terminating at EQ0. The vector ê5 was cho-
sen because trajectories u(θ, t) far away from EQ0 have
large components along this direction. We note that, un-
less mentioned otherwise, these modes are used for all
state space projections in this article.

In Fig. 6, both DC1 and DC2 converge to EQ0 spiral-
ing inwards, almost entirely confined to the c1−c2 plane.
This is a consequence of the large separation between the
real values of λ1,2 and λ3,4 which makes ê1, ê2 the only
dynamically relevant eigenvector pair near EQ0. Another
interesting feature of Fig. 6(b) is that DC2 initially forms
a flat strip bounded by manifold trajectories u(θ3, t) and
u(θ4, t) (black curves). However, farther away from EQ2,
this strip widens and folds such that u(θ3, t) and u(θ4, t)
come close to each other, trace loops which are strik-
ingly similar in shape, and eventually merge (see inset in
Fig. 8). This is not an artifact of low-dimensional pro-



7

0 25 50 75

0

0.75

1.5

FIG. 7. State space speed along trajectories u(θ−4 , t) (black) and u(θ+4 , t) (gray) that separate after shadowing a periodic orbit.

jection of the state space. As we explain in the follow-
ing section, the black trajectories in Fig. 6(b) correspond
to heteroclinic connections from EQ2 to a different ECS
(PO1).

Unlike DC1 and DC2, the trajectory u(θ5, t) ap-
proaches the solution EQ1 which has one unstable direc-
tion (cf. Table I). Since the stable/unstable manifolds of
EQ1 guide the evolution of trajectories in its neighbor-
hood, we explored their geometry to compute the con-
nection from EQ2 to EQ1. Trajectories u(θ, t) for θ ≈ θ5
that approach EQ1 should subsequently depart follow-
ing its unstable manifold, which coincides with a pair of
trajectories

u±(t) = ueq ± εeλ1t ê1, (7)

in the linear neighborhood of EQ1 (cf. Fig. 1). Here,
ê1 is the unstable eigenvector of EQ1 and ε > 0 is some
small constant. In particular, we found a pair of adjacent
trajectories u(θ, t) and u(θ+∆θ, t) with θ ≈ θ5 approach
EQ1 and depart its neighborhood in opposite directions
shadowing u+(t) and u−(t), respectively. Hence, a het-
eroclinic connection DC3 from EQ2 to EQ1 lies between
these two trajectories, i.e., in the stable manifold of EQ1.

The projection of DC3 (black curve) is shown in
Fig. 6(a). It was computed by refining the estimate for θ5
to within δθ = 2−12∆θ using bisection [7, 12, 23]. This
refinement reduced the separation between u(θ5, t) and
EQ1 to D0 = 0.002 (cf. equation (6)). Further refine-
ment in θ did not significantly reduce D0 since numeri-
cal noise on u(θ5, t) amplifies rapidly in the direction of
unstable eigenvector ± ê1 of EQ1. This behavior stems
from the strong asymmetry in the real parts of unstable
(λ1 = 0.017) and weakly stable (λ2,3 = −0.003± 0.109i)
eigenvalues of EQ1. Nevertheless, a better accuracy can
be achieved by employing multi-shooting [35] or approxi-
mating DC3 as a piece-wise continuous solution [24]. Us-
ing the latter technique allowed us to decrease D0 to less
than 10−6. Lastly, equation (7) governs the evolution
of trajectories in the unstable manifold of EQ1 only in
its linear neighborhood. Farther away, both u±(t) dis-
play turbulent evolution for t � 100τc and eventually
approach EQ0. Hence these two trajectories define (long)
heteroclinic connections (DC4, DC5) from EQ1 to EQ0.

B. Dynamics Near PO1 and EQ3

While trajectories u(θ, t) for θ ∈ (θ3, θ4) quickly con-
verge to EQ0, trajectories just outside this interval ex-
hibit qualitatively different dynamics; this can be in-
ferred from sm changing abruptly at θ3 and θ4. This
qualitative difference suggests that trajectories u(θ3, t)
and u(θ4, t) play the role of separatrices on the unsta-
ble manifold of EQ2 and hence lie in the stable mani-
fold of another ECS. In case of u(θ4, t), for example, we
found this ECS by inspecting the two trajectories u(θ−4 , t)
and u(θ+4 , t) obtained as a result of successive bisections;
here θ±4 = θ4 ± δθ with δθ = 2−12∆θ. The correspond-
ing state space speed plots are shown in Fig. 7, which
suggest that u(θ±4 , t) evolve almost indistinguishably for
about 55τc and subsequently separate. For t/τc ∈ [30, 55]
the state space speed oscillates with a period of approxi-
mately 1.4τc, suggesting that u(θ±4 , t) shadow a periodic
orbit during this interval.

Using the flow field corresponding to u(θ+4 , t) at t/τc =
55 as an initial condition into a Newton solver, we in-
deed found an unstable periodic orbit PO1 with a period
T = 1.32τc. A similar refinement using bisection showed
that trajectories at θ±3 = θ3 ± δθ also approach PO1

and separate after shadowing it for an extended period
of time (the corresponding speed plots are not shown).
Figure 8 shows the state space projection of u(θ±4 , t) and
u(θ±3 , t) approaching PO1, shadowing it closely (inset),
and subsequently leaving its neighborhood. The projec-
tion coordinates here are the same as in Fig. 6, but the
viewing angle is different. Lastly, the result that u(θ±3 , t)
and u(θ±4 , t) approach PO1 is consistent with the folding
of DC2 shown in Fig. 6(b).

PO1 has a single real unstable direction in S with an
associated Floquet exponent λ1 = 0.036 (cf. Table I).
Hence, the departure of u(θ±3 , t) and u(θ±4 , t) from the
neighborhood of PO1 is guided by its unstable manifold,
which is two-dimensional since it is associated with a PO
which is itself one-dimensional. This 2D unstable mani-
fold can be constructed by evolving initial conditions [37]

u±(η, 0) = upo ± εeλ1η ê1, (8)

where upo is a reference point on PO1, ê1 is the Flo-
quet vector at upo, ε > 0 is sufficiently small (we chose



8

FIG. 8. Geometry of state space around PO1. Trajecto-
ries u(θ±4 , t) approach PO1 indistinguishably, but depart from
its neighborhood in opposite directions (inset) guided by the
manifold trajectories u±(η, t) (dashed red curves). u(θ−4 , t)
(black curve) converges to EQ0 and u(θ+4 , t) (gray curve) be-
comes turbulent. Similar behavior is manifested by u(θ∓3 , t).

ε = 0.001 · ‖upo‖), and η ∈ (0, T ] parametrizes differ-
ent initial conditions. A total of 720 initial conditions,
equally spaced in η, were generated and the correspond-
ing trajectories u±(η, t) were computed on an interval
of length 35τc to approximate the manifold. We found
that trajectories u+(η, t) uneventfully converge to EQ0

while u−(η, t) display turbulent evolution after leaving
the neighborhood of PO1. To illustrate this, we plot-
ted in Fig. 8 a pair of trajectories u±(η, t) (red dashed
curves) evolving in opposite directions.

Since PO1 has a single unstable direction, its stable
manifold divides the state space in the neighborhood of
PO1 into two halves [54]. We found that trajectories
u(θ+3 , t) and u(θ−4 , t) smoothly converge to EQ0 after ap-
proaching PO1 and hence lie on one (the same) side of the
stable manifold. Meanwhile u(θ−3 , t) and u(θ+4 , t) display
turbulent excursions and hence lie on the opposite side of
the stable manifold, as shown in Fig. 8. Therefore, there
exist two heteroclinic connections from EQ2 to PO1 sand-
wiched between u(θ±3 , t) (DC6) and u(θ±4 , t) (DC7), that
lie on the stable manifold and asymptotically converge to
PO1. Just like in the case of DC3, simple shooting cannot
be employed to compute DC6 and DC7 in their entirety
since they are very unstable. Nevertheless, for sufficient
refinement in θ, the trajectories u(θ±3 , t) and u(θ±4 , t) ap-
proximate DC6 and DC7, respectively, reasonably accu-
rately (cf. Fig. 6(b)). This was tested by computing the

FIG. 9. Heteroclinic connections DC8, DC9 (black curves)
from EQ2 to PO1 that sandwich the family of connections
DC1 (gray curves) from EQ2 to EQ0. The solid (dashed) red
curve is the connection DC10 (DC11) from EQ2 to EQ3 (EQ3

to EQ0).

smallest distance between u(θ, t) and PO1

D1 = min
t,η

‖u(θ, t)− upo(η)‖
Dc

, (9)

where θ = θ±3 or θ±4 and upo(η) are states along PO1

parametrized by η ∈ (0, T ]. We found that D1 < 0.005
in both cases.

Fig. 8 shows a toroidal structure traced out by u(θ±4 , t)
and u(θ±3 , t) as these trajectories approach PO1 along its
stable manifold. A magnified view of this region shown
in the inset illustrates the complicated shape of the man-
ifold. The numerous small loops correspond to the fast
constant amplitude oscillation along PO1. In contrast,
the large spiral corresponds to a slowly decaying oscil-
lation described by the stable Floquet vectors ê2, ê3
of PO1 with exponents λ2,3 = −0.0044 ± 0.0264i. The
characteristic time associated with this slow oscillation
is 2π/0.0264 ≈ 20τc and manifests itself in the weak
modulation of the state space speed during the interval
t ∈ [30τc, 50τc] in Fig. 7.

As mentioned earlier, based on dimensional arguments,
DC1 should be a 2D manifold which corresponds to a one-
parameter family of trajectories connecting EQ2 to EQ0.
Since the corresponding interval θn is very narrow, θ2 −
θ1 < ∆θ, we resampled a wider interval of width 2∆θ that
includes θn using 100 equally spaced initial conditions.
This refinement showed that θ2 − θ1 ≈ 0.5∆θ and all
trajectories inside this interval converge to EQ0, i.e., DC1

is indeed a 2D manifold. Thirty trajectories from DC1

are shown (as gray curves) in Fig. 9. The projection
coordinates and the viewing angle are the same as in
Fig. 6. As in the case of DC2, the trajectories u(θ1, t) and
u(θ2, t) at the left and right edges of DC1 are separatrices
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FIG. 10. Minimum state space speed (black curve) sm along
trajectories u−(η, t) in the 1D unstable manifold of PO1. η ∈
[0, T ) parametrizes points along PO1.

on the 2D unstable manifold of EQ2. Using bisection, we
identified that both u(θ1, t) and u(θ2, t) approach PO1

closely (D1 < 0.005) and well-approximate heteroclinic
connections DC8, DC9 from EQ2 to PO1 shown (as black
curves) in Fig. 9.

The refinement in initial conditions around θn also re-
vealed that a few trajectories u(θ, t) for θ1−∆θ < θ < θ1
approach an unstable equilibrium EQ3. The flow field
corresponding to EQ3 is shown in Fig. 2(d). EQ3 has a
single unstable direction in S and its unstable manifold
is one-dimensional, similar to EQ1 (see Fig. 1). Also,
we found that a pair of adjacent trajectories from EQ2

approach EQ3 and subsequently depart in opposite di-
rections. Hence, using bisection we computed the het-
eroclinic connection DC10 from EQ2 to EQ3 (solid red
curve in Fig. 9). Additionally, we also found that one of
the manifold trajectories of EQ3 uneventfully converges
to EQ0. This connection (DC11) is also shown (as dashed
red curve) in Fig. 9. The manifold trajectory from EQ3

evolving in the opposite direction, however, also con-
verged to EQ0 after a long turbulent excursion and hence
corresponds to another connection (DC12). This qualita-
tive difference in dynamics on the two sides of the stable
manifold of EQ3 is not observed in case of EQ1. As men-
tioned previously, both trajectories in the 1D unstable
manifold of EQ1 display long turbulent excursions.

C. Connections originating at PO1

As we have established, all trajectories u+(η, t) from
PO1 quickly converge to EQ0 (cf. Fig. 8). These trajec-
tories constitute a one-parameter family of heteroclinic
connections from PO1 to EQ0 which form a 2D manifold
DC13. The union of DC6 and DC7 forms a 1D boundary
of the union of the 2D manifolds DC2 and DC13. Sim-
ilarly, the union of DC8 and DC9 forms a 1D boundary
of the union of 2D manifolds DC1 and DC13.

FIG. 11. Family of heteroclinic connections (DC14, gray
curves) from PO1 to EQ0. The black curve is a homoclinic
orbit of PO1 (DC15) and the blue curve is a heteroclinic con-
nections from PO1 to EQ3 (DC16). The red curve is DC11

from EQ3 to EQ0.

Unlike u+(η, t), the trajectories u−(η, t) display turbu-
lent excursions after departing from the neighborhood of
PO1. Hence, we tested whether for some η they approach
other ECSs, as in the case of trajectories u(θ, t) in the 2D
unstable manifold of EQ2 (cf. Sect. III A). Since u−(η, t)
is also a one-parameter family of trajectories, we followed
the procedure discussed in Sect. III A to search for sig-
natures of dynamical connections originating at PO1.

To begin, we computed the state space speed s(η, t)
for each trajectory u−(η, t) (e.g., Fig. 16 in Appendix B)
and calculated sm(η) = mint s(η, t) for t/τc ∈ [15, 35].
From the plot of sm versus η, shown in Fig. 10, we iden-
tified about 20 trajectories with sm � 1 as possible dy-
namical connections. Surprisingly, all these trajectories
converged to EQ0. This was tested by extending the cor-
responding u−(η, t) until the separation from EQ0 de-
creased to D0 < 0.01. Since a detailed analysis of dy-
namics along all of these trajectories is not feasible, we
limit the discussion to the families of connections DC14

that correspond to the interval (η1, η2) marked in Fig. 10.
About thirty trajectories (gray curves) from the fam-

ily DC14 are shown in Fig. 11 which, unlike all other
figures, employs a projection of the state space onto an
orthonormal basis constructed from Floquet vectors ê1
(unstable, real) and ê2, ê3 (stable, complex conjugate
pair) of PO1. Trajectories in DC14 leave the neighbor-
hood of PO1 along e1. After a brief turbulent excursion,
they visit the neighborhood of EQ2 and finally converge
to EQ0. An interesting feature of Fig. 11 is that several
trajectories in DC14 appear to visit the neighborhood of
PO1 enroute to EQ0. This raises the question of whether
a homoclinic orbit u−(η, t) of PO1 exists near the in-
terval (η1, η2). Since PO1 has one unstable direction,
a homoclinic orbit should be sandwiched between tra-
jectories that show qualitatively different dynamics [39].
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FIG. 12. Heteroclinic connections from PO2 (green loop) to
EQ0 (DC20, black curve) and PO1 (DC21, gray curve). DC21

eventually converges to PO1 tracing out a helical path similar
to that shown in Fig. 8.

Such a behavior is indeed observed for trajectories near
η1 and η2 where sm changes abruptly. Using bisection,
we refined the estimate for η2 and found that u−(η2, t)
indeed approaches PO1 very closely (within D1 < 0.005)
and therefore well-approximates a homoclinic connection
DC15 shown (black curve) in Fig. 11. The projection used
in this figure allows visualization of the asymptotic dy-
namics along DC15 for both early times (on the unstable
manifold of PO1) and late times (on the stable manifold
of PO1). Refining the estimate for η1 using bisection
revealed that u−(η1, t) instead converges to EQ3 (with
D0 = 5×10−4), approximating a heteroclinic connection
DC16 (blue curve in Fig. 11).

We found that trajectories u−(η, t) in the interval
marked (η3, η4) in Fig. 10 also converge to EQ0, after
a brief turbulent excursion. These trajectories constitute
a one-parameter family of connections DC17 from PO1

to EQ0. Using bisection, we identified that u−(η3, t) is
another homoclinic orbit (DC18) of PO1 while u−(η4, t)
is a heteroclinic connection (DC19) from PO1 to EQ3.
The shapes of DC17, DC18, and DC19 are very similar to
that of DC14, DC16, and DC15, respectively, and hence
are not shown. Note that we have so far inspected state
space along manifold trajectories to detect signatures of
dynamical connections to EQs. An alternative metric,
which allows one to identify signatures of close passes to
both EQs and POs is discussed in more detail in Ap-
pendix B. Trajectories u−(η, t) originating at PO1 are
analyzed using both metrics and the results are compared
in Fig. 16.

D. Connections originating at PO2

Visual inspection of state space speed and recurrence
plots (e.g., Fig. 16) revealed that some turbulent trajec-
tories u−(η, t) from PO1 shadow an unstable periodic

FIG. 13. Heteroclinic connection DC23 from PO2 (green loop)
to PO0 (blue loop). The inset shows the unstable quasi-
periodic orbit QP1 (red curve) that lies near stable PO0.

orbit PO2. This orbit, which we computed using a New-
ton solver, has a period T = 4.61τc and is only moder-
ately repelling in S; its leading Floquet exponents are
λ1 = 0.044, λ2,3 = −0.019± 0.016i. However, we did not
find evidence of a short heteroclinic connection from PO1

to PO2, i.e., u−(η, t) for t/τc ∈ (15, 35) did not approach
PO2 very closely. Hence, we tested whether a connection
instead exists from PO2 to PO1.

The 2D unstable manifold of PO2 is composed of two
sets of trajectories u±(ξ, t) that start from initial con-
ditions u±(ξ, 0) constructed using equation (8). Here, ξ
(instead of η) parametrizes states along PO2 as well as
the trajectories u±(ξ, t). Unlike the unstable manifold
of PO1, we found that trajectories in both u+(ξ, t) and
u−(ξ, t) display turbulent evolution. Hence, we analyzed
u−(ξ, t) as well as u+(ξ, t) for signatures of dynamical
connections; the plot of sm(ξ) for each set is included as
Fig. S1 in the supplementary material. Inspecting state
space speed (as well as recurrence) plots for each trajec-
tory and following the procedure outlined in the previous
sections, we identified a family of heteroclinic connections
from PO2 to EQ0 (DC20) and two isolated connections
to PO1 (DC21, DC22) that lie at the boundary of DC20.
A connection from the family DC20 (black curve) and
the isolated connection DC21 (gray curve) are shown in
Fig. 12. The projection coordinates here are the same
as in Fig. 8 and the viewing angle is similar. We note
that DC20, DC21, and DC22 (not shown) approach their
respective destinations quickly after leaving the neigh-
borhood of PO2.

We also found that a narrow band of trajectories
u+(ξ, t) for ξ ∈ (ξ1, ξ2) from PO2 approach a periodic
orbit PO0 shown in Fig. 12. PO0 has a period T = 1.22τc
and is stable in S, with its leading Floquet exponent be-
ing λ1,2 = −0.0026 ± 0.059i. Hence, a one-parameter
family of connections DC23 from PO2 to PO0 was com-
puted by evolving u+(ξ, t) for ξ ∈ (ξ1, ξ2) for t ≈ 400τc.
The state space projection of a trajectory from the fam-
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ily DC23 is shown in Fig. 13. Since PO0 is stable in S,
DC23 is a 2D manifold and trajectories that correspond
to the left (ξ1) and right (ξ2) edges separate trajecto-
ries converging to PO0 from those which become tur-
bulent. Using bisection, we found that both u+(ξ1, t),
u+(ξ2, t) approach a 2-torus representing an unstable
quasi-periodic orbit (QPO) QP1 shown in Fig. 13 (in-
set). Hence, u+(ξ1, t), u+(ξ2, t) correspond to connec-
tions DC24, DC25 from PO2 to QP1.

The state space speed for u+(ξ1, t) clearly shows dy-
namics with two different frequencies over a time interval
70τc (Fig. S2 in supplementary material). Computing re-
currence plots for this segment of u+(ξ1, t), we estimated
that the periods associated with large and small loops of
QP1 are T1/τc = 12.21± 0.018 and T2/τc = 1.21± 0.05,
respectively. Since the ratio T1/T2 ≈ 10.05 is close to
an integer, we also used the Newton-Krylov solver to
test whether QP1 is instead a periodic orbit with pe-
riod T ≈ T1, 2T1, or 3T1; in all cases the solver failed
to converge, suggesting that QP1 is indeed a QPO. The
procedure we used to compute QP1 also suggests that
this solution (just like PO1) possesses just one unstable
direction in S and its stable manifold separates initial
conditions that quickly approach PO0 from those ex-
hibiting transient turbulence. Computing the stability
exponents of QP1, however, is beyond the scope of this
study. Lastly, the trajectories from QP1 that unevent-
fully converge to PO0 constitute a two-parameter family
of connections forming a 3D manifold (DC26).

E. Structural Stability of Dynamical Connections

All dynamical connections we reported so far were
computed at Re = 22.05. One may ask if these con-
nections are robust to small changes in Re, i.e., whether
these connections are structurally stable [33]. Recall that
a connection from ECS−∞ to ECS∞ is formed by an in-
tersection of the unstable manifold of ECS−∞ and the
stable manifold of ECS∞, with respective dimensions
d−∞u and d∞s . If these two manifolds intersect (in our
case we have shown that they do), their intersection will
generically be of dimension d = d−∞u +d∞s −N , where N
is the dimension of the state space (in our case S). We
should have d > 0 for the connection to be structurally
stable.

Since both d∞s and N are typically very large (or in-
finite), d can be expressed in a more convenient form in
terms of the co-dimension k∞s = N − d∞s of the stable
manifold of ECS∞ [12]. If N∞u , N∞s , and N∞m are the
number of unstable, stable, and marginal directions of
ECS∞, then N∞u +N∞s +N∞m = N and d∞s = N∞s +N∞m .
Hence, k∞s = N∞u which yields d = d−∞u −N∞u . The cri-
terion (d > 0) for the structural stability of a connection
is then simply d−∞u > N∞u . Table II lists the various con-
nections we computed and the corresponding dimensions
for each connection. The entire network of connections
is also shown in schematic form in Fig. 14. Clearly, all

FIG. 14. Topology of connections. Double lines represent
multiple distinct connections. Solid (dashed) lines represent
short (long) connections.

of our connections satisfy the structural stability crite-
rion. We also numerically validated the structural sta-
bility of the connections computed at Re = 22.05 by
continuing the ECSs for Re ∈ [21.85, 22.2] and analyzing
their unstable manifolds. For Re ∈ [21.85, 22.2] the num-
ber of unstable directions of all the ECSs we computed
(except PO2) remained unchanged. PO2 exists only for
Re ≥ 22.0 and its unstable manifold was analyzed only
at Re = 22.2.

ECS−∞ ECS∞ d d−∞u k∞s

DC1, DC2 EQ2 EQ0 2 2 0

DC3 EQ2 EQ1 1 2 1

DC4, DC5 EQ1 EQ0 1 1 0

DC6–DC9 EQ2 PO1 1 2 1

DC10 EQ2 EQ3 1 2 1

DC11, DC12 EQ3 EQ0 1 1 0

DC13, DC14, DC17 PO1 EQ0 2 2 0

DC15, DC18 PO1 PO1 1 2 1

DC16, DC19 PO1 EQ3 1 2 1

DC20 PO2 EQ0 2 2 0

DC21, DC22 PO2 PO1 1 2 1

DC23 PO2 PO0 2 2 0

DC24, DC25 PO2 QP1 1 2 1

DC26 QP1 PO0 3 3 0

TABLE II. Dynamical connections computed at Re = 22.05.

F. Transient Turbulence

As we discussed previously, turbulence in the symme-
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FIG. 15. Instantaneous distances from a long transient turbulent trajectory to PO1 (D1, red) and EQ0 (D0, blue). Repeated
close passes to PO1 suggest that the homoclinic tangle between the stable and unstable manifolds of PO1 underpins transient
turbulence in symmetric subspace. Vanishing of D0 implies convergence to EQ0.

try subspace S is transient, with most initial conditions
eventually “relaminarizing” by converging to the stable
equilibrium EQ0. While some states relaminarize rela-
tively quickly, others stay turbulent for a significant in-
terval of time. It is natural to ask what geometric struc-
tures are responsible for maintaining turbulent flow and
for relaminarization. Our results show that the periodic
orbit PO1 plays a key role in both processes. As we
have demonstrated, PO1 possesses (at least) two distinct
homoclinic connections (DC15, DC18). The presence of
homoclinic connections, which lie at the intersection of
the stable and unstable manifold of PO1, suggests that
these manifolds intersect and form a homoclinic tangle.
The tangle explains the fractal nature of the minimal
state space speed shown in Fig. 10 which results from
stretching and folding of the unstable manifold. More
importantly, it implies the presence of a chaotic set (a
chaotic repeller in our case) anchored by PO1 as well as
the presence of arbitrarily long periodic orbits that visit
the neighborhood of PO1 [33]. These are precisely the
ingredients required for transient turbulence.

To show that it is indeed the homoclinic tangle as-
sociated with PO1 that underlies transient turbulence
in our system, we computed the distance D1 (D0) from
PO1 (EQ0) to a particular long turbulent trajectory. As
Fig. 15 demonstrates, the trajectory returns to the vicin-
ity of PO1 many times before finally relaminarizing i.e.,
converging to EQ0 (D0 → 0). Furthermore, just before
relaminarization, this trajectory comes very close to PO1,
which suggests PO1 plays an important role in this pro-
cess. It should be pointed out that not all trajectories
approach PO1 closely just before relaminarization. For
instance, some trajectories pass through the neighbor-
hood of EQ3 instead, as Fig. 11 illustrates. Both PO1

and EQ3 have stable manifolds with co-dimension one;
states on one side of these manifolds relaminarize almost
immediately and those on the other side exhibit tran-
sient turbulence. Hence, these two stable manifolds form
portions of a local boundary between “laminar” and “tur-
bulent” flows. This analogy, however, is not perfect since
the chaotic set underlying the turbulent transient is not
an attractor.

It should be mentioned that non-uniqueness of edge
states lying on a “laminar-turbulent” boundary has been
previously reported for other turbulent flows as well. For
instance, Kerswell [14] and Duguet et al.a[28] have iden-
tified several edge states corresponding to different trav-
eling wave solutions in a short periodic pipe. Our results
provide further evidence that not only can multiple edge
states coexist, they can be of different types (e.g., an EQ
and a PO, in our case).

The relationship between transient turbulence and
chaotic repellers has been suggested previously, mainly
based on indirect evidence – the power law decay of the
relaminarization times characterizing a memoryless pro-
cess [55–58]. Direct evidence, such as the presence of
homoclinic tangles [34, 39] or a period-doubling cascade
[59], is more recent. Moreover, while the dynamics and
stability in systems with heteroclinic cycles have been
explored previously [60, 61], there is currently very little
understanding of dynamics in the presence of both hete-
roclinic and homoclinic connections. Due to the relative
simplicity of the numerical model and ease of experimen-
tal access, the system considered here is particularly at-
tractive for studying the relation between transient dy-
namics, relaminarization, and the structure of connec-
tions.

IV. SUMMARY AND CONCLUSIONS

Several recent studies on a dynamical description of
fluid turbulence focused on ECSs and how they shape
the state space geometry in their neighborhoods. How-
ever, complete understanding of turbulence requires a
global picture which explains how the flow moves between
neighborhoods of ECSs. Such a picture can be considered
as a coarse description of the dynamics, in the spirit of
symbolic dynamics, analogous to a route network where
ECSs serve as nodes and dynamical (homo/heteroclinic)
connections as links connecting the nodes. This study
describes the first rigorous attempt to construct such a
network for a turbulent fluid flow. We identified eight
nodes and several tens of connections between them, far
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more than any study to date. Moreover, while most pre-
vious studies computed connections between ECSs of the
same type (primarily EQs), we have identified connec-
tions between three different types of ECSs: EQ, PO,
and QPO. Indeed, this is the first study to compute con-
nections involving QPOs. We have also demonstrated,
for the first time, the existence of higher (two/three) di-
mensional connections between ECSs, i.e., continua of
trajectories from one ECS to another.

Despite the limited attention they have received, dy-
namical connections can play a very important role in
turbulent evolution [7]. For instance, dynamically dom-
inant ECSs in the Kolmogorov-like flow are equilibria
[11]. Being fixed points in the state space, EQs cannot
guide turbulent trajectories in their neighborhoods in the
same way POs or QPOs do. Therefore, connections be-
tween EQs (as well as other types of ECSs) become the
dynamically dominant solutions that guide turbulent tra-
jectories, shaping their evolution locally. Even in systems
where the dominant solutions are POs or QPOs, ECSs
constrain the dynamics only locally in state space and
over short intervals of time. The network of connections,
on the other hand, constrains the dynamics globally in
state space and over arbitrarily long time intervals.

Identifying the connection network has potential ap-
plications such as forecasting [5] and control of turbulent
flows [62, 63]. Even though quantitative prediction has a
time horizon set by the leading Lyapunov exponents that
characterize the sensitivity to initial conditions, qualita-
tive predictions do not have this limitation. In princi-
ple, prediction of extreme events can be made based on
the connectivity of different ECSs. Identifying the con-
nection network can also facilitate “low-energy” control
of turbulent flows, where small perturbations to the flow
result in its subsequent (natural) evolution towards a par-
ticular ECS or region of state space with desired behav-
ior [64]. Connections can also provide new insight into
laminar-turbulent transition in wall-bounded 3D shear
flows [32, 39].

Lastly, we point out that constraining the dynamics to
a symmetry invariant subspace lowered the dimension-
ality of unstable manifolds and dramatically simplified
the procedure of computing connections between ECSs.
Whether these connections are dynamically relevant in
the full state space requires further exploration. Cur-
rently, we are lacking robust numerical methods for com-
puting connections between ECSs with more than one or
two unstable directions. Some approaches, such as ad-
joint looping have shown promise [13], but whether they
present a viable option for computing connections be-
tween different types of ECS remains an open problem.
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Appendix A: State Space Projections

In this appendix we briefly describe the procedure used
to project the state space onto a low-dimensional sub-
space spanned by the eigenvectors (Floquet vectors) êi
of an equilibrium (periodic orbit). Each trajectory u(t)
is expressed as a linear combination of the vectors êi as
follows:

u(t) = uecs +
∑
i

ai(t) êi. (A1)

Here, uecs corresponds to an equilibrium (e.g., EQ0) or
a point on a periodic orbit (e.g., PO1). The coefficients
ai(t) are computed using the scalar product

ai(t) = ê†i · (u(t)− uecs), (A2)

where ê†i is the adjoint eigenvector (Floquet vector) such

that ê†i · êj = δij (Kronecker delta). Typically, the vec-
tors êi are not orthonormal ( êi · êj 6= δij). Hence, we
construct orthonormalized vectors ê′j such that

êi =
∑
j

Tij ê
′
j , (A3)

where, the matrix elements Tij = êi · ê′j can be computed

using the orthonormality condition ê′i · ê
′
j = δij . The

normalized components

cj =
∑
i

aiTij/Dc (A4)

along vectors ê′i are plotted to generate state space pro-
jections. Here, Dc is the empirically estimated largest
separation between two states on a long turbulent tra-
jectory (cf. Sect. III A).

Appendix B: Recurrence analysis

In sections III A-III D we identified close passes to EQs
by computing state space speed s(t) along turbulent tra-
jectories (cf. Fig. 4). However, s(t) is not zero (or con-
stant) for POs, so detecting close passes to POs requires
visual inspection of speed plots to find intervals of oscilla-
tory behavior. To address this shortcoming, we tested re-
currence analysis [65] in a form similar to that discussed
in Duguet et al.a[9]. For each trajectory u(t) we com-
puted the normalized recurrence function

r(t) = min
τ∈[τl,τh]

‖u(t)− u(t+ τ)‖
Dc

, (B1)
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FIG. 16. Recurrence analysis to detect signatures of both EQs and POs (a) Recurrence (black curve) and speed (gray curve)
plots for a trajectory that originates at PO1 and visits the neighborhoods of EQ0 (t/τc = 30) and PO2 (t/τc ∈ [33, 40]). (b)
Minimum recurrence rm (black curve) and minimum speed sm (gray curve) for each trajectory u−(η, t) from PO1. Trajectories
with rm � 1 (sm � 1) correspond to dynamical connections from PO1 to EQs/POs (EQs). sm was scaled such that rm, sm
have the same mean. Black circle indicates rm for the trajectory shown in panel (a).

where 0 < τl < τh are appropriately chosen constants.
Low values of r indicate that the flow field at an instant t
nearly recurs during a later interval [t+τl, t+τh]. Unlike
state space speed, r(t) = 0 for u(t) representing both
EQs and POs. In the former case τl and τh are arbitrary,
while in the latter case the period T of the orbit should
lie inside the interval [τl, τh].

Since a turbulent trajectory shadowing an ECS mim-
ics its spatiotemporal behavior, intervals where r(t)� 1
correspond to the trajectory visiting neighborhoods of
EQs or POs. To identify such visits, however, we should
restrict how near (or far) into the future we search for
recurrence. Choosing τl far smaller than the correlation
time τc leads to spurious self-recurrence since u(t) and
u(t + τ) do not differ appreciably; the extreme case be-
ing r(t) = 0 when τl = 0. The upper bound τh restricts
the search to short periodic orbits (which tend to be dy-
namically relevant [29]) with period T < τh. Besides, it
also limits the overhead associated with computing r(t).
In our analysis we chose τl = τc and τh = 5τc.

Fig. 16(a) shows recurrence (black curve) and speed

(gray curve) plots for a turbulent trajectory u(t) that
originates at PO1. Initially, u(t) shadows PO1 and con-
sequently s(t) displays steady oscillations about a finite
value; in contrast, r(t) almost vanishes. After a brief tur-
bulent excursion characterized by r increasing to O(1),
u(t) visits the neighborhoods of EQ0 at t/τc ≈ 30 and
PO2 for 33 . t/τc . 40. Both these close passes cor-
respond to r decreasing to well below unity. Hence, to
identify signatures of dynamical connections from PO1 to
both EQs and POs, we computed r(η, t) for each u−(η, t)
in the unstable manifold of PO1 (cf. Sect. III B). We
then computed rm(η) = mint r(η, t) for t > 15τc, i.e.,
after each trajectory initially leaves the neighborhood of
PO1. The results are shown in Fig. 16(b) which compares
rm(η) (black curve) with sm(η) (gray curve) for each tra-
jectory u−(η, t). Clearly, the prominent minima of the
two metrics align, which suggests that recurrence-based
analysis is capable of successfully identifying signatures
of close passes to both EQs and POs. However, it is a
slightly more expensive method to identify connections,
compared with the minimal state space speed.
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