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Granular material in a swirled container exhibits a curious transition as the number of particles
is increased: at low densities the particle cluster rotates in the same direction as the swirling
motion of the container, while at high densities it rotates in the opposite direction. We investigate
this phenomenon experimentally and numerically using a co-rotating reference frame in which the
system reaches a statistical steady-state. In this steady-state the particles form a cluster whose
translational degrees of freedom are stationary, while the individual particles constantly circulate
around the cluster’s center of mass, similar to a ball rolling along the wall within a rotating drum.
We show that the transition to counterrotation is friction-dependent. At high particle densities,
frictional effects result in geometric frustration which prevents particles from cooperatively rolling
and spinning. Consequently, the particle cluster rolls like a rigid body with no-slip conditions on the
container wall, which necessarily counterrotates around its own axis. Numerical simulations verify
that both wall-disc friction and disc-disc friction are critical for inducing counterrotation.

From hurricanes to bacterial swarms, the emergence of
system-scale circulation from local interactions and lo-
cal driving is a phenomenon exhibited on many scales
and in many different physical systems. In 2D turbu-
lence, vorticity at the small injection scale may cascade to
larger and larger scales, stabilizing into a single system-
scale vortex [1, 2]. Analogous behavior is observed in
an active fluid of spinners flowing though a lattice of
annular channels and driven by a magnetic field, which
breaks time reversal symmetry. This active liquid de-
velops sound modes that propagate along the boundary,
generating global circulation [3]. Finally, dense suspen-
sions of self-propelled bacteria in confinement also lead to
the spontaneous formation of stable circulation along the
container walls [4, 5]. In all of these systems, rotation is
actively or passively injected locally, and interactions be-
tween the local units ultimately lead to global circulation
of the entire system.

There is no need to go to very complex systems to
observe the nontrivial emergence of system-size circula-
tion. A handful of marbles swirled in a teacup exhibits
similar dynamics. When there are only a few marbles
in the container, they form a line that rolls along the
container wall at the frequency of the circular transla-
tions ("snake" mode [6]). When a couple more marbles
are added, they form a cluster that sloshes periodically
around the container, its individual marbles repeatedly
cramming against the wall at the outer edges of the swirl
before flowing freely through the rest of the container.
This sloshing marble ensemble rotates about its own cen-
ter of mass in the same direction as the container, much
like wine swirling in a glass. When even more marbles are
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added, the monolayer of marbles will continue to period-
ically slosh around the container, but, curiously, above a
critical marble density the pack reverses to counterrota-
tion, or to rotating in the direction opposite to that of
the container [7]. This transition to counterrotation is
startling, because the angular momentum of the marbles
in their own reference frame changes sign with the addi-
tion of a couple marbles, and is ultimately opposite that
of the hand which forces them. The transition is not re-
stricted to marbles in a teacup, but can be observed in a
variety of shaken containers filled with granular material,
from vibration mills for grinding industrial materials [8]
to baby rattles.

Such a simple and ubiquitous phenomenon demands
an explanation, yet, while it has been studied empirically
[6, 7, 9–11]; there is still no clear understanding of the
minimal ingredients necessary for it to occur. We propose
to understand this phenomenon via analogies to a single
rigid body and a fluid in a swirled container. A single
rigid body in a swirled container with no-slip boundary
conditions will roll commensurately on the wall (akin to
one gear inside another), rotating about its own center
of mass in the opposite direction as the container. One
sees similar behavior for a pancake rolling on the edge
of a swirled frying pan. In contrast, a rigid body with
perfect-slip boundary conditions (as if the pancake were
in a bath of melted butter) would receive no torque from
the boundary, and hence experience no overall sense of
rotation. Finally, a fluid will rotate in the same direction
as the container is swirled, also to varying degrees based
on its slip conditions with the container wall. Thus the
rotation behavior of a single body in a swirled container
depends on its own rigidity as well as its slip interac-
tions with the wall. For granular systems composed of
many interacting bodies, the fluidity and boundary in-
teractions are not material constants but are emergent
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dynamic properties [12–16], determined by the friction
between the particles as well as the friction with the con-
tainer wall.

Here we experimentally and numerically investigate
the dynamics of swirling particles with the goal of iden-
tifying the minimal physical factors that facilitate the
transition from rotation to counterrotation as the num-
ber of particles is increased. We show that the criti-
cal control parameter for counterrotation is the particle
cluster’s effective slip with the wall, which arises from
friction. Although the individual particles’ friction coef-
ficient with the wall does not depend on the number of
particles, the effective boundary condition of the particle
cluster does and can change from perfect slip to perfect
stick as the number of particles is increased. Our exper-
imental observations suggest that friction between the
particles prevents densely packed particles from coopera-
tively rolling and spinning, causing the particle cluster to
rigidify and roll on the wall as a whole, ultimately result-
ing in counterrotation. Finally, we numerically simulate
the swirling system and find that if either interparticle
friction or particle-wall friction is set to zero, the system
rotates at the same frequency at all densities and never
transitions to counterrotation, verifying that friction is
critical for counterrotation.

I. EXPERIMENTAL RESULTS

Experimentally, the transition from rotation to coun-
terrotation of swirling particles is observed upon a
RotoMix orbital table performing circular translations,
without rotation, of angular velocity ω = 11.81 rad/sec
and amplitude 1.15 cm. The mounted circular container,
5.1 cm in diameter, with a vertical edge is partially filled
with a monolayer of N (ranging from 24 to 48) plastic
spheres (massm = .12 g and diameter 6 mm) and imaged
from above using a stationary Sony RX100 IV camera at
960 fps, as shown for two typical images in Fig 1a. We call
the collection of particles a “cluster,” and measure its av-
erage angular velocity $ by the average angular velocity
of the particles about the cluster’s center of mass: $ =

1
T−∆t

1
N

∑T
t=∆t

∑N
i=1$i(t). Here T is the total number

of frames and $i(t) is particle i’s instantaneous angu-
lar velocity about the cluster’s center of mass at time t:
$i(t) =

1
∆t (arctan(

y(t,i)−yCM
x(t,i)−xCM

) − arctan( y(t−∆t,i)−yCM
x(t−∆t,i)−xCM

)).
Here xCM and yCM refer to the x- and y-coordinates of
the center of mass of all particles.

Under these conditions, the average angular velocity $
crosses zero and transitions between rotation and coun-
terrotation at roughly 36 particles, as shown in Fig 1b
and the SI video [17]. For N > 36, the cluster counter-
rotates ($ < 0), and for even higher values of N , the
average angular velocity reaches a minimum and then
increases slightly for the largest values of N .

Figure 1. a: Raw image of experimental particles in a
swirling container, and the same container at a later time
after it has translated through roughly half its circular tra-
jectory. The white dotted line represents the outermost points
of the container during its trajectory. The container does not
rotate in the lab frame. b: The mean angular velocity ($)
of the particle cluster about its own center of mass for differ-
ent particle counts N . $ is reported as how many radians the
cluster gains on each swirling cycle of the dish. AsN increases
the cluster transitions from rotation to stalling to counterro-
tation. Black dashed line indicates the angular velocity of a
theoretical single particle or pancake, with perimeter match-
ing that of the cluster, if it were perfectly rolling along the
wall. c: The M-frame rotates with the container such that the
point (left, labeled "M") on the container’s boundary furthest
from the center of swirling is always positioned at the bottom
in the M-frame (middle and right). As a result, the walls of
the container in the M-frame appear to be rotating clockwise,
as depicted by the black arrows. Also shown are the point
S center of swirling, and the point C center of the container.
The rightmost M-frame diagram depicts the centrifugal force
field (Fcent, brown) as well as the Coriolis force (FCor, red)
associated with a particle (green) with indicated velocity (v,
blue).

A. The M-frame

Further analyzing the data in the lab frame is a chal-
lenge since the particles experience a rotating time-
dependent force from the circular translations of the
swirling container; thus the particles slosh around the
container with no apparent steady-state (SI Video [17]).
Therefore, it is illuminating to analyze the data in a
frame of reference where the external forces are steady
[10]. Consider a rotating frame, which rotates at the an-
gular velocity ω of the container, about an axis at the
center S of the swirling orbit. In this frame of refer-
ence the container’s translational velocity is zero and it
rotates around its own center C at a constant angular
speed −ω. This frame of reference is equivalent to cen-
tering our camera above the center of the container and
rotating it such that S is stationary, keeping the bound-
ary point furthest from S at the bottom; Hereafter we
refer to this point as the point M, as shown in Fig 1C. In
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this frame of reference there are two external forces act-
ing on all particles: the centrifugal force, which points
radially away from S with magnitude at a point x equal
to mω2|x− S|, and the Coriolis force, which points per-
pendicularly to the right of the particle’s velocity vector
v, with magnitude 2m|v|ω [18, Section 39]. More de-
tails on this change of coordinate system are provided in
the SI [19]. Within the container, the centrifugal force
pushes the particles outward to the boundary, and then
its tangential component pushes particles toward M. At
the boundary, the particles are also dragged clockwise
due to friction with the moving container wall. We call
the original frame of reference the lab frame, and the
rotating frame of reference the M-frame. The latter ter-
minology is borrowed from Kumar et al [10], which used
this frame of reference to study granular particles on the
edge of a swirling cylinder.

In the M-frame, the system can reach a steady-state
because the external forces on it are constant in time.
Experimentally, our system appears to be at steady state
when averaged over typical fluctuations (SI Videos [17]
and Fig 2a), characterized by a steady particle density
pattern and a steady circulation pattern as shown in Fig-
ures 2b and 2c. The steady-state in our system bears
a striking resemblance to the steady-state in a rotating
drum. In the rotating drum, gravity pulls beads to the
bottom of the drum, where they form a compact cluster,
and then the wall of the drum drags the bead cluster up-
wards, until it liquefies and the beads avalanche back to
the bottom of the drum, continuing the cycle. In the M-
frame, the force of gravity is replaced by the centrifugal
force, which both push particles toward point M at the
bottom. Additionally, the M-frame introduces the Cori-
olis force that the rotating drum lacks, resulting in the
beads tending to the left of the container.

In the M-frame, all particles follow clockwise trajec-
tories within the container while passing between two
distinct spatial regions: a dense, “pinned” region (solid-
like), and a sparse, “loose” region (liquid-like), as shown
in Fig 2a and calculated in the SI [19]. In the pinned re-
gion, the particles are packed in layers against the moving
wall and move as a rigid structure, whereas in the loose
region the particles perform less constrained trajectories
as they cross the container, as shown in Fig 2b. When a
particle in the loose region transitions to the pinned re-
gion, it undergoes multiple collisions before settling into
a trajectory parallel to the container’s edge. Increasing
N also increases the number of collisions a particle ex-
periences, causing it to enter the pinned region earlier
in its cycle and subsequently increasing the size of the
pinned region. For all values of N , particles exit the
pinned region and detach from the rigid structure at the
same location. Once loose, a particle experiences cen-
trifugal (0-460 cm/s2) and Coriolis (0-200 cm/s2) forces
and accelerates as it traverses the loose region. Multiple
collisions at the end of the loose region pin the particle
and this cycle continues.

Individual particles circulate between these two re-

gions and on average the particle cluster rotates in the
same clockwise direction as the container in the M-frame,
shown for two typical examples in Fig 2b and 2c. Impor-
tantly, the cluster’s angular velocity in the M-frame, $M ,
is related to its angular velocity in the lab frame as

$M = $ − ω . (1)

Therefore, counterrotation in the lab frame ($ < 0) cor-
responds to the particle cluster rotating faster than the
dish in the M-frame (|$M | > ω).

Figure 2. a: Sample experimental image in the M-frame,
with pinned (red) and loose (blue) region particle centers la-
beled. A sample angular slice interrogation area is highlighted
in green. The angular slice slides around the entire container
during analysis; the major angular positions θ are denoted on
the edge of the container. b: Density histogram of the par-
ticles for a rotation case at low N = 28. The white arrows
denote the average local particle velocity deviation from the
velocity of the underlying container. c: Same as b, but for
counterrotation at high N = 48. The coherent pinned region
(top left on the container) grows in size with increasing N ,
while the loose region shrinks in size. The particles perform
clockwise trajectories around the container while passing be-
tween the pinned and loose regions in a cyclic manner.

B. Minimal model: rigid ball in a swirled container

At this point it is insightful to consider a minimal
model for our swirling system: a single rigid ball of ra-
dius Rball swirled in a container of radius Rcont (SI Video
[17]). A steady-state for the ball in the M-frame occurs
when it is near the bottom-left of the container (near M),
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Figure 3. a: Experimental average particle angular velocity
〈$M

i (θ)〉i about the cluster’s center of mass, as a function of
θ and N . In the loose region, $i(θ) increases and decreases
in a quantitatively similar manner for all values of N , with
the only difference being the location on the dish at which
this peak occurs. However, in the pinned region, the aver-
age value of |$i(θ)| consistently increases with increasing N .
Plotted in black are the average locations at which particles
enter the pinned and loose regions. Note that the apparent
decrease of |〈$M

i (θ)〉i| in the transition regions is an artifact
of the oblong shape of the particle cluster. The transition
regions occur at higher distances from the center, but the lin-
ear velocity of the particles during the transition regions does
not change much. b: Average experimental angular velocity
of particles circling the dish, normalized with respect to the
angular velocity of the wall about the cluster’s center of mass.
This is done by dividing 〈$i(θ)〉i by the angular velocity of
the boundary around the cluster’s center of mass, a function
of θ since the center of mass is not at C. At low N , a nor-
malized velocity <1 in the pinned region indicates that those
particles are traveling slower than the dish wall. As N is
increased, the normalized velocity of particles in the pinned
region approaches 1, meaning the particles are moving at the
velocity of the wall.

rotating at constant angular velocity $b with the torque
along the frictional boundary balancing the centrifugal
force. If we define a dimensionless parameter γ = |$b|

ω ,
then by (1), γ < 1 corresponds to rotation in the lab
frame and γ > 1 corresponds to counterrotation. The
value of γ depends on the slip conditions between the
ball and the container wall, which interpolate between
two limiting cases: perfect no-slip (strong friction) and
perfect slip (no friction). When friction is strong, the ball
rolls commensurately on the wall of the container with-
out slipping, and γ = γc = Rcont

Rball
. Since Rcont > Rball,

the ball thus counterrotates in the lab frame. Conversely,
when there is no friction, the ball cannot rotate at all due
to perfect slip boundary conditions and γ = 0 < 1, corre-
sponding to rotation. In between the two extremes, the
degree of wall-slip can be measured by a slip parameter

Figure 4. Experimental data. a: The slip parameter s
is defined as the slip conditions between the particle cluster
and the container wall. The value of s of the particles in the
pinned region approaches 1 as N is increased, corresponding
to the pinned region particles moving more coherently with
the moving wall. Additionally, the slip parameter s of rough-
ened particles along the wall of the pinned region is closer to
1 (non-slip conditions) than for smoother particles, meaning
that roughened particles also move more coherently with the
moving wall in the pinned region. b: The local rotation, as
well as variability in rotation behavior, of individual particles
along the wall in the pinned area decreases with increasing N ,
a result of increasing frustration between the particles. Inset
shows snapshot of a particle with overlaid Particle Image Ve-
locimetry (PIV) vectors. We use PIV on the surface features
of the particles to determine overall feature velocity (blue)
and particle spinning about a vertical axis through its own
center (orange). c: Particles with roughened surfaces, and
therefore increased friction, transition to counterrotation at a
lower N than for smoother particles.

s = γ
γc

= $M

ω
Rball
Rcont

, which varies from s = 0 for perfect
slip conditions, to s = 1 for perfect no-slip conditions.

C. Particle cluster behavior

While the single-particle model captures much of why a
swirled particle cluster can either rotate or counterrotate,
the details are more subtle since an ensemble of particles
rarely behaves exactly like a single rigid object. Even in
the M-frame, where the dynamics are in steady state, the
instantaneous angular velocity of any single particle$i(t)
depends on where it is in the dish, as shown in Fig 3a. It
is therefore more appropriate to refer to a particle’s in-
stantaneous velocity as $i(θ). The change in $i(θ) with
θ can largely be characterized by the loose and pinned
regions. In the loose region, the value of $i(θ) increases
and decreases in a quantitatively similar manner for all
values of N , with the only difference being the location
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on the dish at which this peak occurs. However, in the
pinned region, the average value of |$i(θ)| consistently
increases with increasing N . Therefore, the pinned re-
gion is the major contributor to the different behaviors
seen across varying N ’s. Comparison of $i(θ) in the
pinned region to the velocity of the moving boundary re-
veals that the particles in the pinned region lag behind
the moving boundary for low values of N , but approach
the speed of the boundary at high N , as shown in Fig
3b. Therefore, the average angular velocity of the clus-
ter is dictated by the interaction of the particles in the
pinned region with the container’s wall, in analogy to the
slip-condition s of the single-particle model.

D. Particle cluster slip parameter

Indeed it is possible to define an analogous slip param-
eter for the swirling cluster,

s =
γ

γc
=
$M

ω

Pball

Pcont
, (2)

where the radii of the rigid ball and container have been
replaced by their respective perimeters, Pball and Pcont,
to account for the deformability of the cluster. The par-
ticles considered for this calculation are only the ones
along the perimeter of the cluster. Accordingly, the slip
parameter of the pinned particles in our system increases
from approximately 0.5 at N = 25 to nearly 1 at the
highest values of N , as shown in Fig 4a. Similarly, our
experimentally swirled cluster behaves increasingly simi-
larly to a model particle with no-slip boundary conditions
as N is increased, as shown in Fig 1b, confirming that
counterrotation is due to increasingly no-slip boundary
conditions.

E. Pinned region particle dynamics

At low N , the particles at the wall in the pinned region
are free to spin and roll locally, falling behind the moving
wall and effectively reducing the particle cluster’s friction
with the container. This effective slip of the cluster on
the wall corresponds to s� 1, and the cluster rotates in
the lab frame. As N increases, the particles in the pinned
region pack together more tightly, and friction between
the particles dominates. When interparticle friction is
strong between two contacting particles, they must spin
about their own axes in opposite directions, dictating
antiferromagnetic-like interactions for spinning. For six-
fold packing, as we often see in the pinned region, this
results in geometric frustration, prohibiting any of the
particles from rolling or spinning freely at high N , as
shown in Fig 4b. Similarly, particles in strong contact
cannot advance as a tight single-file due to geometric
frustration, and can only roll on the ground side-by-side.
The inability to individually roll causes the particles to
effectively stick to the container wall, resulting in less

effective wall-slip (s ≈ 1). Therefore, the increased fric-
tional effects at high N cause the dense particle cluster to
roll, or rather treadmill, on the container wall, resulting
in counterrotation.

F. Friction affects counterrotation

If friction is indeed what drives counterrotation, one
would expect that increased frictional effects achieved
by alternative means would also promote counterrota-
tion. Indeed, sandpaper-roughened particles transition
to counterrotation at N = 28 as compared to N = 36 for
smooth particles, as shown in Fig 4c, confirming the im-
portance of friction to counterrotation. Furthermore, the
calculated slip parameter s for the roughened particles is
consistently closer to 1 than for the smooth particles, as
shown in Fig 4a, affirming that counterrotation is asso-
ciated with increasingly no-slip boundary conditions.

II. SIMULATIONS

Further experimentally testing the importance of fric-
tion to counterrotation is a challenge since it is difficult
to systematically fine tune or completely eliminate the
friction. We therefore turn to numerical simulations,
which offer the unique advantage of adjusting physical
constants that are impossible to change experimentally.

We numerically simulate a system where N two-
dimensional discs with radius r = 1 are swirled in a cir-
cular container with radius R = 8.6, as shown in Fig 5a.
The container is translated around a polygonal path with
30 sides and amplitude A = 0.96, approximating a circle
while allowing particle-wall collisions to be solved ana-
lytically. The behavior of the particles is simulated using
an event-driven method, with the particles’ linear and
angular velocities updated every collision and otherwise
determined via Newton’s equations. Such a method al-
lows us to exactly solve the dynamics up to floating-point
precision, with the minimal number of parameters and
ingredients in the model. Collisions are perfectly elastic
in the normal direction, and in the tangential direction
are subject to frictional impulses derived from Coulomb’s
law, using a coefficient of friction µd for particle-particle
collisions and µw for particle-wall collisions [20] (see SI
for Methods [19]).

The average angular velocity $ for the simulations
is qualitatively similar to those measured in the exper-
iments, exhibiting a rotation-counterrotation transition
with increasing N , as shown in Fig 5b. The M-frame
density histograms and relative angular velocities are
also qualitatively similar to those of the experiment, as
shown in Fig 5c and Fig 5d. The qualitative similar-
ity between the experiments and simulations is striking,
given that the simulations are significantly simplified –
notably, there is no friction with the substrate, no three-
dimensional rolling effects, and no normal damping dur-
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ing collisions, so the discs never actually stick to each
other. Therefore, these additional factors cannot be crit-
ical for observing the transition.

Figure 5. Simulations. a: Snapshot of the simulated discs.
b: The particle cluster transitions from rotation to coun-
terrotation as N is increased when friction is present. This
rotation-counterrotation transition point occurs at higher N
when friction is decreased. When either disc-disc or disc-wall
friction is completely eliminated, the system never transitions
to counterrotation. Here "High friction" is µd = µw = 1.0,
"Medium friction" is µd = µw = 0.5, and "Low friction"
is µd = µw = 0.1. When one friction is completely turned
off, the other friction is set to 1.0. c: Density histogram of
the discs for a rotating (N = 28, left) and counterrotating
(N = 48, right) case. d: Quiver plots showing the average
local disc velocity deviation from the container for a rotating
(N = 28, left) and counterrotating (N = 48, right) case.

A. Tuning disc-wall and disc-disc frictions

If the transition from rotation to counterrotation is in-
deed driven by friction both between the discs and with
the container, then decreasing those frictions would re-
quire more discs to achieve the same effective fricton,
and therefore the counterrotation transition should oc-
cur at a higher N . Indeed, decreased disc-disc and disc-

wall friction cause the counterrotation transition to oc-
cur at higher N , as shown in Fig 5b. Furthermore, com-
pletely turning off friction should eliminate the transition
to counterrotation. We test these two cases separately.

B. Turning off disc-wall friction

We first test the importance of boundary friction by
eliminating disc-wall friction (µw = 0), resulting in a
frictionless boundary that serves only to contain the discs
via hard-core-like elastic interactions. The discs may still
frustrate each others’ abilities to spin about their own
axes, but without wall friction the discs are not encour-
aged to rotate commensurately with the wall. In the lab
frame, the cluster of discs behaves as a solid-like unit
sloshing around the container without any internal indi-
vidual spinning (see SI videos [17]). The angular velocity
of the cluster therefore remains at that of the container
regardless of N , as shown in Fig 5b. In the M-frame,
the discs form a rim at the boundary of the container
with very little internal movement (SI video [17]). The
steady-state of these particles arises from the centrifugal
force pushing particles to the wall, much like sand set-
tling under gravity. However, without additional forcing
from the wall, the angular velocity of the cluster cannot
change, so the system never transitions to counterrota-
tion, verifying that disc-wall friction is critical to induce
counterrotation.

C. Turning off disc-disc friction

Next, we separately test the importance of disc-disc
friction by eliminating it (µd = 0) and bringing back
disc-wall friction. In this system, the outer discs are ac-
celerated by frictional collisions with the wall and spin
about their own axes quickly. However, with no disc-
disc friction, none of this spinning is transferred to the
inner discs except through particle exchanges, so indi-
vidual discs spin with no coherence. The cluster of discs
is loose and gas-like, unlike the rigid body appearance
of the cluster when all friction is present (SI video [17]).
With no disc-disc friction the average angular velocity re-
mains close to the container velocity, except at very high
N where it drops slightly. The system never transitions
to counterrotation, verifying that disc-disc friction is also
critical to induce counterrotation.

III. CONCLUSIONS

In conclusion, we perform experiments and numeri-
cal simulations of swirled granular media and identify
the minimal ingredients for the particles and their in-
teractions necessary to induce counterrotation. We use
a frame of reference in which the dynamics of swirled
granular media are at steady state, the M-frame. In this
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frame of reference we introduce a minimal model, where
the granular cluster is replaced by a single ball within a
rotating drum. This system can capture the observed dy-
namics by only tuning the amount of slip s that the ball
experiences with the wall of the rotating drum. When the
ball experiences strong slip on the wall (s� 1), the sys-
tem rotates in the lab frame, while minimal slip (s ≈ 1)
corresponds to counterrotation in the lab frame. In the
granular system, s � 1 is the result of individual par-
ticles falling behind the moving wall while rolling freely
along the wall and the ground, acting as bearings for
the particle cluster against the wall. This is generally
true at low N when the effective friction is minimal, and
corresponds to rotation in the lab frame. On the other
hand, s ≈ 1 occurs when the individual particles along
the wall move with the wall due to high packing den-
sities and geometric frustration. This is generally true
for densely packed particles at high N . Particle-particle
friction prevents closely-packed particles from spinning
and rolling freely, converting the particle ensemble into a
solid-like cluster. At the same time, particle-wall friction
causes that solid-like cluster of particles to stick to the
wall, causing the overall cluster to roll commensurately
along the wall and counterrotate, much like a pancake in
a swirling pan.

Our investigation has considered the dynamics of dis-
crete particles but it would be interesting to model the
system with continuum equations, coupling internal spin-
ning to a continuum notion of vorticity. Such equations
have modeled related systems [21–23] and could perhaps
give insight into the sensitive interplay between pressure,
vorticity, friction, and external forcing that leads to coun-
terrotation. While our system is more complicated than
the others that have been studied as it has no additional
symmetries that lead to simplified equations, one could
still study these equations numerically in the M-frame
where the external forces are stationary.

In our swirling system, the large scale translation lo-
cally drives individual particles to roll on the ground and
spin on their neighbors and the boundary. The indi-
vidual particles then interact with each other via fric-
tional collisions, causing the motion of the particles to

eventually coalesce into system-size rotation or counter-
rotation. In addition to the swirling container and ro-
tating drum systems, the behavior associated with in-
teracting, individually-driven particles can give rise to
phase changes and bifurcations in other physical systems.
Several studies have shown that interactions between ac-
tively moving or rotating objects, both self-propelled and
system-scale driven, can lead to collective angular mo-
mentum changes and rich phase behaviors [4, 5, 22–27].
Specifically, in our system the interaction is particle fric-
tion and geometric frustration. Particle-particle rolling
frustration is likely responsible for the rolling-jamming
transition, resulting in an apparent discontinuous jump
in effective friction when sheared layers of spherical mar-
bles exceed a critical thickness [28]. The transition to
solid-like behavior in these systems is driven by the in-
ability of contacting particles to co-spin or roll in-line,
distinct from solid-like behavior that is achieved via jam-
ming [29, 30] or rigidity percolation [31].

Finally, our observation that the transition to counter-
rotation can be manipulated by roughening the particles
inspires a speculative but interesting analogy with the
transition to turbulence in pipe flow, where a roughness
dependent transition has also been observed [32]. How-
ever, unlike pipe turbulence, it is not clear if the tran-
sition to counterrotation of swirling particles exhibits a
true critical phenomenon.

ACKNOWLEDGMENTS

We are grateful to Tadashi Tokieda for introducing
us to this phenomenon. This work was supported by
the NSF (DMR-1420570). M. H.-C. and J. P. R. were
supported by US Department of Energy, Office of Sci-
ence, Office of Advanced Scientific Computing Research,
Applied Mathematics Program under Award No. DE-
SC0012296. M. H.-C and J. P. R. thank Leif Ristroph for
procuring tabletop experimental materials. S. M. R. and
M.H.-C acknowledge support from the Alfred P. Sloan
Foundation.

[1] M. G. Shats, H. Xia, and H. Punzmann, Phys. Rev. E
71, 046409 (2005).

[2] H. Xia, D. Byrne, G. Falkovich, and M. Shats, Nature
Physics 7, 321 (2011).

[3] A. Souslov, B. C. van Zuiden, B. Bartolo, and V. Vitelli,
Nature Physics 13, 1091 (2017).

[4] H. Wioland, E. Lushi, and R. E. Goldstein, Proceedings
of the National Academy of Sciences 111, 9733 (2014).

[5] E. Lushi, H. Wioland, and R. E. Goldstein, New Journal
of Physics 111, 9733 (2014).

[6] A. Feltrup, K. Huang, C. Kruelle, and I. Rehberg, Eur.
Phys. J. Special Topics 179, 19 (2009).

[7] M. A. Scherer, K. Kötter, M. Markus, E. Goles, and

I. Rehberg, Phys. Rev. E 61, 4069 (2000).
[8] T. Yokoyama, K. Tamura, H. Usui, and G. Jimbo, in

Proceedings of the Eigth European Symposium on Com-
minution, Stockholm, 1994 (Elsevier, 1996) pp. 413–424.

[9] M. A. Scherer, V. Buchholtz, T. Pöschel, and I. Rehberg,
Phys. Rev. E 54, R4560 (1996).

[10] D. Kumar, N. Nitsure, S. Bhattacharya, and S. Ghosh,
Proceedings of the National Academy of Sciences 112,
11443 (2015).

[11] M. A. Scherer, T. Mahr, A. Engel, and I. Rehberg, Phys.
Rev. E 58, 6061 (1998).

[12] O. Zik and J. Stavans, EPL (Europhysics Letters) 16,
255 (1991).

http://dx.doi.org/10.1073/pnas.1405698111
http://dx.doi.org/10.1073/pnas.1405698111
http://dx.doi.org/10.1073/pnas.1500665112
http://dx.doi.org/10.1073/pnas.1500665112
http://stacks.iop.org/0295-5075/16/i=3/a=006
http://stacks.iop.org/0295-5075/16/i=3/a=006


8

[13] S. Fauve, S. Douady, C. Laroche, and O. Thual, Physica
Scripta 1989, 250 (1989).

[14] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev.
Mod. Phys. 68, 1259 (1996).

[15] D. Bi, J. Zhang, B. Chakraborty, and R. P. Behringer,
Nature 480, 355 (2011).

[16] T. S. Majmudar, M. Sperl, S. Luding, and R. P.
Behringer, Phys. Rev. Lett. 98, 058001 (2007).

[17] (), see Supplemental Material at [URL will be inserted
by publisher] for a video including the swirling beads in
both the lab frame and M-frame, both experimentally
and numerically.

[18] L. D. Landau and E. M. Lifshitz, Mechanics
(Butterworth-Heinemann, 1976).

[19] (), see Supplemental Material at [URL will be inserted by
publisher] for details on the M-frame conversion, details
on the calculation of particles in the “loose” and “pinned”
regions, as well as details of the numerical simulation.

[20] Y. Wang and M. T. Mason, J. Appl. Mech. 59, 635
(1992).

[21] J. S. Dahler and L. E. Scriven, Nature 192, 36 (1961).
[22] J. C. Tsai, F. Ye, J. Rodriguez, J. P. Gollub, and T. C.

Lubensky, Phys. Rev. Lett. 94, 241 (2005).
[23] B. C. van Zuiden, J. Paulose, W. T. M. Irvine, D. Bar-

tolo, and V. Vitelli, Proc. Natl. Acad. Sci. 113, 12919
(2016).

[24] N. H. P. Nguyen, D. Klotsa, M. Engel, and S. C. Glotzer,
Phys. Rev. Lett. 112, 075701 (2014).

[25] K. Yeo, E. Lushi, and P. M. Vlahovska, Phys. Rev. Lett.
114, 188301 (2015).

[26] M. Workamp, G. Ramirez, K. E Daniels, and J. Dijks-
man, Soft Matter 14 (2018).

[27] F. Moisy, J. Bouvard, and W. Herreman, EPL (Euro-
physics Letters) 122, 34002 (2018).

[28] C. Marone, B. M. Carpenter, and P. Schiffer, Phys. Rev.
Lett. 101, 248001 (2008).

[29] I. Peters, S. Majumdar, and H. Jaeger, Nature 532, 214
(2016).

[30] P. Coussot, N. Roussel, S. Jarny, and H. Chanson,
Physics of Fluids 17, 011704 (2005).

[31] S. Alexander, Physics Reports 296, 65 (1998).
[32] N. Goldenfeld, Phys. Rev. Lett. 96, 044503 (2006).

http://stacks.iop.org/1402-4896/1989/i=T29/a=048
http://stacks.iop.org/1402-4896/1989/i=T29/a=048
http://dx.doi.org/10.1103/RevModPhys.68.1259
http://dx.doi.org/10.1103/RevModPhys.68.1259

	Geometric frustration induces the transition between rotation and counterrotation in swirled granular media
	Abstract
	Experimental Results
	The M-frame
	Minimal model: rigid ball in a swirled container
	Particle cluster behavior
	Particle cluster slip parameter
	Pinned region particle dynamics
	Friction affects counterrotation

	Simulations
	Tuning disc-wall and disc-disc frictions
	Turning off disc-wall friction
	Turning off disc-disc friction

	Conclusions
	Acknowledgments
	References


