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We examine the motion of a probe particle driven through a chiral fluid composed of circularly
swimming disks. We find that the probe particle travels in both the longitudinal direction, parallel
to the driving force, and in the transverse direction, perpendicular to the driving force, giving rise
to a Hall angle. Under constant driving force, we show that the probe particle velocity in both the
longitudinal and transverse directions exhibits nonmonotonic behavior as a function of the activity
of the circle swimmers. The Hall angle is maximized when a resonance occurs between the frequency
of the chiral disks and the motion of the probe particle. As the density of the chiral fluid increases,
the Hall angle gradually decreases before reaching zero when the system enters a jammed state. We
show that the onset of jamming depends on the chiral particle swimming frequency, with a fluid
state appearing at low frequencies and a jammed solid occurring at high frequencies.

I. INTRODUCTION

A variety of systems can be described as assemblies
of particles that exhibit chiral or circular motion [1, 2],
such as circularly moving colloids [3–6], biological cir-
cle swimmers [7], active spinners [8–12], circularly driven
particles [13–17], and chiral robot swarms [18]. Other
systems in which chiral or gyroscopic motion occurs in-
clude skyrmions in chiral magnets [19, 20] and classical
charged particles moving in a magnetic field [21]. Such
chiral particle assemblies can exhibit a variety of dynami-
cal phases such as large scale rotations [18], self-assembly
[5, 6, 8, 9, 11], edge currents [5, 9, 15, 22], and odd vis-
cosity responses [10, 23, 24].
Damping, fluctuations, and jamming in particle assem-

blies can be examined at the local level using active rhe-
ology, which is based on the response of a probe par-
ticle that is driven at either constant force or constant
velocity through a fluid or jammed medium [25–30]. Ac-
tive rheology has been applied to the onset of jamming
[26, 27, 31–34], where the threshold for probe particle
motion increases from zero to a finite value at the jam-
ming transition. It has been used to measure changes
in viscosity and diffusive responses [26, 35–40] as well as
velocity-force relations [25, 26, 32, 41–44]. Active rhe-
ology has been applied not only to soft matter systems,
but also to the dynamics of individual vortices dragged
across pinning landscapes in type-II superconductors [45–
47]. In systems that are active rather than passive, active
rheology shows large changes in the velocity of the probe
particle as a function of increasing bath activity when
the system transitions from a fluid state to an actively
phase separated state [48]. In each case, when the probe
particle is driven at constant force, it moves in the di-
rection of drive and exhibits symmetric fluctuations in
the transverse direction, with no transverse drift or Hall
velocity.
Here we study the active rheology of a probe particle

driven through a chiral fluid of circularly swimming disks.
We find that for low and intermediate fluid densities, the
probe particle exhibits a longitudinal velocity 〈Vlong〉 in

the direction of drive as well as a finite transverse or Hall
velocity 〈Vtrans〉, giving rise to a Hall effect with a Hall
angle of θHall = arctan(〈Vtrans〉/〈Vlong〉). We examine
the evolution of the Hall angle as a function of applied
driving force, temperature, and chiral fluid density, and
find Hall angles that are as large as θHall = 45◦. We
also observe non-monotonic behavior of θHall in which the
transverse velocity is maximized when a commensuration
occurs between the chiral disk rotation frequency and
the time interval between consecutive collisions of the
probe particle with the chiral disks. In general, θHall

decreases with increasing chiral disk density, and it drops
to zero at high densities when a jammed state appears.
In the dense limit, the probe particle can move only when
the driving force is larger than a finite threshold value,
and this threshold depends strongly on the chiral disk
swimming frequency. At low frequencies, the threshold
is nearly zero, while at high frequencies, the threshold
increases when the system acts like a solid. We compare
the dynamics of the probe particle to driven skyrmions
which have recently been shown to exhibit a skyrmion
Hall effect that also exhibits nonmonotonic behavior as a
function of dc drive, temperature, and skyrmion density
[49–53].

II. SIMULATION AND SYSTEM

We consider a two-dimensional L × L system with
L = 36 in which we place N non-overlapping disks with a
radius Rd = 0.5, where the disks have repulsive harmonic
interactions. The density of the system is characterized
by the area covered by the disks, φ = NπR2

d/L
2. For

monodisperse disks at T = 0, when φ = 0.9 the sys-
tem forms a triangular solid in which the disks are just
touching. The force between disks i and j is given by
F

ij
pp = k(rij − 2Rd)Θ(rij − 2Rd)r̂ij , where rij = |ri − rj |,

r̂ij = (ri − rj)/rij , and Θ is the Heaviside step function.
The spring stiffness is set to k = 50, ensuring that the
maximum overlap between disks is less than one percent.
The densities and parameters we consider here have also
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been studied in previous works [15, 32, 48]. The dynam-
ics of disk i is determined by the following overdamped
equation of motion:

η
dri
dt

=

N∑

j 6=i

Fij
pp + Fi

circ + FT
i . (1)

We set the damping constant η = 1 and our simulation
time step is ∆t = 0.002. Here Fi

circ is a driving force
that creates a circular motion of the disks of the form
Fi

circ = A(sin(ωt)x̂ + cos(ωt)ŷ), controlled by varying
the drive amplitude A. All of the chiral disks move in
phase with each other. The thermal force FT is pro-
duced by Langevin kicks with the properties 〈FT

i (t)〉 = 0
and 〈FT

i (t)FT
j (t′)〉 = 2ηkBTδijδ(t−t′). Unless otherwise

noted, we fix FT = 2.0, a value large enough to main-
tain the system in a liquid state up to the solidification
density φ = 0.9. We note that the thermal kicks cause
each particle to undergo diffusive behavior at long time
scales, which could be appropriate for many types of ac-
tive colloidal systems. To create our probe particle, we
select a single disk and replace Fi

circ with FD = FDx̂.
We measure the average velocity response in the longi-

tudinal direction, 〈Vlong〉 =
∑Ta

i vp(ti) · x̂, as well as in

the transverse direction, 〈Vtrans〉 =
∑Ta

i vp(ti) · ŷ, where
vp(ti) is the instantaneous velocity of the probe parti-
cle. These quantities are averaged over an interval of
Ta = 5 × 106 time steps, which is long enough to ensure
that the system has reached a steady dynamical state for
the parameters we consider. In the absence of collisions
between the probe particle and the chiral disks, we obtain
the free flow value 〈Vlong〉 = FD/η.
We focus on two regimes. The first is well below the

jamming density at φ = 0.424 and FT = 2.0, where
the system forms a liquid state, and the second is in a
high density regime at φ = 0.8482, close to the jamming
limit, where the disks exhibit a finite depinning threshold
below which motion does not occur. In the low density
regime, we consider a finite chiral activity with A = 2.5
and ω = 0.006. Here the effects of the active rotation are
maximized near FD = 1.0 when the active disks undergo
one rotation during the mean interval between collisions
with the probe particle. We also study the passive A = 0
case with the same parameters. We examine the effects
of varying A, ω, FD, and FT , as well as the variation
of the density φ for fixed activity, and in all cases we
show that the transverse response can be maximized at
an optimum parameter value.

III. RESULTS

In Fig. 1 we show an image of the system highlight-
ing the chiral disk locations and trajectories over a fixed
period of time for a system with φ = 0.181, A = 2.5,
ω = 0.006, and a thermal force of FT = 2.0. The disks
execute circular orbits, and the center of mass of each

x

y

FIG. 1: Instantaneous positions (dark blue circles) and trajec-
tories (light blue lines) of chiral disks during a fixed period of
time along with the position (red circle) and driving direction
(red arrow) of the probe particle in a sample with φ = 0.181,
A = 2.5, ω = 0.006, F T = 2.0, and FD = 2.0. The chiral
disks undergo a combination of diffusion and circular motion.

circular orbit has a diffusive behavior. The red disk is
the probe particle, which does not experience a circular
drive but instead moves under a force FD applied in the
x direction, as indicated by the arrow.
In Fig. 2(a,b) we plot 〈Vlong〉 and 〈Vtrans〉, respectively,

versus FD in a system with φ = 0.424, A = 2.5, and
ω = 0.006. Here 〈Vlong〉 monotonically increases with in-
creasing FD and there is no threshold for motion, while
〈Vtrans〉 increases with increasing drive at low FD be-
fore reaching a maximum near FD = 1.25 and then de-
creasing again. Since both the longitudinal and trans-
verse velocities are finite, the driven particle is mov-
ing at an angle with respect to drive direction, similar
to the Hall effect found for the motion of a charged
particle in a magnetic field. We plot the Hall angle
θHall = tan−1(〈Vtrans〉/〈Vlong〉) versus FD in Fig. 2(c).
The maximum value of θHall = 23◦ occurs at FD = 0.75,
a drive smaller than the value of FD = 1.26 at which
the maximum in 〈Vtrans〉 appears. For higher drives,
θHall gradually deceases, reaching a value close to zero
for FD > 4.0.
We measure the longitudinal mobility Mlong =

〈Vlong〉/FD and transverse mobility Mtrans = 〈Vtrans〉/FD

for the system in Fig. 2 and show the resulting curves in
Fig. 3(a). Starting from a small value, Mlong increases
with increasing FD until it approaches the free-flow limit
of Mlong = 1 at high drives. In contrast, Mtrans increases
to a maximum value of Mtrans ≈ 0.2 near FD = 1.0 and
then decreases to Mtrans = 0 at high drives. For compar-
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FIG. 2: Local probe response in a system with φ = 0.424,
A = 2.5 and ω = 0.006. (a) The longitudinal velocity 〈Vlong〉
vs FD. (b) The transverse velocity 〈Vtrans〉 vs FD. (c) The
Hall angle θHall = tan−1(〈Vtrans〉/〈Vlong〉) vs FD.
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FIG. 3: The longitudinal motility Mlong = 〈Vlong〉/FD vs FD

for the active system in Fig. 1 (dark blue triangles) and for a
passive system with A = 0 (light blue circles). Also plotted
is the transverse mobility Mtrans = 〈Vtrans〉/FD vs FD for the
same active (dark red triangles) and passive (light red circles)
systems. (b) The effective damping ηeff obtained from the net

velocity 〈V 〉 = (〈Vtrans〉
2 + 〈Vlong〉

2)1/2 for the active (dark
brown triangles) and passive (light brown circles) systems.
The damping is enhanced in the active system, particularly
at low drives. The black dashed line indicates the damping
η = 1 experienced by an isolated free particle.
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FIG. 4: Instantaneous positions of chiral disks (dark blue
circles) and probe particle (red circle) along with the probe
particle trajectory (red line) over a period of time for the
system in Fig. 2 with φ = 0.424, A = 2.5, and ω = 0.006 at
FD = 1.0, where the probe particle moves at an average Hall
angle of θHall = 20◦.

ison, in Fig. 3(a) we also plot the behavior of Mlong and
Mtrans in the A = 0 or inactive limit, where Mtrans = 0
for all values of FD. The value ofMlong is always higher in
the inactive system than in the sample with finite chiral
motion, indicating that the chiral motion increases the
effective damping or viscosity experienced by the mov-
ing probe particle. A current topic in many chiral active
matter systems is the question of odd viscosity response
[22–24], but it is not clear exactly what the signature
of odd viscosity would be in the local driven probe sys-
tem. In Fig. 3(b) we plot the effective damping constant
ηeff = 1/〈V 〉 versus FD for the active and passive sys-
tems shown in Fig. 3(a). Here the net velocity is given
by 〈V 〉 = (〈Vtrans〉2+ 〈Vlong〉2)1/2. The effective damping
for A = 0 is largest at low FD and decreases monoton-
ically with increasing drive, gradually approaching the
free-particle limit of η = 1 at high drives. When we in-
troduce finite activity, we find a large increase in ηeff at
low drives FD < 1. This also means that the viscosity
of the active system is larger, indicating that the active
rotation increases the net damping in the system.
In Fig. 4 we illustrate the trajectory of the probe parti-

cle over a fixed time interval superimposed on a snapshot
of the instantaneous chiral disk locations for the system
in Fig. 2 at FD = 1.0. The probe particle is moving at
an angle of approximately θHall = 20◦ with respect to
the drive; however, there are local trajectory segments in
which the Hall angle is larger or smaller than average.
The chiral disks have an intrinsic rotation frequency
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of ω, and therefore the time required for each chiral disk
to complete one orbit is τP = 2π/ω. The average spac-
ing between chiral disks is a = 1/

√
φ. When the probe

particle comes into contact with a chiral disk at small
FD, the chiral disk can complete multiple rotations dur-
ing the time required for the probe particle to move out
of interaction range since FDτP ≪ a. As a result, the
average transverse force exerted on the probe particle
by the chiral disk is small and θHall is nearly zero. At
high FD, the probe particle is moving rapidly in the
longitudinal direction and spends a very short time in-
teracting with the chiral disks during a collision since
FDτP ≫ a, so once again the maximum transverse shift
experienced by the probe particle is small and the Hall
angle is small. Between these limits, a resonance can
occur. When ω = 0.006 and φ = 0.424, as in Fig. 2,
the average spacing between chiral disks is a = 1.35, and
τP = 1047∆t, where ∆t = 0.002 is the size of a simula-
tion time step. At FD = 0.75, the probe particle would
move a distance FDτP = 1.57 during one chiral rota-
tion period in the absence of collisions with the chiral
disks. Collisions reduce this travel distance to a value
that is close to a, so that on average the probe particle
interacts with a given chiral disk for one rotation period.
This maximizes the chance that the chiral disk will ex-
ert a coordinated, monodirectional transverse force on
the probe particle, resulting in a significant transverse
displacement. The maximum in θHall thus arises due to
a resonance between the chiral rotation time scale and
the collision time scale. For higher ω at the same chiral
disk density φ, the peak in θHall shifts to higher values
of FD. We can compare these results to the behavior of
θHall for driven skyrmions [49, 51, 52]. In the absence
of pinning, θHall for the skyrmion system has a constant
value determined by the materials properties [49]. When
pinning is present, θHall gradually increases from zero at
small FD, similar to what appears in Fig. 2(b). In the
skyrmion case, θHall saturates to the intrinsic value at
large FD, while for the chiral liquid, θHall decreases as
FD increases above the peak value.

In Fig. 5(a) we plot 〈Vlong〉 and 〈Vtrans〉 versus FD for
a non-chiral fluid with the same parameters as in Fig. 2
but with A = 0. Here, 〈Vlong〉 increases monotonically
with increasing FD, similar to the chiral system; however,
〈Vtrans〉 = 0 for all values of FD, indicating that θHall = 0
and that it is the chiral motion of the bath particles that
produces the Hall effect. We find that 〈Vlong〉 is slightly
lower in the chiral liquid than for the A = 0 passive
disks, as shown in Fig. 5(b) where we compare the 〈Vlong〉
versus FD curves for the A = 0 system from Fig. 5(a)
and the A = 2.5 system from Fig. 2(a). The A = 2.5
curve is lower for all FD, indicating that the chirality of
the bath particles increases the longitudinal drag on the
probe particle.

In Fig. 6(a) we plot 〈Vlong〉 and 〈Vtrans〉 versus ω for
a system with φ = 0.424, A = 2.5, and FD = 1.0. Here
there is a dip in 〈Vlong〉 near ω = 0.008 that coincides
with a peak in 〈Vtrans〉. The corresponding θHall versus
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FIG. 5: (a) 〈Vlong〉 (dark blue circles) and 〈Vtrans〉 (red
squares) vs FD for a non-chiral fluid with the same param-
eters as in Fig. 2 except with A = 0. Here 〈Vtrans〉 = 0 for
all values of FD. (b) 〈Vlong〉 (dark blue circles) vs FD for the
system in panel (a) at A = 0.0 and 〈Vlong〉 (light blue circles)
vs FD for the chiral system in Fig. 2 with A = 2.5, showing
that the damping of the longitudinal motion is larger in the
chiral fluid.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

<
V

tr
an

s >
, <

V
lo

ng
 >

0.0001 0.001 0.01 0.1 1
ω

0

5

10

15

20

25

θ H
al

l

(a)

(b)

FIG. 6: (a) 〈Vtrans〉 (red squares) and 〈Vlong〉 (blue circles)
vs ω for a system with FD = 1.0, A = 2.5 and φ = 0.424.
A minimum in 〈Vlong〉 coincides with a maximum in 〈Vtrans〉
near ω = 0.008. (b) The corresponding θHall vs ω showing a
maximum Hall angle of θHall = 23◦ near ω = 0.004.
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FIG. 7: θHall vs ω for the system in Fig. 6 with A = 2.5 and
φ = 0.424 for FD = 0.125 (violet circles), 0.25 (dark blue
squares), 0.5 (light blue diamonds), 0.75 (teal up triangles),
1.0 (green left triangles), 2.0 (orange down triangles) and 4.0
(red right triangles). Here the maximum in θHall shifts to
higher ω with increasing FD while the maximum possible Hall
angle decreases.

ω appears in Fig. 6(b), where the Hall angle reaches a
maximum value of θHall = 23◦ near ω = 0.004. At low
frequencies, the chiral disks are rotating so slowly that
the response is close to that of a passive fluid, while at
high frequencies, the chiral orbits diminish in radius and
the system again behaves like a passive fluid.

Figure 7 shows θHall versus ω for the system in Fig. 6
at FD values ranging from 0.125 to 4.0. The peak in θHall

shifts to higher values of ω with increasing FD since the
chiral particles must rotate faster in order to meet the res-
onance condition FDτP ∼ a as FD increases. The max-
imum value of θHall increases with decreasing FD since
the lower longitudinal velocity of the probe particle at the
peak in θHall produces a longer collision time and thus a
greater transfer of momentum from the chiral disks to
the probe particle. The maximum Hall angle we observe
at very low FD is close to θHall = 45◦.

In Fig. 8(a) we plot the frequency ω0 at which θHall

reaches its maximum value versus FD for the system in
Fig. 7. We find that ω0 increases linearly with increas-
ing FD since it appears at a frequency for which a res-
onance occurs between the time required for an active
disk to complete a revolution and the time that separates
consecutive collisions between the probe particle and the
active disks. The collision time is proportional to the
probe velocity, which varies linearly with FD, and there-
fore the resonant frequency ω0 also varies linearly with
FD. We note that at lower FD, where the probe veloc-
ity dependence on FD becomes nonlinear, this behavior
breaks down. In Fig. 8(b) we plot θmax

Hall , the maximum
value of the Hall angle, versus FD. Here θmax

Hall decreases
roughly linearly with increasing FD, with some devia-
tion from linearity at low values of FD. Using the lin-
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FIG. 8: (a) ω0, the frequency at which the maximum Hall
angle appears, vs FD for the system in Fig. 7 with A = 2.5
and φ = 0.424. There is a roughly linear increase in ω0 with
increasing FD. (b) θmax

Hall , the value of the Hall angle at ω0,
vs FD for the same system, showing a roughly linear decrease
with FD. (c) θHall/θ

max
Hall vs ω/ω0, showing a collapse of the

curves in Fig. 7 based on the fits in panels (a) and (b). Here,
FD = 0.125 (violet circles), 0.25 (dark blue squares), 0.5 (light
blue diamonds), 0.75 (teal up triangles), 1.0 (green left trian-
gles), 2.0 (orange down triangles), and 4.0 (red right trian-
gles). The thick dashed line is a fit to θHall/θ

max
Hall ∝ 1/ω∗ for

ω∗ > 0, where ω∗ ≡ ω/ω0 − 1.
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FIG. 9: Instantaneous positions of chiral disks (dark blue
circles) and probe particle (red circle) along with the probe
particle trajectory (red line) over a period of time for the
system in Fig. 7 with A = 2.5 and φ = 0.424. (a) FD = 0.25
and ω = 0.003, where θHall ≈ 45◦. (b) FD = 2.0 and ω =
0.012, where θHall = 6.5◦.

ear fits of ω0 and θmax
Hall , we can collapse the curves from

Fig. 7, as shown in the plot of θHall/θ
max
Hall versus ω/ω0 in

Fig. 8(c). The dashed line in Fig. 8(c) is a fit to the form
θHall/θ

max
Hall ∝ 1/ω∗ for ω∗ > 0, where ω∗ ≡ ω/ω0 − 1,

showing that θHall decays as an inverse power law above
the resonant frequency.
In Fig. 9(a) we plot the trajectory of the probe parti-

cle and the positions of the chiral bath particles for the
system in Fig. 7 at FD = 0.25 and ω = 0.003, where
θHall ≈ 45◦. During some time intervals, the probe par-
ticle moves at an angle of nearly 90◦ with respect to the
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FIG. 10: (a) 〈Vlong〉 (blue circles) and 〈Vtrans〉 (red squares)
vs A for a system with ω = 0.006, FD = 1.0, and φ = 0.424.
(b) The corresponding θHall vs A. There is a threshold value
of Ac = 0.5 below which θHall = 0 and the Hall response is
absent.

driving direction. Figure 9(b) illustrates the same sam-
ple at FD = 2.0 and ω = 0.012, where the Hall angle is
much smaller, θHall = 6.5◦.
In Fig. 10(a) we show 〈Vtrans〉 and 〈Vlong〉 versus A for

a system with ω = 0.006, FD = 1.0 and φ = 0.424. Here
〈Vlong〉 is large in the A = 0 passive limit, and it decreases
with increasing A, passing through a local minimum near
A = 7.0. We find that there is a threshold value Ac = 0.5
below which 〈Vtrans〉 = 0 and there is no transverse re-
sponse, while a local maximum in 〈Vtrans〉 appears at
A = 4.0. We plot the corresponding θHall versus A in
Fig. 10(b), where the maximum value of θHall = 27◦ oc-
curs near A = 4.0.
In Fig. 11(a) we plot 〈Vlong〉 and 〈Vtrans〉 versus φ

for a system with A = 2.5, FD = 1.0 and ω = 0.006,
while in Fig. 11(b) we plot the corresponding θHall ver-
sus φ. At the lowest densities, the probe particle under-
goes few collisions and moves in the free flow limit with
〈Vlong〉/FD = 1.0 and 〈Vtrans〉 = 0. As φ increases, the
probe particle velocity gradually decreases, dropping to
zero near φ = 0.86, which is the effective jamming density
for these parameters. The decrease in the mobility of the
probe particle with increasing density and the vanishing
of the mobility as a jamming or crystallization density is
approached resembles what was found in previous stud-
ies of active rheology for non-chiral passive disk systems
[26, 27, 31, 32]. In those studies, 〈Vtrans〉 = 0 for all
values of φ; however, for the chiral disks we find an in-
crease in 〈Vtrans〉 with increasing density at low values of
φ, with a maximum in 〈Vtrans〉 appearing near φ = 0.35.
This low density increase in the transverse response re-
sults from the increasing frequency of collisions between
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FIG. 11: (a) 〈Vlong〉 (blue circles) and 〈Vtrans〉 (red squares)
vs φ for a system with ω = 0.006, FD = 1.0 and A = 2.5. (b)
The corresponding θHall vs φ. A jamming transition occurs
near φ = 0.86.

the probe particle and the chiral disks, since it is these
collisions that are responsible for the transverse probe
particle motion. For φ > 0.35, 〈Vtrans〉 decreases with
increasing density due to a crowding effect, and at jam-
ming 〈Vtrans〉 drops to zero. The maximum value of θHall

occurs at a higher density of φ = 0.55.

We note that in principle it would be possible to per-
form a collapse of 〈Vtrans〉, 〈Vlong〉, and θHall for var-
ied values of ω, FD and A, similar to what is shown
in Fig. 8. The number of independent variables can be
reduced slightly since the behavior as a function of A
should be proportional to the behavior as a function of
1/ωp, where ωp ∝ 1/(FD +F c

D) above the resonance and
ωp ∝ 1/(FD − F c

D) below the resonance. Here F c
D is the

value of the dc drive at which the resonance occurs. Al-
though we find that the drift velocity generally increases
with FD, we do not observe unbounded acceleration of
the probe particle of the type that can occur in a Fermi
acceleration process. This is expected since the inclusion
of even a small amount of dissipation can destroy the
Fermi acceleration mechanism [54].

We next consider the effect of changing the magnitude
of the thermal fluctuations. In Fig. 12(a) we plot 〈Vlong〉
and 〈Vtrans〉 versus FT for a system with FD = 1.0,
ω = 0.006, A = 2.5, and φ = 0.424. At FT = 0, when the
system is in the granular limit, the probe particle leaves
a low density wake behind it and 〈Vtrans〉 remains finite,
indicating that thermal fluctuations are not necessary to
produce the Hall response. In Fig. 12(a), 〈Vtrans〉 mono-
tonically decreases with increasing FT ; however, there is
a local minimum in 〈Vlong〉 near FT = 2.0. The local
minimum roughly coincides with the crossover between
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FIG. 12: (a) 〈Vlong〉 (blue circles) and 〈Vtrans〉 (red squares)
vs F T for a system with ω = 0.006, FD = 1.0, A = 2.5, and
φ = 0.424. (b) The corresponding θHall vs FT . (c) 〈Vlong〉
(blue circles) and 〈Vtrans〉 (red squares) vs F T for a system
with ω = 0.006, FD = 1.0, A = 2.5, and φ = 0.8482. (d) The
corresponding θHall vs FT . Here we find a freezing by heating
phenomenon in the interval 4.0 < F T < 7.0.
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y
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FIG. 13: Instantaneous positions of chiral disks (dark blue
circles) and probe particle (red circle) for the system in
Fig. 12(a) with ω = 0.006, FD = 1.0, A = 2.5, and φ = 0.424
at F T = 0, where the probe particle has a finite Hall angle
but leaves a low density depletion zone or wake behind as it
moves. (b) The same system at a higher density of φ = 0.67.
Here the probe particle mobility is reduced but the Hall angle
remains finite and the depletion zone persists.

low temperatures, where the probe leaves behind a low
density wake, and higher temperatures, where the wake
rapidly refills with chiral disks. Figure 12(b) shows that
the corresponding θHall versus F

T has its maximum value
at FT = 0, with a smaller local maximum appearing near
FT = 2.0. Above FT = 2.0, θHall decreases monotoni-
cally with increasing FT .

In Fig. 13(a) we illustrate the probe particle motion
for the system in Fig. 12(a) with φ = 0.424 at FT = 0,
where the probe particle moves at a finite Hall angle and
leaves a low density wake in its path. The appearance
of an empty region behind the probe particle is similar
to what has been observed for active rheology of non-

thermal granular materials below the jamming density
[27, 32, 33], since in these systems there is no energy
penalty for the formation of a void. At finite FT , the chi-
ral disks diffusively fill in the empty space. In Fig. 13(b)
we show the probe particle motion over the same time
interval in a denser system with FT = 0 and φ = 0.67.
The probe particle does not translate as far due to the
decrease in mobility; however, it still leaves behind a low
density wake.

In Fig. 12(c) we plot 〈Vlong〉 and 〈Vtrans〉 versus FT

for a high density system with φ = 0.8482, ω = 0.006,
A = 2.5, and FD = 1.0, and in Fig. 12(d) we show
the corresponding θHall versus FT . These parameters
fall within a low mobility regime, where the probe par-
ticle is not stuck but can only move relatively slowly
through the chiral bath. At FT = 0, 〈Vlong〉 ≈ 0.2
and θHall = 4.5◦. As FT increases, both 〈Vlong〉 and
〈Vtrans〉 decrease, reaching a value that is close to zero
near FT = 4.0. This is a signature of a thermally-induced
jamming transition that occurs when the thermal fluctu-
ations increase the effective size of the bath particles and
raise the effective density of the system to the jamming
density. Such a transition can also be regarded as an
example of a freezing by heating phenomenon in which
the thermal fluctuations can effectively freeze the disks
into a jammed state [55]. If the thermal fluctuations are
finite but small, the chiral disks maintain their ordering
in the jammed state and the probe particle slowly makes
its way through the resulting mostly triangular solid. As
FT increases, the fluctuations become strong enough to
melt the chiral disk crystal. As a result, liquid behav-
ior reappears and the probe particle mobility rebounds,
leading to the increase in both 〈Vlong〉 and 〈Vtrans〉 for
FT > 6.0. The Hall angle θHall in Fig. 12(d) passes
through a local maximum near FT = 2.5 just before the
onset of thermally-induced jamming, and it drops nearly
to zero within the jammed state when the probe particle
motion becomes extremely slow. For FT > 6.5, when
the jammed state melts and the probe particle mobility
increases, θHall increases back to its pre-jammed level.
These results indicate that a finite Hall effect can be ob-
served even in non-thermal chiral systems.

Near the jammed state at high chiral disk densities, the
behavior of θHall depends strongly on FD and ω, since
the probe particle can only move through the jammed
chiral disks if the driving force is larger than a depinning
threshold Fc. A monodisperse assembly of passive disks
at T = 0 forms a triangular solid at a density of φ = 0.9.
For densities close to but below this solidification density,
the addition of thermal fluctuations can induce freezing
by heating or the formation of grain boundaries and other
defects, and the disks exhibit glassy or very slow dynam-
ics for densities in the range 0.83 < φ < 0.9. In our chiral
disk system at FT = 2.0 and φ = 0.8482, the probe par-
ticle is mobile when FD = 1.0, but if we reduce FD we
find that there is a finite threshold drive Fc below which
the probe particle is no longer able to move. This is illus-
trated in Fig. 14(a), where we plot 〈Vlong〉 and 〈Vtrans〉
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FIG. 14: (a) 〈Vlong〉 (blue circles) and 〈Vtrans〉 (red squares)
vs FD for a system with φ = 0.848, A = 2.5, and F T = 2.0.
There is a finite depinning threshold near FD = 0.6. (b)
The corresponding θHall vs FD passes through a maximum at
FD = 1.75.

versus FD for a system with φ = 0.8482, ω = 0.006,
FT = 2.0, and A = 2.5. Here 〈Vlong〉 = 〈Vtrans〉 = 0 when
FD < Fc, where the threshold force Fc = 0.6. In the cor-
responding θHall versus FD curve shown in Fig. 14(b), we
find that θHall = 0 for FD < 0.8, indicating that within
the window Fc < FD < 0.8, the probe particle has a
finite longitudinal velocity but exhibits no Hall effect.
The Hall angle reaches its maximum value of θHall ≈ 8.5
near FD = 1.75, and gradually decreases toward zero for
higher drives. Since this system is at a finite tempera-
ture of FT = 2.0, the probe particle is best described
as undergoing a creep behavior at FD = 0.8. During
long periods of time, the probe particle is pinned, but
there are occasional events in which the probe particle
jumps to a new pinned location. Recent studies of driven
skyrmions [51, 56] showed that the Hall angle is zero in
the creep regime and becomes finite at higher drives when
the skyrmions transition to continuous flow, similar to
what we observe in Fig. 14; however, in the skyrmion
case, θHall saturates to the intrinsic value at high drives
rather than decreasing back to zero as in Fig. 14.
At high densities, we find that the threshold force Fc

depends on the frequency at which the chiral disks rotate.
In Fig. 15(a) we plot 〈Vlong〉 versus FD in a system with
A = 2.5, FT = 2.0, and φ = 0.8482 at ω = 0.008, 0.006,
0.003, and 0.001. The threshold for motion is finite at
ω = 0.006 and ω = 0.008, and zero for ω = 0.003 and
ω = 0.001. In Fig. 15(b) we show Fc versus ω for the
system from Fig. 15(a). For drives above Fc, the probe
can flow through the sample, but for drives below Fc, the
probe particle is pinned. Here we find that Fc is finite
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FIG. 15: (a) 〈Vlong〉 vs FD for a system with φ = 0.8482,
A = 2.5, and F T = 2.0 at ω = 0.008 (red triangles), 0.006
(green squares), 0.003 (light blue circles), and 0.001 (dark
blue diamonds). (b) The depinning force Fc vs ω for the
same system highlighting regions in which the probe particle
is moving (pink) or pinned (yellow).

only when ω > 0.003, and that there is a local maximum
in Fc near ω = 0.01. We note that the appearance of a
finite depinning threshold for a probe particle has been
observed experimentally for systems in a high density or
glassy regime [26, 57]. For the passive A = 0 limit in
our system, we are always below the non-active jamming
density of 0.9, so the inclusion of activity can be viewed
as effectively increasing the density of the particles. An
open question is what effect the chiral activity would have
on a system that is above the passive jamming density.
For example, addition of activity could increase or de-
crease the critical depinning force. Our results indicate
that at higher disk densities, the activity level of the chi-
ral disks can be used to control a transition from jammed
to unjammed behavior.

IV. SUMMARY

We have numerically examined the motion of a probe
particle driven through a chiral liquid composed of circu-
larly moving disks. In the absence of chirality, the probe
particle drifts only in the direction of drive so there is
no Hall effect; however, when the bath particles are chi-
ral, both the longitudinal and transverse velocities of the
probe particle are finite. Since a portion of the probe par-
ticle motion is perpendicular to the drive direction, the
probe particle exhibits a finite Hall angle similar to what
is observed for a charged particle moving in a magnetic
field or for driven skyrmion systems. We find that the
Hall angle has a non-monotonic dependence on the probe
particle driving force and the amplitude and frequency of
the chiral disk motion. At low drives, the probe particle
can undergo multiple collisions with an individual chi-
ral bath particle, reducing the Hall angle, while at high
drives the collisions between the probe and chiral bath
particles are very brief, which again reduces the magni-
tude of the Hall angle. An optimal Hall angle occurs
when the time between collisions of the probe particle
with consecutive chiral bath particles is roughly equal to
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the time required for a chiral bath particle to complete
a single rotation. We find that the Hall angle can reach
values as large as θHall = 45◦ and that the Hall effect per-
sists in the zero temperature or granular limit. When the
chiral disk activity is fixed, the Hall angle is maximized at
an optimal chiral disk density, while the probe particle ve-
locity in both the longitudinal and transverse directions
drops to zero when the chiral disks reach the jamming
density, which is dependent on the frequency of the chi-
ral motion. At low frequencies, the depinning threshold
is zero and the probe particle is able to move under all
applied drives, while at higher frequencies there is a finite
depinning threshold, and for drives below this threshold,
the probe particle is pinned. We compare our results
with those obtained for skyrmions moving over random
disorder, where drive-dependent Hall angles that increase
with increasing drive are observed. In the skyrmion case,
the Hall angle saturates to the clean limit at high drives,
whereas for the chiral liquid we consider here, the Hall
angle decreases to zero at high drives. Our results could
be tested by driving probe particles through active chiral
colloidal spinners, chiral granular matter, or even chiral
robot swarms. Additionally, these results could be rel-

evant to other systems that mimic chiral active baths,
such as driving a single skyrmion through an array of
other skyrmions or driving a single particle through an
array of optical or fluid vortices.

Note added– In the course of completing this work,
we became aware of the work of Kumar et al. [58] on
the motion of spinning probe particles through granular
matter, where they report the onset of a Magnus like
effect including a lift force.
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