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Using random walk analyses we explore diffusive transport on networks obtained from contacts
between isotropically compressed, monodisperse, frictionless sphere packings generated over a range
of pressures in the vicinity of the jamming transition, p → 0. For conductive particles in an
insulating medium, conduction is determined by the particle contact network with nodes representing
particle centers and edges contacts between particles. The transition rate is not homogeneous, but
is distributed inhomogeneously due to the randomness of packing and concomitant disorder of the
contact network, e.g. distribution of coordination number. A narrow escape time scale is used to
write a Markov Process for random walks on the particle contact network. This stochastic process is
analyzed in terms of spectral density of the random, sparse, Euclidean and real, symmetric, positive,
semi-definite transition rate matrix. Results show network structures derived from jammed particles
have properties similar to ordered, euclidean lattices but also some unique properties that distinguish
them from other structures that are in some sense more homogeneous. In particular, the distribution
of eigenvalues of the transition rate matrix follow a power law with spectral dimension 3. However,
quantitative details of the statistics of the eigenvectors show subtle differences with homogeneous
lattices and allow us to distinguish between topological and geometric sources of disorder in the
network.

What is the relationship between the structure of ma-
terials and their bulk properties? The question has a
long and distinguished history with relevance to various
applied problems. For applications such as energy stor-
age (e.g., batteries) and pyrotechnic igniters in pyrotech-
nically actuated devices (e.g., air bags), among others,
particulate materials (powders and granular materials)
are critical to the functionality of manufactured devices.
For these devices, the question becomes broader: what
role does structural disorder – topological and geometri-
cal – resulting from the discreteness of the material and
lack of microscopic control in the manufacturing process
play in the variability of material properties and how
does this property variability relate to the variability of
device performance? The practical challenge is to predict
and control the behavior of particulate materials so that
they can be processed into robust devices with reliable
performance. Alternatively, the challenge is to define the
feedstock material characteristics and processing routes
that lead to better performance, however that is defined.
For powders and granular materials, which are far from
equilibrium, this amounts to understanding the interplay
between the path-dependent meta-stable structures that
can be obtained from various material types and process-
ing routes and transport (thermal, electrical, mechanical)
in those structures.
For granular materials, much focus has been given to

the question of mechanical properties of random packings
(of typically monodisperse, frictionless, spherical parti-
cles) as they approach the limit of mechanical stability
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– the so-called jamming transition. However, the anal-
ogous (scalar) problem of conductive (thermal or elec-
trical) transport in particulate materials is also of criti-
cal importance for the aforementioned batteries and py-
rotechnics. In such applications, one may be concerned
with the sensitivity of the bulk material to, e.g., chemical
reactions (as in thermal runaway) which impact device
performance or failure. Moreover, for disordered mate-
rials, device performance or failure is sensitive to local
heterogeneities in material structure (e.g., stress concen-
tration near cracks, or thermal “hot spots” in reactive
materials). Again, understanding the relationship be-
tween material structure and thermo-mechanical prop-
erties related to a given device’s performance behavior
along with their prediction and control during the man-
ufacturing process is required.
Similarly, the properties of complex networks are of

broad interest as they form the fundamental basis for
social, biological and communications relationships. In
addition, there are deep connections between these ap-
plications and the behavior of complex, disordered mate-
rials. Indeed, many studies illustrate the close relation-
ship between so-called reduced-order models of transport
in disordered systems and random walks on networks [1–
3]. Here we make use of an accurate, semi-analytical
approach to develop such a model and deploy it to ac-
quire insight into the fundamental properties of networks
formed by the contact topology of random close-packed
particulate (granular) systems. In the following section
we describe the problem and method in detail and re-
late the approach here to similar ones in solid state and
ordered (i.e., homogeneous or regular) lattice systems.
Subsequently, we use spectral analysis to analyze average
macroscale conductive transport in disordered, jammed
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FIG. 1. Top: Disordered, jammed packs of monodisperse,
frictionless spheres color coded by total volume-averaged
mean first passage time, t̄i = (Σzi

j=1
1/τij)

−1 at two different
pressures (left: p = 0.04; right: p = 0.004). Bottom: his-
tograms of diameter of contact circle between particles (left)
and mean first passage time τij for random walker to escape
initial sphere i to neighboring sphere j through contact circle
for p = 0.00004 and N = 104. Lines are Weibull (left) and
Frechet (right) distributions for comparison.

networks of grains. Finally we also analyze the statis-
tics of eigenvectors for these disordered systems to glean
some insights into the role of local inhomogeneity and
offer some concluding remarks.

I. PROBLEM DESCRIPTION AND APPOACH

We consider conduction through isotropically com-
pressed, monodisperse, frictionless jammed spheres cre-
ated via Discrete Element Method (DEM) simulations [4,
5] with an established (de)compression protocol [6]. Mul-
tiple disordered packings of jammed mono-sized spheres
were generated for a range of packing fractions φ above
the jamming transition [7]. The contact networks from
packings of N = 103, 104, and 105 particles form the
objects of our study. The uniquely numbered particle
centers determine the vertex/node set while contacts be-
tween particles give the edge set of the graph represent-
ing the network. Isotropic compression, then, establishes
the network edge set; providing a particular random em-
bedding of the contact graph in a 3-D, Euclidean space.
Two features of the resulting networks should be noted:
(i) they are connected since we remove particles that iso-
lated and are not in contact with others (typically less
than 5% of all particles) from consideration as they do
not contribute to the contact network; (ii) it is not bi-
partite. We consider both non-weighted and weighted

representations of this network. The former is quantified
through the Adjacency Matrix of the network, and the
latter through weighting the elements of that matrix ap-
propriately based on details of local geometric features of
the packed spherical particles. All the subsequent analy-
sis in this work is based on modeling conductive transport
in particulate materials as a continuous-time random
walk processes on these contact networks. Specifically,
we are interested in the spectral properties of the Con-
duction Matrix, the operator central to this approach.
Hence, isotropic compression can be seen as the “manu-
facturing” or nonequilibrium process which governs the
(random) structure which controls the properties of the
bulk, particulate material.

We emphasize that we are concerned here with con-
duction through particles seen as grains and not con-
duction due to lattice vibrations of the particles as in
solid-state atomic systems. In this sense the particles
are viewed as macroscopic objects composed on internal
degrees of freedom which account for the conductive pro-
cesses. An off-lattice random walker approach [8] can
then be used to model the internal degrees of freedom
and simulate conduction within and between contacting
particles as was done in previous work [7]. Here, how-
ever, we take a different approach by effectively coarse-
graining the off-lattice random walk within particles to a
continuous-time Markov process on the contact network
of the particle pack leading to a random walk-type model
that is nonetheless analogous to solid-state lattice ap-
proaches [9]. To accomplish this, two simplifying assump-
tions made in [7] are noted: (i) walkers are constrained
to remain within the particles meaning, e.g., no heat flux
from particle surfaces due to radiation; and (ii) particle
contacts are ideal and provide no barrier for walkers to
pass through, e.g. no contact resistance. Given this phys-
ical description of the system, an analytical expression
for the time it takes an off-lattice random walker to leave
the particle it started in and enter a contacting neighbor
particle can be found in [10]. In general, the time it takes
for a random walker to leave the particle it starts in and
enter a contacting neighbor particle is dependent upon
the starting location within the initial particle. Integrat-
ing over all starting locations of a walker in the initial
sphere, or volume-averaging, removes the spatial depen-
dence. Hence, the pair-wise volume-averaged Mean First
Passage Time (MFPT), τij , is the narrow-escape time
that it takes for a random walker to pass out of an initial
sphere, i, into sphere one of its zi neighbors, j. zi is the
coordination number (vertex degree) of particle i. Note,
the distribution of zi is one of the topological features
that distinguish the networks considered here from clas-
sical homogeneous lattice or regular graph random walks
where zi is constant. Previous work [7], for packs near
the jamming point, found that the bulk, effective conduc-
tivity, equivalent to the long-time diffusivity of random
walkers constrained to walk within the particles, scales as
the inverse of a characteristic time, D∞ ∼ 1/t∗. Accord-
ingly, t∗ was identified with the median value, tm ∼ t∗, of
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the distribution over all particles of their total volume-
averaged MFPT, ti = (Σzi

j=1
1/τij)

−1, see Fig. 1. In
the following, we use τij to formulate a Master Equation
for transport on the “jammed” (particle contact) net-
works. Thus, volume-averaging effectively coarse-grains
the off-lattice, intra-particle random walker approach of
[7] to a random walk on the contact network of parti-
cles with transition rate between nodes/particles on the
network Wij ∼ 1/τij ; allowing us to investigate the con-
ductive properties of disorder particulate materials from
the inter-particle to macroscale in analogy to both solid
state approaches [9] and continuum mathematical anal-
ysis [11].
In particular, we use the leading order term of the

asymptotic analytic formula found in [10, 12] for the
pair-wise volume-averaged mean first passage time be-
tween contacting particles, τij . For particle i in contact
with j, this MFPT of a walker starting in i hoping to j is
τij ∼ V/Rij , where V = π

6
d3 is the volume of the particle

with diameter, d, and Rij is the radius of the contact cir-
cle formed between the particles. Specifically, our transi-
tion rate Wij = 1/τij =

1

πτ0
(Rij/d), where τ0 = d2/24D0

is the intra-particle conductive timescale, i.e. the time it
takes a random walker to explore a spherical region of size
d composed of homogeneous, isotropic material with con-
ductivity D0. This approach should be contrasted with
previous proposals [13] in which the ergodic hypothesis is
made in order to approximate the transition rate. There
it is assumed that the phase space available for leaving
a region is the area of the “port” (particle contact area
here); however the MFPT or escape rate is determined
by the fractal repeller for the dynamics in the irregular
domain [14]. For intersecting spherical domains, this is
apparently dependent upon the radius of the port not its
area.
Now, given the local geometry of the contacting,

monodisperse spheres and the global topology (connec-
tivity) of the jammed (contact) network, we can write
a continuous-time Markov process representing conduc-
tion of a quantity, P (suitably normalized to represent
the probability of a walker being on node i), on the net-
work

∂

∂t
P(t) = WP(t) (1)

Wij =

{

− 12D0

πd2

√

2δij/d if i 6= j,
−
∑

k 6=i Wik if i = j
(2)

where we have used Rij ≈
√

δijd/2 assuming Hertzian
contact for homogeneous elastic materials; δij = d−||rj−
ri|| is the particle overlap from the DEM simulations.
The matrix W is a weighted Graph Laplacian [15] with

form W = D̃ − Ã, where D̃ and Ã are the weighted
degree (bottom line of Eqn. 2) and adjacency matrices
(top line of Eqn. 2), respectively.
The statistics of the elements in the conduction ma-

trix differ from other well-known random matrices (e.g.,

Gaussian Random Matrices), in that the matrix is very
sparse with a maximum nodal degree 12, due to physical
excluded volume constraints from particle interactions,
and mean degree z → 6 as p → 0. In addition, a Weibull
distribution [16] fits the histogram of nonzero contact
radii (Rij), i.e., the nonzero elements of the conduction
matrix, well (see Fig. 1). A Weibull distribution of
contact radii (or transition rates) is also consistent with
the Frechet distribution [17] of the per-particle volume-
averaged mean first passage times t as the two random
variates are inversely proportional to each other. Note,
the Weibull-like distribution of the transition rates is also
consistent with an exponential distribution of the force
magnitudes [18] (above the average value) since, if W is
distributed according to a Weibull with scale and shape
parameters β and k, respectively, then X = (W/β)k

is exponentially distributed [19]. All of these facts, of
course, are related to the distribution of the overlaps
δij in the DEM packing simulations. Hence, the fun-
damental quantities to be accessed experimentally are
the distribution of contact radii, Rc (or, more generally,
the distribution of sizes of contact ellipses in order to
assess the local curvature for Hertz contact theory) and
the particle volume, Vp, for the mean first passage time
∼ Vp/Rc. One final observation regarding the conduction
matrix is that, due to conservation laws (e.g., Kirchoff’s
Laws and energy conservation), the matrix is symmetric
positive semi-definite and conserves the total probability
such that it satisfies the conditions of the recently named
Diagonally Dominant Ensemble [20].

Although Eqn. (2) is written for the more physical
weighted Laplacian or conduction matrix, an analogous
unweighted Laplacian will also be considered below. In
this case, the weights on the edges of the graph related to
the local geometry of the contacting particles are ignored.
Instead, only the topological or connectivity information
of the network is retained. The unweighted Graph Lapla-
cian is simply L = D−A, where D is the degree matrix
(a diagonal matrix whose entries are the vertex degrees
of the nodes, i.e. particle coordination number), and A

is the adjacency matrix with entries aij = 1 if particles
i and j are in contact and zero otherwise. In the fol-
lowing sections we will analyze both the weighted and
unweighted graph Laplacian matrices in terms of their
spectra (distribution of eigenvalues) and the statistics of
eigenvector components. This will allow us to distinguish
between effects due to two types of potential disorder in
these systems: geometric and topological. In particular,
the following section will show that the long-time scaling
of the average decay of a unit impulse is not dependent
upon the weighting of the edges of the graph. Physically,
this means that the local geometry of the contacts does
not determine the bulk, long-time relaxation processes.
The scaling is instead set by the network topology as
described by the degree and adjacency matrices.
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FIG. 2. Variation of mean eigenvalue of weighted (left) and
unweighted transition matrix (right) vs. pressure for each
N = 104 configuration at given pressure. Points represent
different pressures; each data point is λ for a specific configu-
ration (spread of λ values is small for weighted case). Dashed

lines are ∼ p1/2.

II. SPECTRAL ANALYSIS

The elements of the weighted Laplacian matrix and
its eigenvalues are connected to the bulk conduction
coefficient of the network (particle pack) via D∞ ∼
1

NTr[W] = 1

N

∑N
i λi = λ, where λi are the eigenval-

ues of the weighted graph Laplacian or conduction ma-

trix. It can be seen that λ = 1

N

∑N
i=1

1/ti ∼ 1/t∗. In

Fig. 2, we confirm that D∞ ∼ λ ∼ p1/2 as expected
from [7], where p is the isotropic pressure under which
the packs were created. For the unweighted Laplacian
1

NTr[L] − λc = λ − zc ∼ p1/2 as seen in Fig. 2b, where
zc = 6 is the critical coordination number at jamming
for frictionless, Hookean spheres [4] which is set by the
constraint of global mechanical stability of the packing.

We can further elaborate on the spectral properties of
these networks. Fig. 3 shows histograms of the eigenval-
ues of the network Laplacian matrices taken from two
particle packs at different pressures. The histograms
shown in the top row Fig. 3 contain eigenvalues of the
weighted Laplacian matrix at pressures p = 0.004 and
p = 0.00004, respectively. The histograms shown in
the bottom row of Fig. 3 are for eigenvalues of the un-
weighted Laplacian. Asymmetry can be seen in all the
distributions; however, the shift from larger to smaller
eigenvalues for lower pressures can be seen most clearly
in the unweighted Laplacian particularly when compared
to the semi-circle distribution (red dashed lines). This is
consistent with the fact that λmax < zmax since the net-
work is non-bipartite [15], where zmax = 12 is the maxi-
mum degree of a node, and z ≥ 6 to satisfy constraints on
degrees of freedom for global mechanical stability. The
distribution of the eigenvalues in the limit λ → 0 is of
interest as it relates to the macroscopic scaling of relax-
ation/transport processes on the network. For classical,
Euclidean networks/lattices ρ(λ) ∼ λν , with ν = 1/2
[21]. Since it is difficult to assess the small λ scaling from
the histogram, we instead consider a related quantity –
the return probability.

The return probability is a fundamental physical quan-
tity easily determined from the eigenvalue spectrum. It
represents the average rate of decay of an initial impulse

FIG. 3. TOP: Histogram of eigenvalues from weighted transi-
tion matrix for p = 0.004 (left) and p = 0.00004 (right). BOT-
TOM: Histograms of eigenvalues from unweighted (Graph
Laplacian) transition matrix for p = 0.004 (left) and p =
0.00004) (right); lines are semi-circle distribution for compar-
ison. In all cases N = 104.

given to a particle [22]. The particle (ensemble) averaged
return probability is [21]

〈P0(t)〉 = 〈δP(0) · δP(t)〉 =
1

N

N
∑

i=1

exp(λit) (3)

where δP(t) = P(t)−Peq =
∑N

i=2
exp(λit)vi, Peq = v1,

and vi is the orthonormal eigenvector associated with λi.
For the case of classical diffusion in a homogeneous, 3-
dimensional, continuous material the return probability
is expected to decay as t−3/2 as t → ∞ which is easily
seen by considering the solution of the Heat Equation to
a unit impulse applied at the origin of an infinite domain
instantaneously at time t = 0, and following the decay of
temperature at the origin with time [22]. Return prob-
abilities for several networks taken from packings of dif-
fering numbers of particles are shown in Fig. 4. Three
distinct regions can be seen in these data. The plateau
at early times is indicative of the microscopic particle
scale where walkers are localized in the initial particle.
At longer times the return probability decays in a power
law manner. While it is difficult to extract precisely the
scaling in the weighted case due to noise in small eigen-
values, two clear scaling regions appear for larger sys-
tem sizes in the unweighted case – t−2 for intermediate
times and t−3/2 for long times (red and black dashed
line, respectively, in Fig. 4) – which are consistent with
the weighted case. Indeed, the data for the unweighted
case shown in Fig. 4 are very smooth; collapsing on each
other for the various independent configurations and sys-
tem sizes. Hence, three clear consistent scales appear –
microscopic, meso, and macro/homogeneous – across all
system sizes and pressures with no clear growing anoma-
lous mesoscale region with decreasing pressure. As can be
seen for the different system size data, the crossover from
meso to homogeneous scales is of constant size L ≈ 10 or
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FIG. 4. Return probabilities collapsed by λ onto Prony series-
like master curve (see text). Left: data for weighted Laplacian
for p = 0.00004; N = 103 and 104. Note solid line is a power
law guide to the eye ∼ t−2; dashed line is eqn. 4 with β = 2/3
and 1/τ = λ. Inset shows scaling of λk with index k (see text)
for all N = 104 configurations at p = 0.00004. Right: data
from unweighted Laplacian for p = 0.00004; N = 103, 104 and
105; solid and dashed lines are ∼ t−2 and t−3/2, respectively.

N ≈ 1000 for a cubic domain and sets the lower bound
for a Representative Volume Element for homogeneous,
effective conduction in these systems. Moreover, the sim-
ilar long-time scaling for the weighted and unweighted
cases indicates that the local geometrical disorder (i.e.,
distribution of contact radii or weights) has little effect
on the long-time scaling so long as the system size is large
enough, N >∼ 103. Interestingly, the t−3/2 scaling gives
a “fracton” or “spectral” dimension ds = 3 [21] and indi-
cates the limit of a macroscopic, homogeneous behavior
consistent with classical continuum behavior. This is the
macroscopic limit where the effective, bulk conductiv-
ity D∞ is a meaningful average or homogenized material
property.
To confirm the scaling seen in the return probability,

we note that 〈P0(t)〉 in Eqn. 3 is well described by a
Prony series [11]

f(t) =
1

N

N
∑

k=1

exp

(

−

(

k − 1

N

)β

t/τ

)

(4)

with β = 2/3 and λ = 1/τ (see dashed line in Fig. 4
left). Thus, when eigenvalues are sorted from least λk=1

to greatest λk=N , it is seen that they are distributed ac-

cording to λk ∼
(

k−1

N

)
2

3 , where k = 1, 2, ...N , as in the
inset of Fig. 4. If we rescale λk by λN , all the eigenvalues
for all networks from various configurations and pressures
collapse onto a single curve as shown in Fig. 5. Again
we find λk ∼ k2/3 in the limit k → 0 indicating a ho-
mogenized macroscale consistent with classical diffusion;
although the eigenvalues are more discretely distributed
in this limit – they group about discrete levels due to
finite system size – no multiplicity of values exists. This
fact convolved with the distribution of small contact ar-
eas produce the observed noise in the return probability
at long times for the weighted case. λk ∼ k2/3 is con-
sistent with the classical Weyl result for the Dirichlet
eigenvalues of the Laplace operator in 3-dimensional Eu-
clidean space; however that result applies asymptotically
in the other limit k → ∞ [23], the so-called continuum

FIG. 5. Collapse of eigenvalues from weighted (left) and un-
weighted (right) transition matrices for select configurations
of N = 103, 104 and 105 particles at p = 0.004, p = 0.00004,
and p = 4 × 10−7. Solid and dashed lines are guides to the
eye ∼ k2/3 and ∼ k1/2, respectively.

limit, where we find a crossover to an anomalous scal-
ing λk ∼ k1/2. In the current case, the continuum limit
applies within a given particle at the microscopic scale,
whereas at the intermediate meso-scale the discreteness
of the material as a collection of densely packed parti-
cles is fundamental and not just a numerical approxi-
mation for solving a continuous transport equation. We
attribute the exact location of this crossover to the dis-
order in the network (when compared to, e.g., a simple
cubic lattice) and the form of the scaling in this limit to
the discrete nature of the network. The collapse of all
data for all pressures is surprising and suggests the scal-
ing of the crossover location from anomalous to classical
with pressure (or volume fraction) is entirely due to the
scaling of λ = z, while changes in detailed local geome-
try or coordination number have apparently little effect
on the qualitative distribution of eigenvalues. Moreover,
changes in system size only serve to extend the domain
of the classical distribution of eigenvalues for small eigen-
values in the homogeneous macroscale limit.

III. EIGENVECTOR STATISTICS

Turning now to the eigenvector statistics, we find sim-
ilarities to the eigenvector statistics of matrices taken
from the Gaussian Orthogonal Ensemble (GOE) of ran-
dom matrix theory, but with subtle differences for eigen-
vectors of the weighted versus the unweighted conduc-
tivity matrix. In both cases, eigenvectors associated
with large eigenvalues (early times) show significant lo-
calization due to network disorder while the distribution
of eigenvalue components approaches a common late-
time form (in Central Limit-like fashion) with decreas-
ing eigenvalue consistent with a homogenized macroscale.
For the unweighted conductivity matrix, cumulative dis-
tribution functions for eigenvector component statistics
converge for decreasing eigenvalue to the Porter-Thomas
[24] distribution function, P (x; k) ∼ xk/2−1e−x/2, ex-
pected from random matrix theory for a GOE matrix
(dashed curve in top panels of Fig. 6, see also lower
panels where histograms of the eigenvector components
for decreasing λ – left to right – are compared with a
Gaussian distribution).
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FIG. 6. TOP: CDFs of eigenvector components of vari-
ous eigenvectors associated with decreasing eigenvalue; black
dashed lines are CDF for Porter-Thomas distribution. Right:
weighted case for p = 0.00004 and N = 10000. Inset: parti-
cles colored coded [−1, 1] by contribution to eigenvector for
vectors associated with large (left) and small (right) eigenval-
ues for N = 1000 pack. Left: unweighted case. BOTTOM:
Histograms of eigenvector components compared to Gaussian
(solid lines) for various eigenvectors of increasing eigenvalue
(shifted for clarity); same p and N as above. Left: weighted
case. Right: unweighted case.

The Porter-Thomas distribution is known to statisti-
cians as the Chi-Squared distribution which is the distri-
bution of a random variable that is itself a sum of the
squares of k independent Gaussian distributed random
variables. Hence, in the unweighted case, the distribution
of eigenvector components within a given eigenvector, at
least for eigenvectors associated with smaller eigenvalues
but above the homogeneous limit (λ = 0), appear to fol-
low near-Gaussian i.i.d. statistics and are fully delocal-
ized. However, for the statistics of eigenvectors of the
weighted conductivity matrix, the quantitative details
(see Fig. 6) show that the Porter-Thomas distribution for
a single, as this is a scalar problem, independent Gaus-
sian distributed random variable does not quite fit the
statistics of the eigenvectors; indicating that the statis-
tics of each particle’s contribution to the eigenvector are
either not Gaussian, or not independent, or both. We
interpret this difference to be a result of the convolution
of the random weights (dependent on the distribution of
forces in the jammed pack resulting for the isotropic com-
pression protocol) shown in Fig. 1 with the disordered
topology of the network given by the unweighted graph
Laplacian shown in Fig. 6. We attribute the early-time
localization to the discreteness and inhomogeneity of the
network – the distribution of vertex degree or particle
coordination number (i.e., topological disorder); while at
late times the heavy tails of the eigenvector component
distributions lead to an anomalous, increased (as com-
pared to classical Gaussian behavior) influence of a given
node/particle to the response of the network/pack and
is related to the disorder in the weights (i.e., local ge-

ometry of particle contacts) or mean first passage times
between pairs of particles. Physically this may imply
that while the temporal response of the pack as seen via
the distribution of eigenvalues may support a macroscale
limit described by an effective, bulk conductivity in an
standard fashion, the spatial response indicated by the
eigenvector statistics may lead to something other than
the classical Gaussian propagator for conduction in these
discrete materials. Additional analysis is called for on
this point.

IV. CONCLUSION

In summary, two structure-property features charac-
terize these “jammed” networks. First, there is a well
described scaling of the mean coordination number or
eigenvalue with pressure (volume fraction) (λ−λc ∼ p1/2

for the unweighted and λ ∼ p1/2 for the weighted case
because the overlaps go to zero with the pressure while
the coordination number approaches a constant), which
controls the bulk conductive properties of the particle
pack. Second, there is inhomogeneity due to (topolog-
ical) disorder in the coordination number yielding vari-
ability in the contribution of a given particle to the bulk
transport, i.e. its centrality [25], which also manifests
in localized eigenvectors associated with large eigenval-
ues (early times) for both the weighted and unweighted
cases. Also, disorder in the weights on the network due to
local geometry variations leads to anomalous eigenvector
statistics for the weighted case. Additionally, early time
is when the transport is “sub-diffusive” (anomalous t−2

scaling of return time) due to discreteness of the network.
Inhomogeneity and its concomitant localization as well as
heavy-tailed statistics of nodal contributions to eigenvec-
tors, then, could both contribute to a sensitivity of these
networks to potential nonlinearities (e.g., breaking con-
tacts or initiating chemistry). This latter point relates
to the performance of devices comprised of particulate
materials.

As noted in the introduction, questions about the re-
lationship between the random structure of particulate
materials, the forming, or manufacturing processes that
determine this structure and the bulk properties related
to the performance of these materials are intimately re-
lated. As demonstrated here, statistical physics models
have an important role to play in advancing the state of
the art in this area. This is all the more important as
issues of optimal performance and prediction and control
of manufacturing processes to ensure efficient energy use
and improved yield of robust, reliable devices are critical
to resolving intersecting safety and environmental chal-
lenges.
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(János Bolyai Mathematical Society, 1993) pp. 1–46.

[4] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel,
Physical Review E 68, 011306 (2003).

[5] L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E
79, 021308 (2009).

[6] L. E. Silbert, Soft Matter 6, 2918 (2010).
[7] D. S. Bolintineanu, G. S. Grest, J. B. Lechman, and

L. E. Silbert, Phys. Rev. Lett. 115, 088002 (2015).
[8] S. Torquato and I. C. Kim, Applied physics letters 55,

1847 (1989).
[9] J. Haus, G. Parisi, and K. Kehr, Physics Reports 150,

263 (1987).
[10] A. F. Cheviakov, M. J. Ward, and R. Straube, Multiscale

Modeling & Simulation 8, 836 (2010).
[11] J. Dodziuk, The American Mathematical Monthly 88,

686 (1981).
[12] D. Holcman and Z. Schuss, Journal of Physics A: Math-

ematical and Theoretical 41, 155001 (2008).
[13] J. Machta and S. M. Moore, Phys. Rev. A 32, 3164

(1985).
[14] P. Gaspard, Chaos, Scattering and Statistical Mechanics

(Cambridge University Press, 1998).
[15] F. Chung, Spectral Graph Theory , CBMS Regional Con-

ference Series No. no. 92 (American Mathematical Soci-
ety, 1997).

[16] W. Weibull, J. Appl. Mech.-Trans. ASME 18, 293 (1951).
[17] E. Gumbel, Statistics of Extremes (Columbia University

Press, 1958).
[18] D. M. Mueth, H. M. Jaeger, and S. R. Nagel, Phys. Rev.

E 57, 3164 (1998).
[19] N. L. Johnson, S. Kots, and N. Balakrishnan, Continu-

ous Univariate Distributions, Wiley Series in Probability
and Mathematical Statistics: Applied Probability and
Statistics (2nd ed.), Vol. 1 (John Wiley & Sons, 1994).

[20] M. L. Manning and A. J. Liu, EPL (Europhysics Letters)
109, 36002 (2015).

[21] O. Mülken and A. Blumen, Phys. Rev. E 73, 066117
(2006).

[22] D. Fournier and A. C. Boccara, Physica A 157, 587
(1989).

[23] H. Weyl, Mathematische Annalen 71, 441 (1912).
[24] C. Porter, Statistical Theories of Spectral Fluctuations

(Academic, 1965).

[25] J. D. Noh and H. Rieger, Phys. Rev. Lett. 92, 118701
(2004).


