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Abstract  

This work analyzes the porosity effects on laminar flow and drag reduction of Newtonian 

fluids flowing over and through permeable surfaces. A fully-developed laminar flow in a 

channel partially replaced with a porous material is considered. The analytical solutions for 

the velocity and shear stress are given and examined to identify the influence of the porosity 

on the flow. The scaling laws in the porous media are determined using asymptotic analysis in 

the limit of infinitely small permeability. Direct numerical simulations (DNS) are performed 

and the transport equation for the kinetic energy is examined to establish the dependency of 

the porosity on the flow. We found that the impact of the porosity depends on the permeability. 

For high permeability, the higher porosity induces the increase of driving force and 

accelerates the flow while it decelerates the flow for low permeability by causing stronger 

viscous drag of the porous medium.  
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Introduction 

The flow phenomena over and through porous media have attracted significant interest for 

decades due to its applicability in a wide range of industrial and environmental applications 

such as oil and gas reservoirs, thermal insulation, filtration and drying processes, ground-

water hydrology, to name a few. It has also been utilized as transport methods for medical and 

biological applications, including transport in human tissues, bio-convection in biological 

media, blood flow in microvessels, flow through polymer brushes and chains. Hence, many 

studies have been attempted to characterize the flow over and through porous media both 

theoretically and experimentally. 

The majority of investigations has focused on predicting the proper formulation at the 

interface between the free fluid and porous regions. At first, the flow through porous media 

has been established empirically by Darcy’s law (i.e., Q = െ K׏p/μ) [1], where Q is a 

volume flow rate per unit area and K is the permeability of the material. However, using this 

law the velocity changes sharply at the interface between the porous medium and the free 

fluid layers. To overcome this discontinuity, Beavers and Joseph [2] assumed that the velocity 

at the interface (i.e., slip velocity) is proportional to the shear rate at the boundary and 

proposed a relationship between the shear rate and the slip velocity us, as 

du
dy

ฬ
y=0

ൌ α√K
(us െ ud) (1) 

where α is a slip coefficient and ud =െK׏p/μ, is the superficial velocity in the porous medium. 

They validated this boundary condition experimentally in a Poiseuille flow with a permeable 

wall at the bottom. They showed that the dimensionless quantity α depends on the material 

parameters which characterize the structure of permeable material within the boundary region 

[2]. The values of α between 0.1 and 4 showed reasonable agreement with their experimental 

results. Thereafter, several studies [3-6] were performed to determine the slip coefficient α 

and revealed that the parameter is strongly dependent on the structure of the boundary and the 

porous material as well as the working fluid.  

A second approach to the problem was introduced by Brinkman [7] who combined Darcy’s 

law and Stokes equation to replace Darcy’s law with an equation of higher order given by 

0 ൌ െ׏p ൅ μe2׏u െ μ
K

u (2) 

Here, u is the filtration velocity vector and μe is the effective viscosity that may depend on the 



- 3 - 

geometry of the porous medium and the flow conditions. This equation satisfies the continuity 

of both velocity and shear stresses, because the Stokes and Brinkman equations are of the 

same order. The solution of Eq. (2) for the one-dimensional Poiseuille flow was given by 

Gupte and Advani [8] as 

 u ൌ ud ൅ (us െ ud) exp ቈ yඥK(μe/μ)
቉ (3) 

This relation obtained by assuming that the porous medium is very thick which can neglect 

the effect of the lower solid wall of the porous medium (i.e., u → ud as y → �∞ and u = us at 

y = 0). Differentiating Eq. (3) with respect to y and evaluating it at y = 0, the shear rate can be 

expressed as [8] 
du
dy

ฬ
y=0

ൌ 1ඥK(μe/μ)
(us െ ud) (4) 

This solution represents that the slip coefficient α in Eq. (1) can be defined as (μ/μe)1/2. This 

has been used together with Eq. (1) to evaluate α and μe by comparing with velocity profiles 

of experiments [8, 9]. For decades, the Brinkman equation has been extensively employed to 

examine the flow over and through a porous medium [10-17]. However, it has been shown 

that the equation is valid only if porosity is high and the effective viscosity μe also depends on 

the structure of the porous material [18]. 

Meanwhile, the analytical solution of the velocity in the porous and fluid regions to 

describe flow phenomena which rises from the presence of the permeable wall, for a plane 

Poiseuille flow using the Brinkman equation, has been given with different forms. Vafai and 

Kim [14] presented an exact solution for the first time for a classical problem which is a fully-

developed flow over a flat plate bounded by a porous medium. They investigated the effects 

of the Darcy number Da, which indicates the dimensionless permeability, and inertia in the 

porous medium. They revealed that decreasing the permeability results in a lower mass flow 

rate through the porous region whereas it leads to the increase of the velocity distribution in 

the free fluid region. The authors also found that higher values of inertia lead to higher 

velocities in the fluid region because it causes more resistance to the flow of the porous layer; 

therefore, a larger portion of the mass flow rate has to pass through the fluid layer. Goyeau et 

al. [18] determined the analytical solution with continuity boundary conditions for velocity 

and shear stress at the fluid-porous interface. They also compared the thickness of the porous 

boundary layer and the variation in mass flow rate to their numerical solutions computed in 

the single-domain as well as previous experiments [2], showing good agreements. Recently, 
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Mirbod et al. [19] conducted the analytical study for the flow over and through the porous 

medium in a fully-developed channel. They defined the exact solution for the velocity profile 

and examined the influences of the permeability and the thickness ratio between the fluid and 

porous layers on the velocity distribution and drag reduction induced by the permeable wall. 

The results showed that the permeable wall causes the flow drag reduction and it depends on 

the permeability and the thickness ratio. As stated above, the Brinkman equation has 

accounted for the flow and shown good agreements with experimental predictions for a high-

porosity medium. To the best of our knowledge, while most of the studies have focused only 

on the impact of the permeability and the height of a porous medium on flow phenomena, the 

effect of the porosity of a porous medium, which should be considered for a dense porous [15, 

16], still remain unknown. 

In this study, we aim to determine the exact solution of the velocity profiles given with the 

distribution of the shear stress in the fluid and porous layers. The profiles of the velocity and 

the shear stress are illustrated for various parameters of the permeability and the thickness 

ratio to analyze the dependency of the porosity on the flow. The effect of both thin and thick 

porous layer is also examined. The flow drag reduction induced by a porous surface is 

evaluated by estimating the skin friction at the fluid-porous interface. To validate the analysis, 

we carry out direct numerical simulations (DNS). To better understand the impact of porosity, 

we also investigate the kinetic energy variation for flow over and through porous media and 

the fractional increase in the mass flow rate in the channel. To the best of the authors’ 

knowledge, these are the very first analyses related to exploring the porosity impact in a 

channel where the lower wall filled with porous media. 
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Figure 1. Schematic diagram of a fully developed laminar flow in a rectangular channel over a 

permeable surface with permeability K and porosity ε, and thickness hp. Arrows indicate the 

flow direction and a sketch of the velocity profile. 

Theoretical solutions 

We consider a fully-developed laminar flow of an incompressible viscous fluid in a channel 

where its substrate is replaced with a porous medium (Fig. 1). The flow is driven by a 

constant mean pressure gradient (dp/dx) in the x-direction. A fluid layer with the height 2h is 

bounded by an upper impermeable wall and a permeable wall of porous material, while a 

porous layer has the thickness hp and the lower side is sealed by an impermeable wall. We 

assume the porous medium is saturated by the same fluid and it is homogeneous and isotropic; 

therefore, porosity ε (i.e., the volume fraction of the fluid in a material) and permeability K of 

the porous medium are constant. 

The governing equations in the fluid layer are the unsteady incompressible continuity and 

Navier-Stokes equations given by ׏ · u ൌ 0, (5)  ρ൭∂u
∂t

൅ ׏ · ሺuuሻ൱ ൌ െ׏p ൅ μ2׏u, (6) 

where u is the velocity vector (u, v) and p is the pressure, ρ and μ are the density and viscosity 

of the fluid, respectively. For the flow in the porous layer, the volume-averaged Navier-Stokes 

(VANS) equations [20, 21] can be stated as ׏ · sۄuۃ ൌ 0, (7)  ρ൭∂ۃuۄs

∂t
൅ ׏ · ቆۃuۄsۃuۄs

ε
ቇ൱ ൌ െεۃ׏pۄf ൅ μۃ2׏uۄs െ ε

μ
K

 s. (8)ۄuۃ

Here, ۃ sۄ  and ۃ fۄ  denote the superficial and intrinsic volume averages where the 

Dupuit-Forchheimer relationship, i.e., ۃ sۄ ൌ εۃ  f [20, 21], can be used. They are droppedۄ

for the sake of convenience from hence. The third term in the right-hand-side of Eq. (8) 

represents Darcy’s law that describes the average of microscopic (pore-level) flow resistance 

[1, 7]. 

For a fully-developed flow considered in this study, the governing equations in the laminar 

regime (∂/∂t = ∂/∂x = v = 0) can be simplified from Eq. (8) as 
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μ
d 2u
dy2 െ ε

μ
K

u െ ε
dp
dx

ൌ 0, y∈[ െ hp, 0] (9) 

μ
d 2u
dy2 െ dp

dx
ൌ 0, y∈[0, 2h] (10) 

The no-slip condition is employed on impermeable walls at y = �hp and y = 2h, while the 

continuity of velocity and shear stress [14] is assumed at the fluid-porous interface (y = 0) as 

follows 

u(y = 0ି) ൌ u(y = 0ା) ൌ us (11)  μ du
dy

൰
y=0ష ൌ μ

du
dy

൰
y=0శ (12) 

Equations (9) and (10) can be non-dimensionalized with both the half-width of the fluid 

layer h and the velocity q ൌ െ ൬h2

μ
൰ dp

dx as 

d 2u෤
d y෤2 െ εσ2u෤ ൅ ε ൌ 0, y෤∈[ െ δ, 0] (13) 

d 2u෤
d y෤2 ൅ 1 ൌ 0, y෤∈[0, 2] (14) 

where u෤ ൌ u/q  and y෤ ൌ y/h  are the dimensionless velocity and y  coordinate system,  σ = h/√K is the dimensionless permeability parameter, and δ = hp/h is the dimensionless 

thickness ratio. Using the boundary conditions, analytical solutions of the above equations can 

be given by 

u෤ሺy෤ሻ ൌ 1
σ2 ൅ C1eσ√εy෤ ൅ C2eିσ√εy෤, y෤∈[ െ δ, 0] (15) 

u෤ሺy෤ሻ ൌ െ y෤2

2
൅ ൬1 െ u෤s

2
൰ y෤ ൅ u෤s, y෤∈[0, 2] (16) 

where 

C1,2 ൌ േ 1
σ2

ሺσ2u෤s െ 1ሻeേσ√εδ ൅ 1
eσ√εδ െ eିσ√εδ , u෤s ൌ σ√εെ σ√ε sech σ√εδ൅ σ2 tanh σ√εδቆ1 ൅ tanh σ√εδ

2σ√ε ቇ σ3√ε  . (17) 

Therefore, the fluid shear stress τ̃ሺy෤ሻ=du෤/dy෤, in the fluid and porous layers can be expressed 

as  

τ̃ሺy෤ሻ ൌ σ√ε൫C1eσ√εy෤ െ C2eିσ√εy෤൯, y෤∈[ െ δ, 0] (18) 
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τ̃ሺy෤ሻ ൌ െy෤ ൅ 1 െ u෤s

2
, y෤∈[0, 2] (19) 

The skin friction coefficient Cf =2τw/ρub
2, is obtained by evaluating the shear stress at the 

fluid-porous interface (i.e., τw(y = 0)). Here, ub is the bulk velocity of the flow in the fluid 

layer, and the dimensionless one is given by u෤b=0.5 ׬ u෤ሺy෤ሻdy෤2
0 . Hence, the skin friction 

coefficient induced by the presence of the porous medium is represented as  Cf =A/Re , 

where A = 8(1 െ u෤s/2)/ ׬ u෤ሺy෤ሻdy෤2
0  and Re is the Reynolds number in the free fluid region 

defined as Re = 2ρubh/μ. Thus, the skin friction formula for laminar flow in a 2D channel 

with smooth solid walls can be given by C௙s  =12/Re [22]. Finally, the laminar drag reduction 

DR, for channel flow with a lower porous wall is computed as  

 DR= ቆ1 െ Cf

C௙s

ቇ ×100 % = ൬1 െ A
12

൰ ×100 % . (20) 

 

Scaling laws as an intermediate asymptotic behavior of the system 

Furthermore, we determine the asymptotic behavior of the system in the infinite value of σ 

by considering the reaction of the system in the low permeability limit. In particular, we 

define a length scale as a classification between thin and thick porous layer using asymptotic 

analysis. Taking the limitation of σ as it goes to ∞, and by considering sech σ√εδ ؆ 2eିσ√εδ 
and tanh σ√εδ ؆ 1, Eq. (17) leads to the following leading-order terms for u෤s and C1,2 as 

u෤s ؆ √ε ൅ σ
σ2√ε , C1 ؆ 1

σ√ε ,  C2 ؆ െ eିσ√εδ
σ2 , (21) 

By substituting Eq. (21) into Eqs. (15) and (18), the asymptotic solutions of velocity and shear 

stress in the porous layer with a rescaled variable yכ ൌ σy෤/δ are obtained as 

uכ(yכ) ൌ σ ൬u෤(δyכ/σ) െ 1
σ2൰ ൌ 1√ε e√εδyכ െ 1

σeσ√εδ eି√εδyכ, yכ∈[ െ σ, 0] (22) 

τכ(yכ) ൌ τ̃ሺδyכ/σሻ ൌ e√εδyכ ൅ √ε
σeσ√εδ eି√εδyכ, yכ∈[ െ σ, 0] (23) 

Here, uכ and τכ represent the rescaled velocity and shear stress. The above solutions show 

two different limits depending on whether the length scale Λ= σδ≪1 or Λ≫1. The parameter 

Λ signifies a specific vertical length scale associated with the porous medium thickness and 
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its relative permeability. We introduce systems of Λ≪1 and Λ≫1 as thin and thick porous 

media, respectively, that has also been reported by Battiato [23]. Basically, Λ≪1 indicates a 

system with a small thickness of a porous medium and Λ≫1 reflects a porous media with a 

large thickness for constant values of permeability. Therefore, the asymptotic solutions for 

each case can be defined as 

   

   
Figure 2. Variations of normalized velocity profile in the fluid and porous layers for δ=0.1. 

(The dashed line at y = 0 indicates the interface of fluid-porous region.) 

 

۔ۖەۖ
(כy)כuۓ ൌ 1√ε e√εδyכ െ 1

σeσ√εδ eି√εδyכ
τכ(yכ) ൌ e√εδyכ ൅ √ε

σeσ√εδ eି√εδyכ , yכ∈[ െ σ, 0] if  Λ≪1 (24) 

ቐuכ(yכ) ൌ 1√ε e√εδyכ
τכ(yכ) ൌ e√εδyכ ,                             yכ∈[ െ σ, 0] if  Λ(25) 1ب 
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Results and Discussion 

In the present study, we consider the porosity in the range of ε = 0.4~1.0 and the thickness 

ratio δ, varies from 0.1 to 4.0. This range of porosity has been chosen to generalize our 

analytical study for a various range of porous media. The tildes in the velocity and the shear 

stress are omitted for the sake of the convenience.  

   

   
Figure 3. Variations of normalized shear stress profile in the fluid and porous layers for δ=0.1. 

(The dashed line at y = 0 indicates the interface of fluid-porous region.) 

 

Thin porous layer (Λ≪1) 

Figure 2 shows velocity profiles of laminar flow over a very thin porous layer for δ = 0.1. 

As expected for low σ (i.e., K ൎ ∞), the porosity does not have a critical effect on the profiles 

of the fluid (Fig. 2(a), (b)). However, as shown in Fig. 2(c), (d), it causes a noticeable 

difference on the velocity field for higher σ (i.e., K ൎ ∞) due to the impact of the porous 

media. In addition, by increasing both σ and ε, the velocity in the porous medium decays that 

leads to a decrease in the velocity at the fluid-porous interface us. This is because by reducing 

the pore space accessible to flow in the porous layer as the ability of the porous to transmit the 
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fluid decays, the fluid flowing inside the porous is accelerated. 

As displayed in Fig. 3, the variation of the porosity does not make a remarkable effect on 

the shear stress τ(y) in the fluid region while the impact of the porosity in the porous layer 

appears to be critical. For high permeability (i.e., σ =1), the growing ε only gradually 

strengthens the shear stress rate (Fig. 3(a)). On the other hand, the shear stress diminishes as 

the permeability decreases and the increasing ε steadily weakens the shear stress of the fluid 

near the bottom of the porous medium (Fig. 3(b)-(d)). This is because as the permeability 

decreases and the space of pore regions in the porous layer increases, the bulk of shear stress 

is sustained by the solid matrix in the porous layer, which results in very small velocity and 

fluid shear stress. Note that the solid stress inside the porous media is not assessed in this 

work. 

 

   
Figure 4. Asymptotic profiles of the rescaled velocity and shear stress inside a thin porous 

medium (Λ≪1) for σ = 104 and δ = 10-5 where Λ=0.1. 

 

Asymptotic solutions of rescaled velocity and shear stress obtained in Eq. (24) for a thin 

porous medium (i.e., Λ=0.1) have been plotted in Fig. 4. Fig. 4(a) shows that the rescaled 

velocity uכ is inversely proportional to √ε. Figure 4(b) reveals that the rescaled shear stress 

as it approaches to the interface (y0→כ) becomes constant τ1=כ regardless of the porosity 

value. The stress gradually decreases as it goes far away from the interface (yכ→ െ σ), 

showing its dependency on the porosity. In addition, as ε increases the rescaled velocity and 

shear stress diminishes inside a thin porous medium. The reason is that as the space in which 

the fluid moves increases, the flow resistance rises leading to the decay in the ability of the 
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fluid passing through the porous medium. These results turn out that the pore structure of a 

porous medium plays a critical role for thin porous layer. The same trend has been identified 

in profiles of analytical solutions for low permeability as shown in Fig. 2(d) and 3(d).  

 

 

   

   
Figure 5. Variations of normalized velocity profile in the fluid and porous layers for δ=1.5. 

(The dashed line at y = 0 indicates the interface of fluid-porous region.) 

 

Thick porous layer (Λ≫1) 

The porosity effect on the velocity profile is significantly different for the flow over a thick 

porous medium. Velocity profiles for various ε and σ at δ=1.5 are illustrated in Fig. 5. As 

shown clearly in Fig, 5(a), the velocity gradually grows with increasing ε in both fluid and 

porous layers for very low σ (i.e. K ൎ ∞), resulting in the enhancement of the slip velocity us. 

In contrast, increasing porosity and σ leads to the reduction of the velocity as well as us (Fig. 

5(b), (c)). This is due to the decay in the permeability which preserves the flow inside the 

porous media. The influence of porosity becomes weak as the permeability of porous media 
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decays. For very high σ, the velocity in the porous material drops to very small value and the 

velocity profiles has the characteristics of the plug flow inside the porous layer except for a 

flow near the interface known as the Brinkman’s layer (Fig. 5(d)). Also, the slip velocity us 

diminishes with growing porosity. These results prove the importance of the permeability 

compared to the porosity of the porous media.  

   

   
Figure 6. Variations of normalized shear stress profile in the fluid and porous layers for δ=1.5. 

(The dashed line at y = 0 indicates the interface of fluid-porous region.) 
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Figure 7. Asymptotic profiles of rescaled velocity and shear stress inside a thick (Λ≫1) 

porous medium for σ = 102 and δ = 102 (Λ=104). 

 

 

 

Profiles of the shear stress τ(y) for various σ are presented in Fig. 6. The porosity effect is 

slightly limited in the fluid layer for all σ, while the profiles in the porous layer show the 

dependency on the porosity. For low σ, as ε rises the shear stress at the interface decays. 

However, the shear stress near the bottom wall of the porous layer increases (Fig. 6(a)). The 

shear stress gradually becomes stronger by further increasing σ, and the growing ε reduces the 

stress of the fluid within the porous medium (Fig. 6(b), (c)). Finally, for very high value of σ, 

the shear stress approaches to zero inside the porous media (Fig. 6(d)).  

Figure 7 displays the asymptotic behavior of the velocity and shear stress defined in Eq. (25) 

for a thick porous medium (i.e., Λ=104). The rescaled velocity uכ becomes zero near the 

bottom of a porous medium (yכ→ െ σ). However, it steadily increases as it approaches to the 

interface (y0→כ) and it is proportional to 1/√ε in the vicinity of the interface (Fig. 7(a)). The 

rescaled shear stress τכ is also 0 as yכ→ െ σ. It grows increasingly with y0→כ, and it 

converges to a constant value (i.e., τ1=כ) at the interface as seen in Fig. 7(b). Therefore, the 

porosity is a key parameter in characterizing the flow for both thin and thick porous media. 

These agree with the experimental analysis have been performed in our previous work [24]. 
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Figure 8. Drag reduction DR vs. σ for various δ. 

Moreover, we have analyzed the drag reduction to examine the behavior of the porosity for 

laminar flow over porous media. The variation of drag reduction (DR) with the permeability 

parameter for various thickness of the porous layer has been plotted in Fig. 8. As can be seen, 

by thickening the porous medium the drag reduction enhances. The porosity effect on the drag 

reduction depends on the permeability parameter σ. At low σ, by increasing the porosity the 

drag reduction is improved. As δ increases, the impact of the porosity could be more 

pronounced. On the other hand, for all depth ratios δ by increasing porosity as the 

permeability of the porous layer decreases the drag reduction diminishes. However, as the 

permeability parameter further increases the drag reduction approaches to 0, which represents 

that Cf at the interface approaches to the skin friction coefficient of the flow in a smooth 

channel with solid walls. Thus, the variation of the porosity does not make a difference at very 

high σ (i.e., K ൎ 0). In addition, for each δ there is a value of σ at which the drag reduction is 

independent on the variation of the porosity (indicated as the dashed line). For the intersecting 

point of σ, the trend of the porosity influence is reversed, i.e., gradually moves to lower values 

of σ as the porous layer thickens. 
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Figure 9. Drag reduction DR vs. δ for various σ. 

Figure 9 shows the drag reduction (DR) versus the thickness of the porous material δ, for 

various permeability parameter σ. As mentioned earlier, the higher permeability (i.e., low σ) 

leads to the more drag reduction. The drag reduction converges to a constant value as the 

porous layer becomes thicker, and it is reached more rapidly at higher σ. These converged 

values of DR depend on σ and ε that show large values at the lower porosity for high σ. 

Interestingly, even for low values of permeability the drag reduction can be observed in the 

system in which increasing the porosity results in the growth of the drag reduction.  

 

Mass flow rate Analysis 

To understand how a real porous media with specific porosity may affect the flow in a 

channel, we characterized the fractional increase in the mass flow rate Φ, in the fluid layer 

with the existence of a permeable wall. Beavers and Joseph [2] introduced the fractional 

increase of the mass flow rate in the fluid layer due to the presence of the porous medium and 

compared it with the experiments. Based on the Darcy’s Law, it can be expressed as 

Φ ൌ Qp െ Qi

Qi
ൌ 3(σ ൅ α)
σ(1 ൅ 2ασ)

 (26) 

where Qp is the mass flow rate in a channel with permeable and impermeable surfaces, and 

Qi indicates the mass flow rate with two impermeable walls. Beavers and Joseph [2] used 

porous blocks of foametals and aloxite for experiments and plotted Φ versus σ. They 

predicted α= 0.78 ~ 4.0 for foametals and α= 0.1 for aloxite. It appeared these data to be 

consistent with their experiments for oil and water flows over porous blocks, even though the 

measured values were considerably scattered.  

Using Brinkman equation the fractional increase is also given by [18, 25] 
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 Φ ൌ 3(σ൅ 1/√ε)
σ(1 ൅ 2σ/√ε) (27) 

Goyeau et al. [18] used the viscosity ratio as μe/μf = ε-1 with ε = 0.78 for comparison. Their 

prediction showed good agreement with those of Beavers and Joseph [2] for α = 1.2 (Fig. 

10(a)). 

In this study, we determine the fractional increase in mass flow rate by using Eq. (16) as 

 Φ ൌ ׬ െ y2

2 ൅ ቀ1 െ us
2 ቁ y ൅ us dy2

0 ׬ y ቀ1 െ y
2ቁ dy2

0

െ 1 ൌ 3
2

us (28) 

 

   
Figure 10. Fractional increase of the mass flow rate (Φ) as a function of σ (BJ: Beavers and 

Joseph [2]). 

 

Fig. 10(a) shows the plots of ε = 0.4 and ε = 0.8 for δ = 4.0 and various σ. We found that the 

results for ε = 0.8 are in excellent agreement with the analytical solution of Beavers and 

Joseph [2] for α = 0.8. The curve related to ε = 0.4 is also in-line with their experimental 

values. Although experimental data were quite scattered, our results are in error bound as the 

analytical values reported by [2, 18]. It should be noted that the discrepancy in Φ values for ε 

= 0.78 between this study and the data reported in [18], where both are based on the 

Brinkman equation, results from the difference of the boundary condition at the bottom wall 

(y = �hp) of a porous medium. We employed the no-slip boundary condition at the wall as u(y 

= �hp) = 0, whereas Goyeau et al. [18] used the Darcy’s law. 

We have also displayed the fractional increase of the mass flow rate Φ, given by Eq. (28) 

for various porosity and δ = 4 in Fig. 10(b). This figure shows that for small values of σ, as ε 
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increases, Φ increases, whereas it decreases for higher σ values. The fractional increase 

gradually diminishes as σ rises, and approaches to zero, which represents the channel flow 

with an impermeable wall (i.e. solid wall) for very high σ. This is due to the fact that as the 

permeability and porosity increase, the flow rate in the channel builds up. 

 

Verification using Direct Numerical Simulations (DNS) 

In this section, we perform a direct numerical simulation (DNS) by solving the governing 

equations for two-dimensional incompressible flow to verify the result of analytical solutions 

and further analyze the characteristics of the flow. For DNS, we introduce the single-domain 

approach in which the porous layer is treated as a pseudo-fluid and composite region is 

considered as a continuum [18]. This approach has been extensively employed in numerical 

simulation for the flow in fluid and porous layers [26-29]. We use the volume-averaged 

equations Eqs. (7) and (8) for current numerical simulations. In the fluid layer, we consider ε 

= 1 and the permeability K is infinite. The governing equations were discretized using a finite 

volume method in a Cartesian grid system. A second-order central difference scheme was 

utilized for spatial discretization of derivatives. A hybrid scheme was used for time 

advancement; nonlinear terms were explicitly advanced by a third-order Runge-Kutta scheme, 

and the other terms were implicitly advanced by the Crank-Nicolson method [30, 31]. A 

fractional-step method was employed for time integration and the Poisson equation resulted 

from the second stage of the fractional step method was solved by a fast Fourier transform 

(FFT) [32]. 

 

   
Figure 11. Normalized velocity profiles in the fluid and porous layers for (a) δ = 2, σ = 2 and 

(b) δ = 4, σ = 1. 
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Figure 12. Skin-friction coefficients (Cf) and drag reductions (DR) for various ε. 

 

 

Table 1. Comparison of flow parameters between DNS and analytical predictions. 

δ σ ε 
DNS  Analytical results 

us us/umax us/γሶ√K us us/umax us/γሶ√K 

0.1 1 0.8 0.0988 0.179 0.104 0.0988 0.179 0.104 

0.1 10 0.8 0.0796 0.147 0.831 0.0796 0.147 0.831 

2 2 0.4 0.713 0.775 2.215 0.713 0.775 2.215 

2 2 0.8 0.621 0.723 1.801 0.621 0.723 1.801 

4 1 0.4 1.349 0.962 4.147 1.349 0.962 4.147 

4 1 0.8 1.322 0.958 3.902 1.322 0.958 3.902 

4 50 0.8 2.25×10-2 0.044 1.138 2.25×10-2 0.044 1.138 

4 100 0.8 1.12×10-2 0.024 1.224 1.12×10-2 0.024 1.224 

 

 

The no-slip condition was imposed on impermeable solid walls, and the flow was assumed 

to be periodic in the streamwise direction x. The velocity and shear stress at the interface were 

assumed to be continuous (Eqs. (11) and (12)). The number of grid points used in this study is 

64(x)×250(y) for δ=0.1, 64(x)×400(y) for δ=2, and 64(x)×600(y) for δ=4 with the axial length 

of the domain 4h. More grid points are allocated near solid walls and interface between the 

two layers in the y-direction with ∆ymin= 0.002, whereas the grid cell in the x-direction is 

uniform. 

The computed velocity profiles in two layers for several control parameters are presented in 
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Fig. 11 with those of analytical solutions (Eqs. (15) and (16)). In addition, the slip velocity us 

and shear stress rate γሶ  = ∂u/∂y|y=0 at the interface between two layers for the values are 

compared in Table 1. As can be seen in Fig. 11, the velocity distributions are perfectly aligned 

with analytical profiles. The obtained values of the velocity and the shear rate at the interface 

show an excellent agreement with those of theoretical predictions (Table 1). We also have 

calculated the skin-friction coefficient Cf on the permeable wall and the drag reduction (DR) 

for various ε, δ, and σ shown in Fig. 12. Our computed values strongly confirm the predicted 

analytical solutions. 

 

 

   
 

Figure 13. Profiles of different terms of the kinetic energy balance equation for δ = 1.5 and ε = 

1.0. The values were normalized by q3/h. 

 

Variation of the kinetic energy 

Next, we investigate the variation of kinetic energy for flow over and through porous media 

as the porosity and permeability of the porous media vary. 

The transport equation for the kinetic energy (k = uiui/2) can be derived from the Navier-

Stokes equations and in both fluid and porous regions can be stated as 
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where ν = μ/ρ and D/Dt = ∂/∂t + uj∂/∂xj. This equation composed of the velocity pressure-

gradient Πk, viscous diffusion Dk, and viscous dissipation εk terms, and the viscous drag 

originated from Darcy’s Law Rk which indicates the viscous resistance of a porous medium. 

The vertical distribution of all terms of the transport equation for the kinetic energy are 

plotted in Fig. 13. In the fluid layer, the kinetic energy is mainly produced by the pressure 

gradient Πk and is vanished by the viscous diffusion Dk, while it is mostly balanced by the 

viscous diffusion and dissipation εk terms near the upper wall (i.e., y = 2). Hence, the viscous 

diffusion term Dk has positive values in the whole porous medium. The term generates the 

kinetic energy is the pressure gradient Πk, and the energy is dissipated by the viscous 

dissipation εk and drag Rk terms. The equilibrium of the kinetic energy is maintained by the 

viscous diffusion Dk and dissipation εk terms close to the bottom wall (i.e., y = �1.5). 

However, the contribution of each term on the variation of the kinetic energy principally 

depends on the permeability parameter σ. For low σ, the energy is primarily produced by the 

pressure gradient Πk and it is vanished by the dissipation and viscous drag (Fig. 13(a)). On the 

other hand, the viscous drag Rk induced by the porous medium mostly dissipates the kinetic 

energy in the porous layer and it is balanced by the viscous diffusion Dk near the interface for 

higher σ (Fig. 13(b)). Accordingly, it could be concluded that the contribution of the pressure 

gradient is most dominant on the variation rate of the kinetic energy for high permeability (i.e., 

low σ), whereas the viscous drag term plays an important role in the kinetic energy transport 

for low permeability. 

 

   
Figure 14. Distributions normalized by q3/h of the velocity pressure-gradient Πk (positive 
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values) and viscous drag Rk (negative values) terms within the porous layer for various ε at δ 

= 1.5. 

 

Previously, we have shown the dependency of the porosity ε on the velocity profiles in both 

fluid and porous layers in which by increasing ε the velocity profile for low σ enhances, while 

the velocity is reduced by the growing ε for high σ (Fig. 5). These could be explained by the 

analysis of the transport equation for the kinetic energy shown above. Figure 14 illustrates 

profiles of the velocity pressure-gradient Πk and viscous drag Rk terms of the transport 

equation for various ε. As described earlier, the pressure gradient largely contributes to the 

production of the kinetic energy in the porous layer for low σ. Figure 14(a) reveals that the 

variation rate of the velocity pressure-gradient Πk term is amplified with the growth of ε at 

low σ. Consequently, for high permeability (i.e., low σ) the higher porosity causes the 

acceleration of the flow in the porous medium by increasing the contribution of the pressure 

gradient. This leads to the enhancement of the slip velocity at the interface and the mass flow 

rate in the fluid region. In addition, the viscous drag induced by Darcy’s Law has a substantial 

contribution on the energy dissipation for high σ (Fig. 14(b)). As can be seen in Fig. 14(b), the 

dissipation rate of the viscous drag Rk is larger than the production rate generated by the 

pressure gradient Πk, and the variation rate of Rk steadily grows with the increasing ε. 

Therefore, it could be deduced that increasing ε results in the deceleration of the flow through 

the porous layer by enhancing the dissipation rate of the viscous drag in the kinetic energy for 

the low permeability. This then reduces the slip velocity and the flow rate in the fluid layer. 

 

Conclusion 

In this work, we have investigated the effect of the porosity ε of a porous medium on the 

laminar flow in a channel replaced by a porous layer. The analytical solutions have been 

obtained from the governing equations in which the volume-averaging approach was 

employed and the Darcy’s Law was used to model the pore-level flow resistance in the porous 

medium. The solutions have been determined by porosity, permeability K, and the thickness 

of a porous medium δ, that have also been verified by direct numerical simulations. The 

influence of the porosity on the velocity in the fluid and porous layers depend on the 

permeability. The increasing value of the porosity enhances the velocity in both layers for the 

high permeability (i.e. low σ), while it reduces the flow rate for the low permeability (i.e. high 

σ). The shear stress at the interface decays with the rising porosity when the permeability is 
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high, and it leads to the reduction of the skin-friction Cf at the interface and the improvement 

of the drag reduction DR. However, the stress rate between two layers becomes stronger with 

the increase of the porosity for the low permeability, and it results in the increase of the skin-

friction at the interface and diminishes the drag reduction. 

The self-similar solutions of the flow through a porous medium have been obtained using 

asymptotic behavior analysis in the infinitely small permeability limit (i.e. σ→∞). The self-

similarity reveals two different behaviors that depend on a spatial length scale Λ = σδ related 

to the thickness of a porous medium. The asymptotic solutions for the velocity and shear 

stress are classified into those of thin (Λ≪1) and thick (Λ≫1) porous media. The rescaled 

quantities exhibit the same behaviors with those of analytical solutions for the flow with a 

very low permeability.  
The transport equation of the kinetic energy has been evaluated to explore the effects of the 

porosity on the velocity in the fluid and porous regions. For high permeability, the flow is 

accelerated with the growth of the porosity by increasing the driving force of the pressure 

gradient. Hence, the higher porosity causes the deceleration of the flow for low permeability, 

since it enhances the viscous drag of the porous medium. 

This study provides valuable insights into understanding flow in a channel in the existence 

of permeable surfaces. It helps scientists and researchers in various disciplines to examine 

flow transport over and through porous media including canopies [33], porous track, and 

porous bearings [34-36] as well as heat and fluid flow on rough surfaces [37-39]. Analysis of 

complex fluids over porous media is the focus of our current study [40, 41]. 
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