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Advances in fabrication techniques have led to a proliferation of studies on new mechanical meta-
materials, particularly on elastic and linear phenomena (for example, their phonon spectrum and
acoustic band gaps). More recently, there has been a growing interest in nonlinear wave phe-
nomena in these systems, and particularly how geometric parameters affect the propagation of
high-amplitude nonlinear waves. In this paper, we analytically, numerically, and experimentally
demonstrate the propagation of cnoidal waves in an elastic architected material. This class of trav-
eling waves constitutes a general family of nonlinear waves, which reduce to phonons and solitons
under suitable limits. Although cnoidal waves were first discovered as solutions to the conservation
laws for shallow water, they have subsequently appeared in contexts as diverse as ion plasmas and
nonlinear optics, but have rarely been explored in elastic solids. We show that geometrically non-
linear deformations in architected soft elastic solids can result in cnoidal waves. Insights from our
analysis will be critical to controlling the propagation of stress waves in advanced materials.

The ubiquity of 3D printers and the development of
novel optimization techniques has allowed researchers to
develop mechanical metamaterials that possess unprece-
dented specific stiffness [1–3], programmable Poisson’s
ratio [4], damage tolerance [5], multistability [6], etc.
This has been achieved by precisely controlling the in-
ternal geometric parameters of the metamaterial, lead-
ing to nonlinear mechanical behavior. Past work on the
propagation of waves in mechanical metamaterials has
primarily focused on the propagation of linear waves (or
phonons) [7, 8], with band-gaps often being of chief inter-
est. Recently, additional mechanical systems have been
studied for their ability to propagate nonlinear waves,
including granular materials relying on Hertzian con-
tact [9, 10], tensegrity structures [11], bars and link-
ages [12], and systems composed of bistable elastic el-
ements [13, 14]. Understanding nonlinear wave phenom-
ena in structured media is crucial for controlling stress
waves in protective materials, acoustics, vibration miti-
gation, and aerospace applications [15].

Here we investigate nonlinear oscillatory cnoidal waves,
which have received little attention in elastic materials.
Cnoidal waves were first described in the late 1800s as pe-
riodic solutions of the nonlinear Korteweg-deVries equa-
tion for long waves in shallow water [16]. Since then
they have been extensively analyzed in the mathemat-
ics and physics communities [17], finding applications
in fields as diverse as geophysical fluid dynamics [18],
ion plasmas [19], nonlinear optics [20], and geomateri-
als [21]. Cnoidal waves are related to solitary waves, or
solitons, which have been studied extensively in many
contexts, including shallow-water [22], electrical trans-
mission lines, and lattices of masses and nonlinear springs
[23]. In fact, solitons are merely cnoidal waves with in-
finite period [16]. One instance of an observation of a
cnoidal wave in an elastic solid is in the experiments of

Nayanov [24] on lithium niobate. Nayanov excited large
amplitude Rayleigh surface waves in a layered sample of
lithium niobate and silicon oxide and observed conversion
of these waves at high intensities into cnoidal waves and
solitons. He showed the characteristic sharp peaks and
broad troughs of cnoidal waves even though the input
Rayleigh waves were sinusoidal. Apart from this we are
not aware of any other observations of cnoidal waves in
elastic solids although they have been mentioned in the-
oretical literature on nonlinear waves elsewhere [25, 26].
In this letter, we develop a new analytical, numerical, and
experimental framework to show that an elastic metama-
terial (Fig.1) can support cnoidal waves as a more gen-
eral periodic nonlinear propagating wave, which include
the previously-observed soliton solutions [27] as one limit.
Moreover, the nonlinearities in our mechanical metama-
terials can be tailored over a wide range since they are
made of 3D-printed soft elastomers whose geometry can
be controlled.

Our medium for wave propagation is a 3D-printed net-
work of N columns (of 6) of rotationally-offset squares,
composed of polydimethylsiloxane (PDMS) and each
with a copper cylinder in the center as shown in Fig.1(a).
Each (jth) column of squares is capable of translation
uj and rotation θj . The squares have a diagonal length
of 2l ≈ 11.3 mm, and are rotated by θ0 = 25◦ from
the y−axis. The PDMS network exerts both forces and
torques on the four corners of the square with a linear
spring (with stretch stiffness k) and a torsional spring
(with twist stiffness kθ), respectively. By assuming pe-
riodic boundary conditions in the y direction, the force
and torque balance for each square of mass m and mo-
ment of inertia J in terms of non-dimensional displace-
ment Uj = uj/2l cos θ0, and rotation θj are (the material
constants are taken directly from Deng et al.[27] since we
use a similar specimen):
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∂2Uj
∂T 2

= Uj+1 − 2Uj + Uj−1 −
1

2l cos θ0

[
cos(θj+1 + θ0)− cos(θj−1 + θ0 +K(θj+1 − θj−1) sin(θj + θ0))

]
,

∂2θj
∂T 2

= α2
[
−K

(
θj+1 + 6θj + θj−1

)
− 2(Uj+1 − Uj−1) cos θ0 sin(θj + θ0) + sin(θj + θ0)

(
cos(θj+1 + θ0) + 6 cos(θj + θ0)

+ cos(θj−1 + θ0)− 8 cos θ0

)
+ cos(θj + θ0)

(
sin(θj+1 + θ0)− 2 sin(θj + θ0) + sin(θj−1 + θ0)

)]
,

(1)

where Uj = Uj(t), θj = θj(t), T = t
√
k/m, α = l

√
m/J , and K = kθ/kl

2.

FIG. 1. (a) Schematic of the system and geometry of the
squares. (b) Displacement and rotation of each square. (c)
Experimental setup including a shaker that provides the
cnoidal wave input and accelerometers at both ends that mea-
sure the input and output acceleration. (d) Image of the entire
sample, with the portion recorded via a high-speed camera in-
dicated by the red rectangle.

The discrete set of 2N -equations can be condensed into
two continuum equations by restricting rotation to small
angles such that sin θj ≈ θj and cos θj = 1, and intro-
ducing dimensionless length coordinate X and dimen-
sionless time T such that ∂U/∂X = 1

2 (Uj+1 − Uj−1),

∂2U/∂X2 = Uj+1−2Uj+Uj−1, ∂θ/∂X = 1
2 (θj+1−θj−1),

and ∂2θ/∂X2 = θj+1 − 2θj + θj−1. Performing the cal-
culations [27] yields the following equations for U(ζ) and

θ(ζ),

d2θ

dζ2
+ Pθ +Qθ2 = 0, (2a)

dU

dζ
= − (1−K) tan θ0

1− c2
θ. (2b)

where, ζ = X−cT is the traveling wave coordinate, and c
is the normalized wave speed. P andQ are constants that
depend on the stiffness parameters that can be calculated
from geometry and material parameters:

P =
4α2β

1− c2
[(2c2 − 1−K) sin2 θ0 − 2(1− c2)K],

Q =
2α2β

1− c2
[(2c2 − 1−K) sin θ0].

(3)

where β = 1/[α2(cos 2θ0 −K)− c2]. Consider a solution
Eqn.2(a) in the following form, called the cnoidal wave
solution:

θ(ζ) = A cn2(
ζ

W
|κ2) +B, 0 ≤ κ2 ≤ 1 (4)

where cn( ζ
W |κ

2) is a Jacobi elliptic function [28]. When

the elliptic modulus κ2 → 1, we recover the soliton solu-
tion [27]:

lim
κ2→1

θ(ζ) = A sech2(
ζ

W
). (5)

Moreover, when κ2 → 0, θ(ζ) behaves like a sinusoid:

lim
κ2→0

θ(ζ) = −A
2

cos(
√
Pζ). (6)

Thus, our proposed cnoidal wave solution Eqn.4 spans
the entire range from phonons (linear waves) to solitons.
For 0 < κ2 < 1, by plugging the proposed solution Eqn.
4 back to Eqn.2a and setting all coefficients of cnn( ζ

W |κ
2)

to zero, we can obtain the solution:

A =
3|P |
2Q

κ2√
κ4 − κ2 + 1

,

B = − 1

2Q

[
P − |P | 2κ2 − 1√

κ4 − κ2 + 1

]
,

W =
2√
|P |

(κ4 − κ2 + 1)
1
4 .

(7)
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Note that our solution (Eqn.4) is not sinusoidal but is pe-
riodic with a period 4K(κ2), where K(κ2) is the complete
elliptic integral of the first kind [28]. However, Eqn. 7
cannot fully describe the solution, since P and Q are
functions of the wave speed c. Another parameter other
than the elliptic modulus κ2 is needed to completely de-
scribe our solution. An experimentally-convenient choice
is frequency f = v

w , where v is the dimensional wave
speed and w is the dimensional wavelength. By applying
the dimensional constants the frequency can be expressed
with two other unknowns (W and c) as:

f =
c

2KW
√
m/k

. (8)

The four unknowns of the problem A, B, W and c can be
solved via four nonlinear equations (Eqn. 7 and Eqn. 8).
After fully characterizing θ, the other coupled variable
displacement U(ζ) can be solved by substituting Eqn.4
in Eqn.2(b). The acceleration ∂2U/∂T 2 can also be cal-
culated:

U(ζ) =
(K − 1) tan θ0

1− c2

∫ ζ

0

[
Acn2

( y
W
|κ
)

+B
]
dy

∂2U

∂T 2
=

2Ac2(1−K)

W (1− c2)
tan θ0 cn(

ζ

W
|κ2) sn(

ζ

W
|κ2) dn(

ζ

W
|κ2).

(9)

We compute the wave speed c within an
experimentally-accessible range of parameters: 20
Hz < f < 40 Hz, and 0.7 < κ2 < 0.99. In this range,
the wave speed c ≈ 0.82 (similar to the speed found for
solitons previously) is insensitive to the variations in
parameters. Fig.2(a) and (b) show the cnoidal solution
in rotation θ and acceleration ∂2U/∂T 2 for f = 25 Hz.
Note that the curves are periodic but not sinusoidal. We
examine the dependence of the amplitude of the cnoidal
wave (Eqn.4) on frequency f and elliptic modulus κ2 by
plotting it on a 2-D f − κ2 plane. Fig.2(c) shows that
for a fixed frequency, the rotation amplitude increases
with elliptic modulus, and for a fixed elliptic modulus
the amplitude increases with frequency. Similar trends
are observed in the acceleration amplitude, shown in
Fig.2(d). We also explored the effect of geometry and
material constants of the system on the solution shown
here (Detail in SI [29] Fig. S2 and S3). Specifically,
the wave speed of the cnoidal wave solution increases
monotonically with decreasing θ0 and increasing K. The
amplitude (A) and offset (B) have local minima and
maxima as a function of θ, but change monotonically as
a function of K.

The governing equation (Eqn.2) is a nonlinear differen-
tial equation whose solutions may not be unique. While
Eqn.4 is one solution that satisfies the equations, another
oscillatory traveling wave solution to Eqn.2 is:

θ(ζ) =
A

dn2
(
ζ
W |κ2

) +B (10)

(a) (b)

(d)(c)

𝜅2 = 0.99

𝜅2 = 0.9 𝜅2 = 0.95

𝑓 = 25Hz 𝜅2 = 0.99

𝜅2 = 0.9 𝜅2 = 0.95

𝑓 = 25Hz

FIG. 2. Analytical cnoidal wave solutions for f = 25 Hz and
κ2 = 0.99, 0.95 and 0.90: (a) θ(ζ) = Acn2( ζ

W
|κ2)+B (Eqn.4)

(b) ∂2U/∂T 2(ζ) (Eqn.9) (c-d) Amplitude of θ and ∂2U/∂T 2

solution vs. f and κ2

where dn
(
ζ
W |κ

2
)

is another Jacobi elliptic function [28].

The displacement and acceleration for this solution can
also be computed as:

U(ζ) =
(K − 1) tan θ0

1− c2

∫ ζ

0

[ A

dn2
(
y
W |κ

) +B
]
dy

∂2U

∂T 2
= c2

(K − 1) tan θ0
1− c2

2Aκ2

W

cn( ζ
W |κ

2)sn( ζ
W |κ

2)

dn3( ζ
W |κ2)

(11)

Here too, the values of A,B, and W depend on the
elliptic modulus κ2, and the parameters P and Q are:

A =
3|P |
2Q

κ2 − 1√
κ4 − κ2 + 1

,

B = − 1

2Q

(
P + |P | 2− κ2√

κ4 − κ2 + 1

)
,

W =
2√

|P |(κ4 − κ2 + 1)
1
4

.

(12)

As κ2 → 1 we see that A → 0, suggesting that, unlike
Eqn.4, this solution does not reduce to a soliton in that
limit. Also, as κ2 → 0, the elliptic function dn(x|k)→ 1
which is not sinusoidal. Hence, this solution is distinct
from the cnoidal wave solution even though both are non-
linear oscillatory traveling waves. For the rest of the
paper we focus exclusively on the solution provided by
Eqn.4.

Next, we validate our traveling wave solutions obtained
in Eqn.4. To do this, we numerically solve the ab initio
force and torque balance equations (Eqn.1) for each in-
dividual square. For a sample consisting of N squares,
we have 2N second order coupled ODE’s in displacement
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Uj(T ), and rotation θj(T ) for the jth square. The first
(j = 1) square in the sample is externally excited using
a shaker, hence the boundary condition is:

U1(T ) = U(ζ)|X=0, θ1(T ) = 0, (13)

where U(ζ) is given by Eqn.9. We use a zero force and
torque boundary condition for the j = N square. We
solve this system of ODEs numerically in MATLAB for
a long sample (N = 1000) to test our analytical trav-
eling wave solutions in Eqn.4. We plot the theoretical
(Eqn.4) and numerical results for rotation θ and accel-
eration ∂2U/∂T 2 in Fig.3. Fig.3(a) shows the results for
θj(t) for j = 1 and j = 150 when the specimen is excited
using a displacement waveform in Eqn.9 for κ2 = 0.90,
and Fig.3(b) shows the corresponding acceleration plots.
We indeed observe that the excitation given to the j = 1
square (Eqn.13) propagates in a self-similar manner for
both the rotation and acceleration. Agreement between
our analytical result and numerical simulations validates
the cnoidal wave solution provided. (See fig. S7 in SI
[29] for validation of Eqn. 10).

(a) (b)

(c) (d)
FIG. 3. Comparison between the numerical results (dia-
monds) obtained by solving the 2N discrete differential equa-
tions (Eqn.1) and the analytical (solid lines) results (Eqn.4
and Eqn.9): (a) θ and (b) ∂2U/∂T 2 for f = 25 Hz and
κ2 = 0.90.

Next, we conduct experiments to observe the propa-
gation of the cnoidal wave in a specimen consisting of
N = 40 columns of squares. One end of the specimen
is attached to a shaker (APS 113) which provides peri-
odic motion to the j = 1 column. The motion of the
shaker is controlled by a function generator (FeelTech
FY2300a) via an amplifier (APS 125), which allows us
to feed a cnoidal waveform (i.e., Fig.2(b)) to our system.
We measure the acceleration at the input (j = 1) and the
output (j = 40) by attaching piezoelectric accelerom-
eters (PCB 352A24) at both ends (see Fig.1(c)). Ad-
ditionally, we record the experiment using a high-speed
camera (Photron Mini AX-200) operating at 6400 frames
per second (see Fig.1(d)) to measure the rotation θj . A
speckle pattern is applied on the specimen in order to
provide sufficient contrast for digital image correlation
(DIC) analysis, performed using commercially available
software (GOM Correlate). (Note also that we applied
DIC only in the region marked by the red rectangle in
Fig.1(d), due to the limits of field of view of our cam-

era.) The rotation of each square is obtained contin-
uously by tracking two points within each square. As

shown in Fig.1(b), the initial vector
−−→
AB forms an angle

θr with the x-axis in the reference frame. At a later time

t, the deformed vector
−−−→
A′B′ forms a new angle θr + θj ,

with θj denoting the rotation of the square j at time t.
For each combination of frequency f and κ2, the cur-
rent supplied to the shaker is calibrated before each test
(details in SI [29]). The specimen is excited for 10 s to
ensure stable propagation, during which the accelerom-
eters continuously record acceleration. The high-speed
camera records for 3 s in the middle of this interval of
excitation (for tracking rotations θj).

We excite the sample (at j = 1) with the cnoidal wave
form at f = 25 Hz for two values of elliptic modulus,
κ2 = 0.99 and 0.95. With these values the shaker pro-
vides sufficient amplitude (Eqn.7) to allow Uj and θj to
be measured with the high-speed camera. The acceler-
ation at both the input (j = 1) and output (j = 40)
squares are also collected (see representative data in
Fig.4(a-b)). The cnoidal wave propagates through our
system while preserving its amplitude and its shape.
The experimental wave speed can be calculated from the
peak offset time of the measured acceleration waves. For
κ2 = 0.99, the experimental wave speed is c = 0.821 (see
details in SI [29]), which is in excellent agreement with
the analytical prediction (c = 0.8184). For κ2 = 0.95,
the experimental wave speed is c = 0.8804 while the an-
alytical prediction is c = 0.8187. The difference between
the analytical solution and measurement is slightly larger
in this case because the amplitudes of θj and the accel-
eration are much smaller, leading to larger experimental
uncertainty.

The rotations of the three representative squares
within the field of view during wave propagation for
κ2 = 0.99 and 0.95 are presented in Fig.4(c) and (d), re-
spectively. Since the analytical form of the cnoidal wave
is found in the rotation, measuring the angle of rotation
provides the most direct evidence that the wave propa-
gating through our system is indeed a cnoidal wave. For
κ2 = 0.99 (Fig.4(c)), the amplitude of rotation is in close
agreement with the expectations from the cnoidal wave
solution. The shape does not exactly match the ana-
lytical solution, though it is periodic but not sinusoidal,
most clearly for θj=8. A closer match in both shape and
amplitude is obtained for κ2 = 0.95 (Fig.4(d)).

Though we observe good overall agreement between
the experiments and analytical predictions, two discrep-
ancies are immediately apparent: First, the output ac-
celerometer shows an additional peak during the experi-
ments which is not expected from the analytical solution.
Second, θj=22 has a significantly larger amplitude than
θj=8 and θj=14. Both of these can be explained with the
help of the numerical simulations.

To understand the additional peak in the accelerometer
data, we numerically solve the ab initio force and torque
balance equations (Eqn.1). We use the same boundary
conditions, but now we solve the equations with only
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(a) (b)

(c) (d)

(e)

(g) (h)

(f)

FIG. 4. The comparison between experimental and numerical
results of: ∂2U/∂T 2 data for f = 25 Hz and κ2 = (a) 0.99
and (b) 0.95; Experimental result of θ for f = 25 Hz and κ2 =
(c) 0.99 and (d) 0.95; Numerical result of θ for f = 25 Hz and
κ2 = (e) 0.99 and (f) 0.95; Numerical result of systems with
various sample length (N) for κ2 = 0.95: (g) ∂2U/∂T 2 and
(h) θj=20

N = 40 instead of N = 1000, in order to account for finite
size effects (Fig.4(a-b)). The acceleration of the terminal
squares (j = 40) matches well with the experimental re-
sults in amplitude, and shows the same anomalous peak
observed in experiments. Rotations are also obtained
from the numerical results and reported in Fig.4(e-f).
Here too, we observe a second peak in each period of the
numerical traveling wave solution, which disappears as
the length of the specimen increases (the DIC measure-
ments were unable to capture the anomalous peak in θ,
probably due to the resolution limit of the rotation mea-
surements, i.e., ∼ 0.003 rad). Next, we obtain numeri-
cal results for additional specimens with various lengths
(N = 80 and N = 1000 squares), plotted in Fig.4(g-h).
We find that as we increase the length of the specimen,

the magnitude of the secondary peak decreases in both
acceleration and rotation. Hence, we conclude that the
second peak in the experiment indeed arises from bound-
ary effects due to the finite specimen size.

Regarding the anomalous amplitude of θj=22, this ap-
pears to result from fabrication defects in the specimen.
The specimen was fabricated in two parts (squares j =
1− 20 were fabricated together, and squares j = 21− 40
were fabricated together), and subsequently joined via
additional PDMS. We observe that the second half of
the specimen is slightly thicker by ∼ 10% than the first
half, effectively increasing the in-plane stiffness and al-
lowing larger-than-expected amplitudes to occur in the
second half, particularly near the boundary. Interest-
ingly, we observe that the cnoidal wave propagates un-
hindered through this boundary, maintaining its shape,
but just altering in amplitude (see SI [29] for numerical
solution to Eqn.1). These effects could be easily har-
nessed using our 3D printing methods to intentionally
customize the wave propagation depending on the needs
of a given application.

In this letter, we have shown analytically, numeri-
cally, and experimentally that nonlinear cnoidal waves
can propagate in a purely elastic metamaterial composed
of a network of rotationally-offset squares. Our analyti-
cal solutions uncover a whole class of oscillatory traveling
waves in solids that span from linear sinusoidal waves to
vector solitons. To experimentally characterize these we
use a high-speed camera in combination with accelerom-
eters to monitor both the translational motion and the
rotation of the squares. Our numerical simulations show
that the minor discrepancies between the experiments
and the analytical solution are artifacts of the limited
sample length. The discovery of this oscillatory travel-
ling wave is a crucial step toward understanding the prop-
agation of nonlinear waves in structured media. This is
important for applications in protective materials, acous-
tics, vibration mitigation, and aerospace, and could po-
tentially lead to more exotic dynamic properties, such as
the transmission of information encoded in the frequency
and shape of such waves in elastic metamaterials. The
3D printability of our metamaterial also allows unique
control of the amplitude and shape of cnoidal waves prop-
agating through the system.
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