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Elastic crystalline membranes exhibit a buckling transition from sphere to polyhedron. However,
their morphologies are restricted to convex polyhedra and are difficult to externally control. Here,
we study morphological changes of closed crystalline membranes of super-paramagnetic particles.
The competition of magnetic dipole-dipole interactions with the elasticity of this magnetoelastic
membrane leads to concave morphologies. Interestingly, as the magnetic field strength increases,
the symmetry of the buckled membrane decreases from 5-fold to 3-fold, to 2-fold and, finally, to 1-
fold rotational symmetry. This gives the ability to switch the membrane morphology between convex
and concave shapes with specific symmetry and provides promising applications for membrane shape
control in the design of actuatable micro-containers for targeted delivery systems.

I. INTRODUCTION

Polyhedra are of great interest to scientists, mathe-
maticians and engineers. They emerge spontaneously
in many fields of science. For example, single crystals
take various polyhedra shapes, fullerenes adopt beau-
tiful truncated icosahedron shapes[1], and bacterial
micro-compartments are observed in multiple regular
and irregular polyhedral shapes[2].

Soft homogeneous elastic membranes, including hal-
low capsules[3–5], viral capsids[6, 7], elastic biological
membranes[8, 9] and crystalline vesicles[10–12], can
buckle under many conditions. Deformable capsules
under pressure changes take on irregular shapes[13–
16]. On the other hand, self-assembled crystalline
membranes, like the shells of viruses, generally buckle
into shapes with icosahedral symmetry[17]. These
icosahedral membrane shapes have been explained by
homogeneous elasticity theory[6, 18]. Furthermore,
membranes with heterogeneous elasticity have been
demonstrated to form various regular and irregular
polyhedral shapes[19]. Such polyhedral morphologies
are formed by the competition between stretching energy
and bending energy. Although it is possible to engineer
membrane morphologies by arranging defects in closed
membrane topologies[20], these morphologies cannot go
beyond polyhedra.

Here, we explore the possibility to create new closed
shell morphologies, other than polyhedra, in a control-
lable manner. For this purpose, we consider elastic
membranes of super-paramagnetic particles because
of the exceptional penetration of magnetic fields and
bio-compatibility. This provides opportunities to de-
sign magnetically responsive nanocarriers for targeted
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delivery systems in therapeutic applications[21–24].
Magnetoelastic materials form rich morphologies[25, 26]
and can accomplish multimodal locomotion[27] as well as
deformations that generate forces between surfaces[28]
when directed by magnetic fields. The versatility
of magnetoelastic filaments, which consist of super-
paramagnetic particles connected by elastic linkers,
has also been demonstrated experimentally[29–31] and
numerically[32, 33].

Compared to magnetoelastic filaments and open
membranes, closed magnetoelastic membranes, which
have additional topological constraints, are found here
to generate specific symmetries due to the interplay
between nonlinear elasticity and magnetic dipole-dipole
interactions. By using molecular dynamics simulations,
we find the minimum energy configurations of magne-
toelastic membranes, which can be directly controlled
by external magnetic fields.

II. MODEL

As dictated by Euler’s polyhedron formula, we start
by triangulating a spherical shell with twelve isolated 5-
fold disclinations. The disclinations are positioned on the
vertices of an inscribed icosahedron (Fig. 1) to minimize
the interactions between them[34], as proposed by Cas-
par and Klug[35].
The elastic component of the Hamiltonian of a magne-

toelastic membrane, following the discretization scheme
of Nelson et al[18], is written as

He =
∑
e∈E

1

2
k (|re1 − re2| − l0)

2
+
∑
e∈E

1

2
κ̃ |ne1 − ne2|

2
(1)

where k is microscopic stretching constant and κ̃ is mi-
croscopic bending rigidity. The sum is over all e elements
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FIG. 1. Mesh configuration of the spherical shell according
to Caspar and Klug construction, which is characterized by
two integers h and k[35]. Above figure shows the example
of (6, 6) strucutre and it has 1082 vertices, 3240 edges and
2160 faces. Blue vertices correspond to the locations of 5-fold
disclinations and there are 12 disclinations in total which are
located on vertices of an inscribed icosahedron.

of E, which is the set of all edges; re1 and re2 are two ver-
tices of the edge e; and ne1 and ne2 are normal vectors
of the two adjacent triangles of the edge e; and l0 is the
equilibrium length. Note that the corresponding contin-
uum limit of the above discretized Hamiltonian is mesh
dependent[36]. With the above described triangulation
of a spherical shell, it has been shown that in the con-
tinuum limit[18, 37] Young’s modulus Y = 2k√

3
, Poisson’s

ratio ν = 1
3 and bending rigidity κ = κ̃√

3
.

Incompressible membranes (ν = 1/3) of radius R can
be described by two parameters Y and κ. Then, a single

dimensionless parameter, γ = Y R2

κ , called the Föppl-von
Kármán parameter[38], completely determines the buck-
ling transition of the system. Nelson et al[6] have shown
that homogeneous elastic membranes undergo a spon-
taneous buckling transition from sphere to icosahedron
when γ > γ∗ = 154, where 154 is the value of γ∗ for a
flat disk.

In our study, we place a small super-paramagnetic par-
ticle at each vertex. An external magnetic field induces a
magnetic dipole on each vertex. Therefore, an additional
term for magnetic dipole-dipole interactions is added into
the Hamiltonian of the system:

Hm = −µ0

4π

∑
ri,rj∈V

1

|rij |3
[
3 (µi · r̂ij)

(
µj · r̂ij

)
− µi · µj

]
(2)

where µ0 is the magnetic permeability in vacuum, µi is
the magnetic dipole moment at vertex i, V is the set of all
vertices, ri is the position vector of vertex i, rij = rj−ri
and r̂ij = rij/ |rij | and the sum is over i 6= j.

The magnetic dipole-dipole interaction is long range
and anisotropic. A simplified form which considers only

nearest neighbor interactions in the inextensible limit(see
Appendix A) is helpful for extracting another dimension-
less parameter and yields:

Hm ≈

 ∑
ri∈Vhex

6 +
∑

ri∈Vpen

5

(niz2 − 1

3

)
M̃ (3)

where M̃ = 1
4
µ0

4π
(3µ)2

l30

2
3 , µ is the induced magnetic

dipole moment which assumes only one type of super-
paramagnetic particles, Vhex is the set of vertices with
6 neighbors, Vpen is the set of vertices with 5 neighbors
and niz is the z component of normal vector at vertex i.

M̃ gives the characteristic energy scale for each near-
est neighbor pair of magnetic dipole-dipole interactions
in the discretization limit. Similar to the case of elastic
membranes, a magnetic modulus can be defined in the

continuum limit as M = 8
√

3 M̃
l20

, and a dimensionless pa-

rameter, Γ = MR2

κ , called magnetoelastic parameter[39],
can be similarly defined. The magnetoelastic parameter
Γ characterizes the relative strength between magnetic
energy and bending energy(see Appendix B).

Therefore, the magnetoelastic membrane has one ad-
ditional energy competition from magnetic dipole-dipole
interactions, which is tunable via an external magnetic
field. The total magnetoelastic energy of the membrane
Hem is the sum of elastic and magnetic energies, which
divided by κ gives the dimensionless form:

H̃em [{ri}; γ,Γ] =
Hem

κ
= H̃e [{ri}; γ] + H̃m [{ri}; Γ]

(4)
where tilde indicates dimensionless quantities and note
that H̃e and H̃m depend linearly on γ and Γ respectively.

Besides magnetic and elastic contributions, a volume
constraint is also imposed on the membranes to account
for internal pressure. This internal pressure is necessary
when the membrane is not penetrable, which is modeled
as:

Hv = Λ

(∑
k

Ωk − Vref

)2

(5)

where Ωk is the signed volume of the tetrahedron
extended by k-th triangle on the membrane, Vref is the
reference volume of the membrane and Λ is the Lagrange
multiplier which characterizes the system pressure. Vref
is set as volume of the icosahedron after buckling and Λ
is set to a large enough value such that the membrane
has additional rigidity from the volume constraint.
The volume constraint is used to capture the effect
from the environment surrounding the magnetoelastic
membrane and eliminate possible crumpled states[40].
Corresponding cases without the volume constraint
are also explored, and their morphologies generally do
not differ significantly from the cases with the volume
constraint. Some crumpled states and collapsed states
are observed in high field strength limit for the cases
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without the volume constraint(see Appendix F).
In the simulation, a shifted Lennard-Jones potential

is also included for each pair of vertices to account for
the exclude volume effect. Each vertex is assigned a
point magnetic dipole moment. Stretching and bending
are treated with a harmonic bond interaction and a
harmonic dihedral interaction, respectively. Magnetic
dipole-dipole interactions are calculated without a cutoff.
The connectivity of the membrane is preserved during
simulations. The external magnetic field is static along
the z direction. We assume super-paramagnetic particles
respond to an external magnetic field instantaneously
and ignore rotational degrees of freedom of each vertex
because super-paramagnetic particles do not have spon-
taneous magnetization, which decouples magnetics and
elasticity. Kinetic energy is also assigned to each vertex
to give a fictitious temperature of the system. The
simulations start at high temperature and are gradually
annealed to find the minimum energy configuration of
the system. This annealing process is repeated several
times to ensure that the system is not trapped in lo-
cal minima (see Appendix C for more simulation details).

III. RESULTS

A collection of possible morphologies of magnetoelas-
tic membranes obtained by systematically varying the
two dimensionless parameters, the Föppl-von Kármán
parameter γ and the magnetoelastic parameter Γ, are
shown in Fig. 2 (For a more detailed shape diagram,
please refer to Fig. 4). Without magnetic dipole-dipole
interactions (Γ=0), when γ < γ∗, the homogeneous
elastic crystalline membrane tends to stay spherical (Fig.
2a) and when γ > γ∗ it buckles into an icosahedron (Fig.
2b) as expected in the conventional homogeneous elastic
crystalline membranes[6].

At moderate strengths of the magnetic dipole-dipole
interaction, as shown in the second row of Fig. 2, the
structures deform since the magnetic dipoles prefer to
line up and stay closer to each other to minimize the
magnetic energy. When the membrane is relatively soft
(γ < γ∗), the membrane tends to elongate along the
direction of the external magnetic field. However, this
is opposed by elastic interactions since elasticity prefers
the membrane to stay spherical, resulting in an ellipsoid
like membrane morphology as shown in Fig. 2c.

When the membrane is relatively stiff (γ > γ∗), the
membrane undergoes an elastically driven buckling
transition. The interplay between nonlinear elasticity
and magnetic dipole-dipole interactions distorts the
icosahedron. The flat regions of the icosahedron bend
inward to reduce the distance between magnetic dipoles
and disclinations pair up, resulting in a star-like mor-
phology with six ridges as shown in Fig. 2d. Unlike
the conventional convex polyhedral morphologies of the
purely elastic membranes, the magnetoelastic mem-

FIG. 2. A collection of representative minimum energy mor-
phologies of closed magnetoelastic membranes with different
parameters pair (γ,Γ): Föppl-von Kármán parameter γ and
magnetoelastic parameter Γ; γ increases from left to right and
Γ increases from top to bottom. (a) spherical shape (100,0);
(b) icosahedral shape (1000,0); (c) ellipsoidal shape (100,25);
(d) star shape with six ridges (1000,100); (e) cylindrical shape
(100,50); (f) star shape with four ridges (1000,200). Note that
first column is shown from y-direction and second column is
shown from z-direction to give better illustration of morpholo-
gies. Arrows indicate the direction of the external magnetic
field. Please see SM1 - 6 for corresponding animated mem-
brane morphologies.

branes develop concave regions.
Then, consider the case of strong magnetic dipole-dipole

interactions, as shown in the third row of Fig. 2. The
elastic energy becomes comparable with the magnetic
energy until the membrane is highly deformed. In
this regime, the competition between magnetic energy
and elastic energy results in another new family of
morphologies.

When the membrane is easily deformed (γ < γ∗),
magnetic dipole-dipole interactions tend to elongate the
membrane further along the direction of the external
magnetic field in this high field strength regime. How-
ever, the elastic energy can no longer hold the membrane
in a spherical or ellipsoidal shape. The membrane forms
a cylindrical shape, as shown in Fig. 2e, to minimize the
magnetic energy. Although the bending energy is high
along edges of two end caps of the cylinder, the total
energy decreases by lining up vertices on the side surface
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FIG. 3. membrane morphologies(first column), mean curvature distribution(second column), elastic energy distribution(third
column) and magnetic energy distribution(fourth column) showing symmetry of magnetoelastic membranes. Membrane mor-
phologies in the first column are shown from z-direction. All other plots are shown in spherical coordinates. Horizontal axis
is polar angle θ ∈ [0, π] and vertical axis is azimuthal angle φ ∈ (−π, π]. Mean curvatures are chose to be signed values
where positive values indicate convex regions and negative values indicate concave regions. Elastic energy is sum of stretching
energy(bond interaction) and bending energy(dihedral interaction). Magnetic energy is sum of magnetic dipole-dipole interac-
tions. Energy from Lennard-Jones interactions is negligible in all three cases. Parameters pairs (γ,Γ) of membranes in each
row are: (1000,1), (1000,100), (1000,200) from top to bottom.

of the cylinder.
When the membrane is relatively rigid (γ > γ∗), the

elastic energy tries to preserve the total surface area of
the membrane since stretching is much more expensive
than bending in this case. Meanwhile, the magnetic
dipole-dipole interaction tries to reduce the total volume
of the membrane to minimize the magnetic energy. This
competition, combined with the nonlinearity introduced
by the twelve disclinations, results in a star-like mor-
phology with four ridges as shown in Fig. 2f. Note that
the membrane in this case is highly bent inward, which
reduces its total volume significantly and opens some
possible applications as discussed later.

Among all these mentioned morphologies of the
magnetoelastic membrane, the γ ∼ 1000 cases are par-
ticularly interesting because this regime corresponds to
a typical Föppl-von Kármán parameter of viral shells[6].
In this regime, where both nonlinear elasticity and
magnetic dipole-dipole interactions can be significant,
we find that the magnetoelastic membrane tends to
choose configurations that decrease symmetry with
increasing external magnetic field strength. This point
is illustrated by plotting the mean curvature and energy

distribution of the membrane in spherical coordinates as
shown in Fig. 3.

In the weak field strength limit, the membrane forms
an icosahedron (Fig. 3a) with five-fold rotational sym-
metry around the z-axis as shown in Fig. 3b and 3c. In
this limit, the elastic energy dominates and the magnetic
energy is negligible (Fig. 3d). With a moderate external
magnetic field strength, the membrane morphology has
six ridges(Fig. 3e). However, the 12 isolated disclina-
tions prefer to pair up and form ridges connecting each
pair of disclinations[41]. These disclinations pairs are
arranged alternatively to maximize the mutual distance
in order to reduce interactions between disclinations[34]
and ridges[42], as shown in Fig. 3f and 3g. Because of
this alternative arrangement, the membrane with six
ridges has only three-fold rotational symmetry around
the z-axis, which is also reflected by the magnetic energy
distribution (Fig. 3h). If the field strength is further
increased, the membrane starts to form morphologies
with four ridges (Fig. 3i). In this regime, two pairs of
disclinations break and there is a single disclination near
each of the four concave regions as show in Fig. 3j and
3k. Therefore, the symmetry of the membrane reduces
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to two-fold rotational symmetry (Fig. 3j, 3k and 3l)
around the z-axis. In the extremely high field strengths
regime, the magnetic energy completely dominates and
the membrane collapses and takes one-fold rotational
symmetry(the collapsed state is not shown in Fig. 3).

A natural question is to ask why the four-fold ro-
tational symmetry is missing among all these above
mentioned morphologies. This is due to two important
facts: the ridges connecting each pair of disclinations
are energetically expensive to break up[43] and there are
effective repulsive interactions between disclinations[34]
and ridges[42]. The existence of four-fold symmetric
structures requires that 12 disclinations are divided into
4 groups of 3 disclinations, which needs strong enough
external magnetic field strength to break up the ridge
structures. Even these 4 groups of 3 disclinations are
formed, four-fold symmetric structures are still not
energetically favorable since the total energy of the
system can be further reduced by choosing an alter-
native arrangement to increase mutual distances and
reduce repulsive interactions between disclinations and
ridges. This alternative arrangement brings the system
directly into two-fold symmetric structures, which makes
four-fold symmetric structures are never observed as a
lowest energy configuration in our simulations.

When the volume constraint is removed, we find
similar morphologies to those discussed above except
in high magnetic field strengths, where they take on
crumpled or collapsed morphologies (see Fig. 6).

IV. CONCLUSIONS

In summary, crystalline magnetoelastic membranes
exhibit concave morphologies beyond the conventional
polyhedral shapes found in elastic membranes. Magnetic
dipole-dipole interactions give an additional control pa-
rameter which is the magnetoelastic parameter Γ. Com-
bining with the Föppl-von Kármán parameter γ in the
elastic membranes, these two dimensionless parameters
provide guidelines for analyzing properties of crystalline
magnetoelastic membranes. Importantly, since γ is hard
to change once a membrane is assembled, the magnetoe-
lastic parameter, which can be easily manipulated by an
external magnetic field, provides a way to tune the mem-
brane morphology between convex shapes and concave
shapes with specific symmetry.

Exciting applications, including reversible membrane
shape control, design of micro-containers, and targeted
drug delivery, are expected for the closed crystalline mag-
netoelastic membranes. For example, since the volume to
surface ratio of magnetoelastic membranes can be highly
reduced by imposing an external magnetic field, the con-
centration inside can be much higher than that in the out-
side environment. This morphological change induced by
the external magnetic field can facilitate release of car-
goes. Therefore, the magnetoelastic membrane can be

used as a container to carry and protect volatile or toxic
molecules and release them in a targeted region labelled
by the external magnetic fields.
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Appendix A: Approximate magnetic energy
expression

Compared to the conventional elastic membranes, the
energy of magnetoelastic membranes has an additional
contribution from magnetic dipole-dipole interactions,
which can be expressed as:

Hm = −µ0

4π

∑
ri,rj∈V,i6=j

1

|rij |3
[
3 (µi · r̂ij)

(
µj · r̂ij

)
− µi · µj

]
(A1)

where µ0 is the magnetic permeability in vaccum, µi is
the magnetic dipole moment at vertex i, V is the set of all
vertices, ri is the position vector of vertex i, rij = rj−ri
and r̂ij = rij/ |rij |.

We further assume the magnetic filed strength is strong
enough that the induced magnetic dipole of each super-
paramagnetic particles always aligns with the external
magnetic field. For simplicity, we only consider the
case where a magnetoelastic membrane is composed of
the same type of super-paramagnetic particles. Then,
the induced magnetic dipole moments of each super-
paramagnetic particles are the same: µi = µ = µm̂,
where m̂ is the direction of the external magnetic field.

The above magnetic dipole-dipole interactions term
can be simplified by including only nearest neighbor in-
teractions:

Hm ≈ −
µ0

4π

∑
ri,rj∈V,i6=j

1

|rij |3
[
3 (µ · r̂ij)2 − µ2

]
≈ −µ0

4π

∑
ri∈V

∑
rj∈neighbors of i

1

|rij |3
[
3 (µ · r̂ij)2 − µ2

]
=
µ0µ

2

4π

∑
ri∈V

∑
rj∈neighbors of i

1

|rij |3
[
1− 3 (m̂ · r̂ij)2

]
(A2)

Furthermore, we assume the membrane is inextensible,
which means that the stretching constant is large enough
and thus all edge lengths are close to the equilibrium
length l0. With this assumption, all vertices are roughly
equally distant and there are only two types of vertices:
vertices with five neighbors(five-fold disclinations) and
vertices with six neighbors. Thus, the magnetic energy
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associated with each vertex type can be calculated ac-
cordingly:

1. Hexagonal vertex
In this case, the vertices have six neighbors which
locate on vertices of a regular hexagon. Assum-
ing the equilibrium length l0 is small enough that
locally six neighbors are in the same plane. By
choosing z-axis as the normal direction of this reg-
ular hexagon(moving frame), locations of six neigh-

bors can be written as r̂j =
(
cos jπ3 , sin

jπ
3 , 0

)
, j =

0, · · · , 5 and the direction of the external magnetic
field in this coordinate system can be expressed as
m̂ =

(
rit cos θit, r

i
t sin θit,m

i
n

)
, where rit is the mag-

nitude of in-plane component of m̂ at vertex i, θit
is the corresponding polar angle in the plane and
mi
n is the magnitude of out-plane component of m̂

at vertex i. Note that the components of m̂ in the
chosen coordinate system depend on the location
of vertex i. Then, the magnetic energy associated
with each hexagonal vertex is

εihex =
µ0µ

2

4π

∑
j∈neighbors of i

1

|rij |3
[
1− 3 (m̂ · r̂ij)2

]

=
µ0µ

2

4π

5∑
j=0

1

l30

[
1− 3rit

2
cos2

(
θit −

jπ

3

)]

=
µ0µ

2

4π

6

l30

[
1− 3

2
rit

2
]

(A3)

2. Pentagonal vertex
By similarly choosing the coordinate system, the lo-
cations of neighbor vertices in the pentagonal case
can be written as r̂j =

(
cos 2jπ

5 , sin 2jπ
5 , 0

)
, j =

0, · · · , 4. The magnetic energy associated with each
of the disclination vertices is:

εipen =
µ0µ

2

4π

∑
j∈neighbors of i

1

|rij |3
[
1− 3 (m̂ · r̂ij)2

]

=
µ0µ

2

4π

4∑
j=0

1

l30

[
1− 3rit

2
cos2

(
θit −

2jπ

5

)]

=
µ0µ

2

4π

5

l30

[
1− 3

2
rit

2
]

(A4)

We consider a static external magnetic field pointing
along the z-direction. Then, the direction of the exter-
nal magnetic field is m̂ = (0, 0, 1) in the lab coordinate
system. Denote the normal vector of i-th vertex as ni
and it can be expressed as n̂i = (nix, n

i
y, n

i
z) in the lab

coordinate system. Thus, the in-plane component of m̂
at each vertex i is:

rit
2

= [m̂− (m̂ · n̂i)n̂i]2 = 1− (m̂ · n̂i)2 = 1− niz
2

(A5)

Plugging the above expression back into the energy ex-
pressions of the hexagonal vertex and the pentagonal ver-
tex, we get

εihex = 6M̃

(
niz

2 − 1

3

)
(A6)

εipen = 5M̃

(
niz

2 − 1

3

)
(A7)

where M̃ gives the characteristic dipole-dipole interac-
tion strength between a pair of nearest neighbors and is
defined as:

M̃ =
1

4

µ0

4π

(3µ)2

l30

2

3
(A8)

Then, putting all parts together gives the total magnetic
energy of the membrane with the nearest neighbor ap-
proximation in the inextensible limit:

Hm ≈

 ∑
ri∈Vhex

6 +
∑

ri∈Vpen

5

 M̃

(
niz

2 − 1

3

)
(A9)

We can bring the above discretization limit expression
into the continuum limit by associating each vertex with
its Voronoi cell area. The area of a regular hexagon with

edge length l0 is 3
√
3

2 l20 and the corresponding Voronoi

cell area of hexagonal vertex is
√
3
2 l

2
0. Then, the magnetic

energy density in the continuum limit is:

εM =
εhex
√
3
2 l

2
0

=
1

2
M

(
n2z −

1

3

)
(A10)

where the magnetic modulus M is defined as

M = 2
√

3
µ0

4πl0

(
3µ

l20

)2
2

3
(A11)

Note that the above magnetic modulus has an addi-
tion factor of 2

√
3 comparing with the result derived

for square mesh[39]. The total magnetic energy in the
continuum limit can be expressed as an integral of the
magnetic energy density:

Hm ≈
∫

1

2
M

(
n2z −

1

3

)
dS (A12)
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Appendix B: Dimensionless parameters

The total magnetoelastic energy of the membrane in
the discretization limit can be expressed as:

Hem =
∑
e∈E

1

2
k (|re1 − re2| − l0)

2
+
∑
e∈E

1

2
κ̃ |ne1 − ne2|

2

− µ0

4π

∑
ri,rj∈V,i6=j

1

|rij |3
[
3 (µi · r̂ij)

(
µj · r̂ij

)
− µi · µj

]
≈
∑
e∈E

1

2
k (|re1 − re2| − l0)

2
+
∑
e∈E

1

2
κ̃ |ne1 − ne2|

2

+

 ∑
ri∈V hex

6 +
∑

ri∈Vpen

5

 M̃

(
niz

2 − 1

3

)
(B1)

where k is the microscopic stretching constant, κ̃ is
the microscopic bending constant and M̃ is the micro-
scopic characteristic dipole-dipole interaction strength.
By choosing the unit energy as κ̃ and the unit length as
R (radius of the initial spherical shell), the above expres-
sion becomes dimensionless:

H̃em =
∑
e∈E

1

2

kR2

κ̃

(∣∣r̃e1 − r̃e2
∣∣− l̃0)2 +

∑
e∈E

1

2
|ne1 − ne2|

2

+

 ∑
ri∈V hex

6 +
∑

ri∈Vpen

5

 M̃

κ̃

(
niz

2 − 1

3

)

=
∑
e∈E

1

2
γ̃
(∣∣r̃e1 − r̃e2

∣∣− l̃0)2 +
∑
e∈E

1

2
|ne1 − ne2|

2

+

 ∑
ri∈V hex

6 +
∑

ri∈Vpen

5

 Γ̃

(
niz

2 − 1

3

)
(B2)

Note that the above Hamiltonian has two dimension-
less parameters γ̃ = kR2

κ̃ and Γ̃ = M̃
κ̃ , which give char-

acteristic interaction strengths in the microscopic scale.
We can also bring the system into the continuum limit,
which gives two more familiar dimensionless parameters
of the system:

γ =
Y R2

κ
,Γ =

MR2

κ
(B3)

where γ is the Föppl-von Kármán parameter, which gives
characteristic relative strength between stretching inter-
action and bending interaction. Γ is the magnetoelas-
tic parameter, which gives characteristic relative strength
between magnetic dipole-dipole interaction and bending
interaction. Also note that Γ ∝ µ2 and induced mag-
netic dipole moment µ is proportional to the strength
of external magnetic field, which means that Γ can be
directly controlled by an external magnetic field. Cor-
respondences between parameters in the discretization

limit and the continuum limit[18, 37] are listed below:

Y =
2k√

3
, κ =

κ̃√
3
,M =

8
√

3

l20
M̃ (B4)

Appendix C: Details of simulation setup

The simulations are performed in LAMMPS[44]. All
interactions in the Hamiltonian of the system can be
mapped to commonly available interactions in LAMMPS.
More specifically, stretching interactions are modeled
as harmonic bond interactions, bending interactions are
modeled as harmonic dihedral interactions, and magnetic
dipole-dipole interactions are modeled as electric dipole-
dipole interactions (both are equivalent in reduced units).
Shifted Lennard-Jones interactions are included to ac-
count for finite size effect of the super-paramagnetic par-
ticles and to increase the stability of the collapsed state
simulation. The cutoff of the Lennard-Jones interactions
is set as 0.6 of equilibrium length l0. The equilibrium
length l0 is set as the average bond length of the initial
mesh.

Each vertex is represented as a point dipole in the
simulations. The computation of the long range mag-
netic dipole-dipole interactions is performed using the
long range solver PPPM/dipole in LAMMPS. Because of
properties of super-paramagnetic particles, directions of
each dipole are always aligned with the external magnetic
field. Besides, only translational degrees of freedom are
updated in each timestep. Rotational degrees of freedom
of each vertex are ignored because super-paramagnetic
particles don’t have permanent magnetization which de-
couples magnetics and elasticity.

Initial mesh of the membrane is constructed with the
scheme proposed by Caspar and Klug[35]. Different mesh
choices (different h,k numbers) are tested to ensure that
the observed phenomena are not mesh dependent. All
simulations mentioned in this paper are performed with
mesh (6, 6), which has 1082 vertices, 3240 edges and 2160
faces. We use reduced units for all simulations; the unit
energy is κ̃ and the unit length is R (radius of initial
mesh). By choosing a different stretching constant for
harmonic bond interactions(k) and the induced magnetic
dipole moment(µ), all possible dimensionless parameters
pair (γ,Γ) can be constructed accordingly.

The simulations are performed with a typical anneal-
ing process to get the minimum energy configuration of
the magnetoelastic membranes. The annealing process is
repeated five times to ensure the final membrane config-
uration is not trapped in local minima.

The volume constraint is added when the membrane
is not penetrable, which is implemented as a fix package
of LAMMPS. An additional potential energy from the
volume constraint is modeled as following:

Hv = Λ

(∑
k

Ωk − Vref

)2

(C1)
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where Ωk is the signed volume of the tetrahedron ex-
tended by k-th triangle on the membrane, Vref is the
reference volume of the membrane and Λ is the Lagrange
multiplier. Then, taking derivatives of the above poten-
tial with respect to each vertex gives the constraint forces
from the volume constraint. For example, consider a tri-
angle consists of three vertices: r1, r2, r3. The signed
volume of the tetrahedron extended by this triangle is:

Ωk =
1

6
r1 · r2 × r3 (C2)

Then, taking derivatives of Ωk with respect to r1 is

∇Ωk|r1 =
1

6
(−y3z2 + y2z3, x3z2 − x2z3,−x3y2 + x2y3)

(C3)
Other cases are cyclic permutations of the above result.
Note that the interaction from the volume constraint is
not pair-like interaction and total constraint force of ver-
tex i is:

f
(i)
constraint = 2Λ

∑
k∈neighbors of i

∇Ωk|ri (C4)

Appendix D: Computation of curvatures

Computation of curvatures generally requires a surface
is differentiable. However, in the discretization limit, the
surface is composed of flat triangles and is a piece-wise
constant surface, which has only C0 continuity. Then,
computation of curvatures on the triangulated surface
needs additional considerations.

The method used in this paper to compute the curva-
tures of the magnetoelastic membranes follows the work
of Meyer et al[45], which is introduced in the context of
computer graphics. By associating each vertex with its
corresponding Voronoi cell, the mean curvature vector K
and the gaussian curvature κG are calculated by following
formulae:

K(ri) =
1

2A(ri)

∑
j∈neighbors of i

(cotαij + cotβij) (ri − rj)

(D1)

κG(ri) =

2π −
∑

j∈external angles

θj

 /A(ri) (D2)

where αij and βij are two angles opposite to the edge
defined by vertices ri and rj . A(ri) is the area of Voronoi
cell of vertex i:

A(ri) =
1

8

∑
j∈neighbors of i

(cotαij + cotβij) |ri − rj |2

(D3)
and θj are the external angles of the Voronoi cell around
vertex i. Note that when triangles are obtuse, A(ri)
needs to be modified[45] to make sure that Voronoi cells

are non-overlapping, which in turn makes sure that the
sum of Gaussian curvature fulfills the Gauss-Bonnet the-
orem. By comparing the direction of mean curvature
vector K with the exterior normal direction of the mem-
brane, a sign can be associated with the mean curvature
value to distinguish convex and concave regions of the
membrane.

Appendix E: Membrane morphologies with the
volume constraint

FIG. 4. A shape diagram for the closed homogeneous magne-
toelastic crystalline membranes with the volume constraint.
γ is the Föppl-von Kármán parameter and Γ is the magne-
toelastic parameter. Blue crosses represent data points from
simulations. Colors represent the magnetic energy contribu-
tion χm. Blue vertical dash line indicates the elastic buckling
transition point and two red contour lines (30% and 60%)
indicate estimations of magnetically induced membrane mor-
phologies transition points. Different regions in the shape
diagram correspond to different membrane morphologies: A.
spheres; B. icosahedra; C. ellipsoids; D. star shapes with six
ridges; E. cylinders; F. star shapes with four ridges;

Possible membrane morphologies with the volume con-
straint are presented in Fig. 2. Here we provide a more
detailed analysis of membrane morphologies in terms of
the energy competition between elastic and magnetic en-
ergy (Fig. 4). Simulations with different dimensionless
parameters (γ,Γ) are represented by blue cross symbols
in Fig. 4. Colors are obtained by the linear interpre-
tation based on simulation data points, which represent
the magnetic energy contributions. The magnetic energy
contribution χm is defined as:

χm =
|Hm|

|Hm|+He
(E1)

where Hm and He are the total magnetic energy and
elastic energy respectively. Based on the magnetic en-
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ergy contributions, two red contour lines (∼ 30% and
∼ 60%) are drawn to indicate estimated magnetically in-
duced membrane morphologies transition points. Com-
bining with the elastic buckling transition point γ∗ ∼ 154
(blue vertical dash line), the phase space of the sys-
tem is roughly divided into regions which correspond
to different possible membrane morphologies. Below
the elastic buckling transition point(γ < γ∗), the mem-
brane morphologies change from spherical shapes(region
A), to ellipsoidal shapes(region C) and to cylindrical
shapes(region E) with increasing magnetoelastic param-
eter Γ. Above the elastic buckling transition point(γ >
γ∗), membrane morphologies change from icosahedral
shapes (region B), to star shapes with six ridges (re-
gion D) and to star shapes with four ridges (region F)
with increasing magnetoelastic parameter Γ. Blank re-
gions correspond to an extremely strong magnetic field
strength limit, where membrane morphologies are gener-
ally two-fold symmetric or collapsed.

FIG. 5. A collection of representative minimum energy mor-
phologies of the closed magnetoelastic membrane without the
volume constraint. Different parameters pairs (γ,Γ), Föppl-
von Kármán parameter γ and magnetoelastic parameter Γ,
are explored. γ increases from left to right and Γ increases
from top to bottom. (a) spherical shape (100,0); (b) icosa-
hedral shape (1000,0); (c) ellipsoidal shape (100,20); (d) star
shape with six ridges (1000,80); (e) pancake shape (100,40);
(f) star shape with four ridges (1000,150). Note that (a) and
(c) are shown from y-direction, (e) is shown in angled view
and second column is shown from z-direction to give better
illustration of morphologies.

Appendix F: Membrane morphologies without the
volume constraint

We also explore cases without the volume constraint,
which correspond to the situation that materials inside
the membrane can freely penetrate the membrane. Pos-
sible morphologies of the membranes without the volume
constraint are shown in Fig. 5.
When compared to the results with the volume con-
straint, the volume constraint shifts the transition points
between different morphologies, which is expected and
controlled by the parameters Vref and Λ. The morpholo-
gies without the volume constraint generally do not differ
significantly from cases with the volume constraint, ex-
cept in cases with a high magnetic field strength.

For example, as shown in Fig. 5e, the membrane mor-
phology becomes “pancake” shape when the membrane
is relatively soft (γ < γ∗) in the high field strength limit.
The “pancake” shape brings magnetic dipoles even closer
than cylindrical shape(Fig. 2e) since there is no addi-
tional volume constraint to prevent the membrane from
shrinking.

When the membrane is relatively stiff (γ > γ∗) in

FIG. 6. Examples of crumpled states and collapsed states.
These morphologies are observed in the cases without
the volume constraint in the high magnetic field strength
limit. Their corresponding parameters pairs (γ,Γ) are: (a)
(2000,600); (b) (4000,200); (c) (6000,500); (d) (8000, 400).
All of them are shown from z-direction and are represented
by triangulation meshes to show overlapping regions.

the high field strength limit, many crumpled states or
collapsed states are observed as shown in Fig. 6. These
morphologies are difficult to describe and generally differ
a lot from each other. The magnetoelastic membranes in
those cases are highly nonlinear and both magnetic and
elastic energy are important. Small fluctuations of the
membrane disclinations can change the membrane mor-
phology significantly in those cases and lead to different
crumpled states or collapsed states. Without the vol-
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ume constraint, the membranes resist magnetic dipole-
dipole interactions by elasticity(although Lennard-Jones
interactions also help stabilizing the membrane when the
membrane is collapsed). After reaching a certain mag-
netic field strength, the membranes cannot hold a definite
shape anymore and are free to crumple or collapse since
there is no volume constraint to restrict these crumpling
or collapsing processes. This creates a family of com-
plicated morphologies, which are strongly deformed. Se-

lected representative crumpled and collapsed morpholo-
gies shown in Fig. 6 are repeated with finer mesh size
(up to mesh (12,12) which has 4322 vertices) to ensure
that these morphologies do not result from insufficient
discretization. It is interesting to notice that these mor-
phologies in Fig. 6 (γ > γ∗ in high magnetic field
strength limit), still roughly maintain two-fold symme-
try for some states (Fig. 6a, c, and d).
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