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Molecular dynamics (MD) simulations are used to measure dynamical properties of a simple
bead-spring model of A-B diblock copolymer molecules, and to characterize rates and mechanisms
of several dynamical processes. Dynamical properties are analyzed within the context of a kinetic
population model that allows for both stepwise insertion and expulsion of individual free molecules
and occasional fission and fusion of micelles. Kinetic coefficients for stepwise processes and micelle
fission have been extracted from MD simulations of individual micelles. Insertion of a free surfactant
molecule into a pre-existing micelle is shown to be a completely diffusion controlled process for the
model studied here. Estimates are given for rates of rare events that create and destroy entire
micelles by competing association/dissociation and fission/fusion mechanisms. Both mechanisms
are shown to be relevant over the range of parameters studied here, with association/dissociation
dominating in systems with more soluble surfactants and fission/fusion dominating in systems with
less soluble surfactants.

I. INTRODUCTION

Surfactant solutions containing spherical micelles ex-
hibit a variety of dynamical processes with widely vary-
ing time scales. The slowest processes in such systems are
those that create or destroy entire micelles, and thereby
change the total number of micelles in solution. Pro-
cesses that change aggregation number of individual mi-
celles without changing the number of micelles occur
more frequently through expulsion and insertion of in-
dividual molecules. Internal relaxation processes that do
not change aggregation number are faster still. Slow pro-
cesses involving micelle creation and destruction play a
crucial role in controlling the terminal rate of relaxation
of dilute micellar solutions towards a new equilibrium
state after a perturbation, and play an important role in
the transport of copolymer to interfaces.

In this paper, we analyze rates of slow dynamical pro-
cesses in a simple simulation model of a nonionic diblock
copolymer surfactant. The model studied here is a bead-
spring model of a highly asymmetric AB diblock copoly-
mer with a minority B block dissolved in a matrix of A
homopolymer. Equilibrium properties of the same model
have been studied in a companion paper [1] (hereafter
referred to as I). The work presented here combines the
use of molecular dynamics (MD) simulations of individ-
ual micelles with analysis of a model of micelle popu-
lation dynamics in which all parameters are determined
from MD simulations. The primary goal of the study is
to clarify the dominant mechanism of rare events that
create and destroy entire micelles, which remains poorly
understood despite decades of study and discussion. A
secondary goal is to quantify the barriers associated with
molecular exchange dynamics.
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II. BACKGROUND

A. Experiments

Several experimental techniques have been used to
study dynamics of micellar solutions in or near thermal
equilibrium. Historically, the most important of these
have been techniques that monitor relaxation of a mi-
cellar system to a new equilibrium state after the sys-
tem is disturbed by small step change in temperature,
pressure, or surfactant concentration [2–10]. Relaxation
has been monitored in such experiments by measuring
changes of conductivity in ionic systems, light scatter-
ing, and flourescence of probe molecules. Similar infor-
mation about some systems has also been obtained from
ultrasonic spectroscopy [6, 11–13].
Both relaxation and ultrasonic spectroscopy experi-

ments have demonstrated the existence of two relaxation
processes with disparate time scales, which are often re-
ferred to as the fast and slow processes. Corresponding
relaxation times are denoted by τ1 (the fast time) and
τ2 (the slow time). The fast process observed in relax-
ation experiments is believed to be a partial requilibra-
tion achieved by repartitioning of surfactant between mi-
celles and free molecules after a disturbance, with negligi-
ble change in the number of micelles. The slow process is
instead believed to be the result of a slower re-adjustment
in the number of micelles [14–17].
A more recent generation of time-resolved neutron

scattering (TR-SANS) experiments on non-ionic and
block copolymer surfactants have made it possible to
monitor the rate at which surfactants are exchanged be-
tween different micelles [18–20]. Exchange occurs pri-
marily via random expulsion and insertion of individual
molecules [19, 20]. The time scale over which the excess
scattering signal measured in TR-SANS experiments de-
cays is proportional to the time required for a majority
of the surfactant molecules that are in a particular mi-
celle at the beginning of the measurement to be replaced
by molecules that were originally in other micelles. Be-
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cause this exchange time is generally much less than the
time required to create or destroy entire micelles, this
technique is not sensitive to these slower processes.
The mechanisms of the fast relaxation process in relax-

ation experiments and of exchange in TR-SANS experi-
ments are now reasonably well understood. The mecha-
nism by which the number of micelles changes in the slow
process of a relaxation experiment, however, remains con-
troversial [17, 21–23]. The number of micelles in an equi-
librated micellar solution could in principle change either
by stepwise association and dissociation processes or by
micelle fission and fusion. Stepwise association and dis-
sociation are processes whereby an entire micelle can be
created by association of free surfactant molecules or de-
stroyed by dissociation into free molecules via random se-
quences of single-molecule insertion and expulsion events.
Fission and fusion are processes in which the number of
micelles can instead increase by one when a large micelle
undergoes fission or decrease by one when two micelles
undergo fusion. It has remained difficult for experiments
that detect the existence of a slow process to conclusively
rule out either mechanism.

B. Stepwise Kinetic Models

The simplest and most heavily studied theory of mi-
celle dynamics is the stepwise model [14–17, 22, 24–29],
which was originally developed by Aniansson and Wall
[14–16]. This model assumes that fission and fusion rates
are negligible, and that changes in the number of micelles
thus occur only by stepwise association and dissociation.
The resulting theory is closely analogous to the Becker-
Döring theory of stepwise nucleation of a liquid from a
supersaturated vapor [30], and so has also been referred
to as the Becker-Döring theory [22].
The stepwise model predicts the existence of slow and

fast processes with widely disparate time scales, as ob-
served in experiments. The model predicts that the equi-
librium rate of association events is proportional to the
equilibrium concentration of very rare clusters of some
critical aggregation number, which depends exponen-
tially upon the free energy required to form such clus-
ters. The stepwise model also makes non-trivial predic-
tions regarding how the fast and slow times τ1 and τ2 de-
pend on overall surfactant concentration. The rate τ−1

1

of the fast process is predicted to increase with increas-
ing total surfactant concentration, and to vary approxi-
mately linearly with concentration at concentrations well
above the critical micelle concentration (CMC). The rate
τ−1
2 of the slow process is predicted to exhibit a non-
monotonic dependence on concentration, with a maxi-
mum rate at a concentration slightly above the CMC,
but to decrease with increasing concentration at concen-
trations well above the CMC [16, 17].
Predictions of the stepwise growth theory have been

compared to observations of both the fast and slow relax-
ation times [16, 17]. Agreement between predictions and

measurements of the fast relaxation time τ1 is generally
satisfactory, for experiments on both ionic and non-ionic
surfactants[16, 31]. Agreement between predictions and
measurements of the slow relaxation time τ2, however,
is often poor [16, 17, 22, 31]. A variety of experiments
instead suggest that the slow process may occur in some
systems primarily by fission and fusion, rather than by
purely stepwise processes.
Experiments on ionic surfactant solutions in solutions

of high ionic strength [16, 17] and on nonionic surfactants
[17, 31, 32] have yielded rates for the slow process that in-
crease monotonically with increasing surfactant concen-
tration, in qualitative disagreement with predictions of
the stepwise model. Experiments on ionic surfactants in
systems with lower ionic strength instead exhibit a relax-
ation rate τ−1

2 that increases with copolymer concentra-
tion, in qualitative agreement with this model. Kahlweit
and coworkers have argued on the basis of these obser-
vations that the slow process may occur primarily by fis-
sion and fusion in nonionic systems and in ionic systems
at sufficiently high salt concentration, but by stepwise
association and dissociation in ionic systems with suffi-
ciently low ionic strength [17, 21], because fusion may be
suppressed by electrostatic repulsions between micelles
in ionic systems of low ionic strength.
Colegate and coworkers [22, 32] have compared mea-

surements of τ−1
2 in micellar solutions of simple non-ionic

surfactants to predictions of a stepwise model with phys-
ically realistic thermodynamic and kinetic parameters.
The resulting model was found to predict values for τ−1

2

that are much less than those observed experimentally
[22, 33], indicating the possibility of another mechanism.
Experiments on block copolymer surfactants in ionic

liquid solvents have shown that the micelle hydrodynamic
radius, as measured by light scattering, can change in
response to signficant changes in temperature even in
systems of essentially insoluble surfactants in which TR-
SANS experiments show no evidence of exchange [34].
Since the absence of exchange indicates a low or even
zero rate for all stepwise processes, this observation also
suggests a role for fission and fusion.

C. Kinetic Models with Fission and Fusion

Several authors have constructed mathematical mod-
els of micelle kinetics that do allow for the possibility of
fission and fusion of proper micelles, in addition to step-
wise processes [29, 33, 35–37]. An early analysis of such
a model was given by Dormidontova [35], who considered
diblock copolymer micelles in a small molecule solvent.
Dormidontova’s analysis has been criticized for failing to
enforce the principle of detailed balance [24]. Several au-
thors have subsequently presented general equations for
a model that allows for fission and fusion involving clus-
ters of arbitrary size in a form that manifestly satisfies
detailed balance [33, 36, 37].
At this point, the predictive power of population mod-
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els that allow for fission and fusion is limited primarily by
limited knowledge of values of rate constants for fission
and fusion reactions. To estimate these rate constants,
one must consider the magnitude of relevant kinetic bar-
riers to fusion and/or fission. (Given knowledge of equi-
librium free energies, an understanding of either fission or
fusion would suffice because the two processes are related
by detailed balance.) For block copolymer surfactants, a
barrier to fusion can arise from repulsion between the
polymeric coronas of different micelles. For ionic surfac-
tants, a barrier to fusion instead arises primarily from
electrostatic repulsion.
There has been little theoretical work on quantitative

estimates of the barriers to micelle fusion or fission. A
scaling theory of the barrier to fusion of block copolymer
micelles has been presented by Halperin and Alexander
[38]. The main limitations of this theory is that the scal-
ing approach used there is appropriate only for very long,
strongly insoluble copolymers, and does not yield reliable
predictions for numerical prefactors in scaling relations
for the barrier to fusion and other free energies.
In the absence of more reliable estimates of these bar-

riers, several analyses of micelle kinetics that allow for
fission and fusion have relied either on an assumption of
diffusion limited fusion, or some ad hoc modification of
this assumption [33, 35–37]. Assuming that fusion is dif-
fusion limited is equivalent to assuming that the barrier
to micelle fusion is negligible. This assumption thus over-
estimates the fusion rate, sometimes dramatically. It has
been shown, however, that if fusion were diffusion lim-
ited, then fission and fusion reactions could easily domi-
nate the overall rate of micelle creation and destruction,
particularly in systems with a large barrier to the com-
peting mechanism of stepwise association and dissocia-
tion (i.e., a large free energy of formation for critical
clusters). Griffiths, Colegate and coworkers have com-
pared experimental kinetic data for a nonionic alkyl -
polyoxyethylene glycol surfacant to a kinetic model that
employed a realistic model for the dependence of micelle
free energy on aggregation number. To assess the effects
of a barrier to fusion, these authors assumed that all fu-
sion rate constants were lower than those obtained by
assuming diffusion-limited fusion by a prefactor, which
they treated as an adjustable parameter [22, 33]. They
found that a purely stepwise model predicted unrealis-
tically large values for τ2, but that values of τ2 compa-
rable to those obtained in experiment could be obtained
by assuming that fusion rates are 3-4 orders of magni-
tude slower than those predicted by a model of diffusion
limited fusion.

D. Simulations

MD simulations of dynamical phenomena in micellar
solutions have thus far been limited primarily to the
study of either systems that are initially far from equi-
librium or of relatively rapid relaxation processes in sys-

tems believed near equilibria (such as relaxation of chain
conformation or counterion distribution). Simulations in
which the initial state is a highly supersaturated solu-
tion of dissociated surfactants have been used to study
the early stages of aggregation [39–41]. Simulations of
the response of a pre-existing micelle to sudden changes
in conditions (e.g., ionic strength) have shown that large
changes can cause a micelle to undergo fission via a
dumbbell shaped intermediate state [42–45]. Several sim-
ulations of dynamical properties near equilibrium have
focused on processes involving single-molecule insertion
and expulsion in model systems of relatively soluble sur-
factants [46, 47]. Pool and Bolhuis have also used an
advanced sampling technique to study the free energy
barriers to fission and fusion [48] in one model system,
but did not compute absolute rates of fission and fusion
or compare rates for different possible mechanisms of the
slow process. There is a need for more systematic use of
simulations to study rates and mechanisms of relatively
slow dynamical processes in micellar systems and other
self-assembled structures.

III. OVERVIEW

In the present work, we use MD simulations to es-
timate rate constants for elementary processes such as
insertion, expulsion, and fission in a simple simulation
model of block copolymer surfactants. The rate con-
stants obtained from these simulations and the micelle
free energies obtained in paper I are then used as input
parameters to a population model that we use to com-
pute overall rates of slow dynamical processes in an equi-
librated solution. This combination of techniques allows
us to estimate rates for some processes that would be
too rare to be observed in brute force MD simulations of
a micellar solution. The success of this procedure relies
critically on the fact that the free energy required to form
a micelle of arbitrary size has been accurately computed
for the model of interest in paper I.
Rate constants for expulsion and insertion of single

molecules are obtained from an analysis of simulations of
systems that contain a single micelle in coexistence with
a few free surfactant molecules. Knowledge of both mi-
celle formation free energies and insertion and expulsion
rate constants allows us compute rates of hypothetical
stepwise micelle association and dissociation events.
Micelle fission is studied here by directly simulating

spontaneous fission of pre-assembled micelles. These sim-
ulations of fission are performed on micelles that are
somewhat larger the equilibrium size, for which fission
is found to occur frequently enough to allow us to quan-
tify rates. An upper bound on the maximum possible
rate of spontaneous fission is also obtained by computing
rates for a model in which fusion is assumed to be dif-
fusion controlled. The resulting information about how
fission rates depend on aggregation number then allows
us to give meaningful estimates and bounds on overall
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rates of fission in an equilibrated solution. We have not
attempted to directly simulate fusion processes, but rely
on the fact that rates for corresponding fission and fu-
sion reactions must be equal in equilibrium, by the prin-
ciple of detailed balance. A comparison of the resulting
estimates of rates of fission/fusion to corresponding esti-
mates of rates of stepwise association/dissociation allows
us to shed light on the conditions under which one mech-
anism or the other dominates the overall rate of micelle
birth and death.
The molecular dynamics (MD) simulations presented

here all use a very simple bead-spring model of a highly
asymmetric AB diblock copolymer surfactant in an A ho-
mopolymer solvent. This model is described in detail in I,
and is merely summarized here for clarity. Each copoly-
mer surfactant in this model is a chain of 32 beads with
4 B beads and 28 A beads. Each homopolymer solvent
molecule is a chain of 32 A beads. We chose to use a
polymeric solvent with the same number of beads as the
copolymer because this allowed the use of very efficient
semi-grand Monte Carlo techniques to measure equilib-
rium properties in paper I. Neighboring beads within a
chain interact via a harmonic bond potential. All beads
interact via a soft repulsive non-bonded pair potential
of the type used in dissipative particle dynamics simu-
lations. The interaction between a pair of particles of
types i and j separated by a distance r is of the form
Uij(r) = ǫij(1 − r/σ)2/2 for r < σ, with Uij(r) = 0
for r > σ. Here, ǫij is an interaction energy, which
has a value ǫAA = ǫBB = 25kBT for interactions be-
tween beads of the same type, where kB is Boltzmann’s
constant and T is absolute temperature. The repulsion
between unlike A and B beads exceeds the repulsion be-
tween pairs of A beads or pairs of B beads by an amount
controlled by a dimensionless parameter

α = (ǫAB − ǫAA)/kBT . (1)

We have studied both equilibrium properties and dynam-
ics at four values of α = 10, 12, 14, 16.
All MD simulations presented here were peformed in

the NPT ensemble using an integration algorithm based
on that of Martyna, Tobias, and Klein [49]. All MD sim-
ulations were performed using an integration time step
∆ = 0.005τ0. Here, τ0 = σ

√

mb/kBT denotes a Lennard-
Jones time unit, in which mb is a bead mass that is
the same for all beads. We have compared results ob-
tained with NPT simulations to results obtained from
NVE molecular dynamics simulation performed with ini-
tal states generated from an NPT simulation, and con-
firmed that our use of a relatively weakly coupled thermo-
stat and barostat used here did not effect any measured
dynamical properties.
The remainder of this paper is organized as follows.

Sec. IV presents the micelle population model used in
the analysis of simulation data. Sec. V presents results
for tracer diffusion coefficients for both free molecules and
micelles, which are needed in analyses of other processes.
Sec. VI presents an analysis of rate constants for inser-

tion and expulsion of individual molecules from or into a
micelle. Sec. VII also presents a similar analysis of rate
constants for insertion and expulsion of copolmers into
or out of a homopolymer droplet, which we compare to
results obtained in Sec. VI in order to clarify the effect
of the micelle corona on these processes. Sec. VIII is
an analysis of the average micelle lifetime before disso-
ciation occurs, which may be calculated from knowledge
of the insertion and expulsion rate constants and the mi-
celle free energies found in paper I. Sec. IX presents an
analysis of how the intrinsic rate of spontaneous fission
of a micelle depends on micelle aggregation number. Sec.
X analyzes a model of that assumes diffusion limited fu-
sion, which may also be used to calculate corresponding
fission rates, and compares predictions of this model to
those obtained from MD simulations.. Sec. XI calculates
and compares the different methods of estimating the
average time for a randomly selected micelle to undergo
spontaneous fission, which we refer to as the equilibrium
fission lifetime. Conclusions are discussed in XII.

IV. POPULATION MODEL

All simulations presented in this paper are interpreted
within the context of a simple population model for a
dilute micellar solution containing aggregates of different
sizes. Let n or n′ denote the number of copolymer surfac-
tant molecules in a particular species of aggregate, where
n = 1 denotes free molecule. Let cn denote the number
concentration of aggregates that contain n molecules, or
“n-mers”, while c1 is the concentration of free surfactant
molecules, or “unimers”. The equilibrium concentration
of n-mers is denoted by c∗n, and has been computed for
the simulation model of interest in paper I.
We consider a population model that allows for both

stepwise reactions (i.e., insertion of a unimer into a mi-
celle or expulsion of a unimer from a micelle) and less
frequent reactions involving fission and fusion of larger
aggregates [33, 36, 37]. Let r+n,n′ denote the rate of fu-

sion of clusters of aggregation number n and n′, per unit
volume and per unit time. Let r−n,n′ denote the corre-
sponding rate of the fission reaction in which clusters of
aggregation number n+n′ fission into daughters of speci-
fied aggregation number n and n′. We assume that fusion
is a second order reaction, controlled by the rate law

r+n,n′ = k+n,n′cncn′ , (2)

and that fission is controlled by a first-order rate law

r−n,n′ = k−n,n′cn+n′ , (3)

where k+n,n′ and k−n,n′ are rate constants for these ele-
mentary processes. The insertion reaction, in which a
free surfactant molecule is inserted into a micelle of size
n to create a micelle of size n + 1 is a special case of
the fusion reaction in which n′ = 1. The corresponding
expulsion reaction is a special case of fission with n′ = 1.
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The time dependence of m-mer concentration cn(t) is
controlled for all m ≥ 1 by a master equation

dcn(t)

dt
=

n/2
∑

n′=1

Jn−n′,n′ −

∞
∑

n′=1

νn,n′Jn,n′ . (4)

Here, Jm,m′ is a flux given by the difference

Jn,n′ = r+n,n′ − r−n,n′ (5)

between the rate of fusion of clusters of sizes n, n′ and
the rate of fission of clusters of size n+ n′ into reaction
products of these sizes. The quantity νn,n′ is a stoichiom-
etry coefficient equal to the number of aggregates of size
n (or n′) consumed per fusion of clusters of size n and n′,
which is given by νn,n′ = 1 for all n 6= n′ but νn,n′ = 2
in the special case n = n′.
The first summation in Eq. (4) represents the net rate

of production of n-mers produced by fusion of smaller
aggregates of size m′ and n − n′, minus the rate of fis-
sion of n-mers into smaller aggregates. To avoid double
counting of equivalent reactions, the sum over m′ in this
sum is constrained to values for which n′ ≤ n− n′. This
constraint yields an upper bound of m′ = m/2 for even
n and n′ = (n− 1)/2 for odd n. The second sum in Eq.
(4) is the net rate of production of n-mers via fission of
larger aggregates into daughters in which at least one of
the fission products is an n-mer, minus the rate of fusion
of n-mers with clusters of any other size.
For the special case of unimers, or m = 1, the first

term in Eq. (4) is absent, giving a rate of change

dc1(t)

dt
= −

∞
∑

n′=1

Jn′,1 =

∞
∑

n′=1

(r−n′,1 − r+n′,1) . (6)

This is simply the difference between the overall rates of
stepwise expulsion and stepwise insertion.
The principle of detailed balance requires that, in equi-

librium,

r+n,n′ = r−n,n′ (7)

for all n, n′ ≥ 1 or, equivalently, that Jn,n′ = 0. Com-
bining this with the fission and fusion rate laws, Eqs. (2)
and (3), yields the more explicit requirement that

k+n,n′c
∗
nc

∗
n′ = k−n,n′c

∗
n+n′ , (8)

for all n, n′ ≥ 1. Because this condition relates fission and
fusion rate constants, knowledge of either fission or fusion
rate constants for all pairs of aggregation numbers and
of c∗n for all n is thus sufficient to specify all parameters
in the kinetic model.

A. Stepwise (Becker-Döring) Model

The stepwise or Becker-Döring model assumes that the
only relevant reactions are stepwise insertion and expul-
sion reactions. The master equation for this restricted

model can be obtained by assuming that the only non-
negligible terms in Eq. (4) are those with n′ = 1. In
discussions of the step-wise model, we hereafter adopt
the simplified notation

Jn ≡ Jn,1 , k±n ≡ k±n,1 (9)

to refer to fluxes and rate constants for stepwise pro-
cesses. In this notation

Jn = k+n cnc1 − k−n cn+1 , (10)

is the net rate at which clusters of size n are transformed
into clusters of size n + 1 via insertion of unimers into
n-mers and expulsion of unimers from (n+ 1)-mers.
The time evolution of the stepwise model is controlled

by

dcn(t)

dt
= Jn−1 − Jn (11)

for all n > 1, and

dc1(t)

dt
= −

∞
∑

n=1

Jn (12)

for m = 1 (i.e., unimers).
The detailed balance for the stepwise model requires

that

k+n c1

k−n
=

c∗n+1

c∗n
= e−∆Wn/kBT , (13)

in which ∆Wn ≡ Wn+1 − Wn. Using this relation, Jn
may also be expressed as a difference

Jn = −k−n

(

cn+1 − e−∆Wn/kBT cn

)

, (14)

with no explicit dependence on k+n .
If ∆Wn ≪ kBT for all n of interest, then we may

approximate Eq. (11) by a diffusion equation in which
n is treated as a continuous variable. In this limit, we
obtain

∂cn
∂t

=
∂

∂n

(

k−n

(

∂cn
∂n

+ cn
∂

∂n

(

Wn

kBT

)))

. (15)

This is a Fokker-Planck equation for the evolution of
cn(t) due to diffusion of aggregation number n under the
influence of a potential Wn, with an effective diffusivity
given by the expulsion rate constant k−n .

B. Diffusion Controlled (Smoluchowski) Model

The range of possible values for fusion rate constants is
limited by the rate at which aggregates randomly collide
via diffusion. The classical Smoluchowski model of fast
binary reactions among hypothetical spherical particles
assumes that any two particles that diffuse close enough
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to touch will react, and thus assumes that rates are com-
pletely diffusion controlled. In the Smoluchowski model,
the rate constant k+n,n′ is given by an expression of the
form

k+n,n′ = ν−1
m,m′4πRn,n′(Dn +Dn′) (16)

in which Dn is the tracer diffusion coefficient for an n-
mer, and Rn,n′ is an effective capture radius for collision
of aggregates of size n and n′. In the classical Smolu-
chowski model of interacting spherical particles this bi-
nary capture radius is assumed to be equal to the sum

Rn,n′ = Rn +Rn′ (17)

of the hard-sphere radii of the two particles.
The stoichiometric factor of ν−1

n,n′ in Eq. (16) is equal

to 1 for all n 6= n′ and equal to 1/2 in the special case
n = n′. Note that this factor cancels the factor of νn,n′

in the term representing consumption of n-mers in the
master equation, Eq. (4). The overall rate of consump-
tion per unit volume of n-mers by fusion with n′-mers is
thus given by 4πRn,n(Dn +Dn′)cncn′ for all n′, with no
stoichimetric prefactor. The corresponding probability
per unit time that a randomly chosen labelled n-mer will
be anhihilated by colliding with any n′-mer is given for
any n′ by 4πRn,n′(Dn +Dn′)cn′ . This predicted rate of
collision between a labelled n-mer and any n′-mer can
be obtained by considering diffusion of a surrounding
concentration cn′ of n′-mers to an absorbing spherical
boundary of radius Rn,n′ surrounding a labelled n-mer.
In this work, we consider a version of the Smoluchowski

model in which we approximate the core regions of AB
block copolymer micelles as spherical particles that fuse
upon contact, and thus take the radii Rn and Rn′ in Eq.
(17) to be equal to the micelle core radii. Because fusion
and fission rates are related by the principle of detailed
balance, a prediction for the fusion rate k+n,n′ can be com-
bined with knowledge of the equilibrium concentrations
to predict corresponding rate constants for fission. The
assumption of diffusion limited fusion can thus be used
as the basis of a complete but very approximate theory
of fission and fusion rates.
We do not expect the assumption of diffusion-

controlled fusion to accurately describe most real sys-
tems. Either the repulsion between micelle coronas in
nonionic block copolymer systems or the electrostatic re-
pulsion between micelles in ionic systems can presum-
ably create a signficant barrier to fusion. Predictions of
the diffusion-controlled model are nonetheless considered
here because the model has used as the starting point of
several previous analyses, and because it provides a use-
ful upper bound on the range of possible values for fusion
rate constants.

V. DIFFUSION

Values of the tracer diffusion coefficients for unimers
and for micelles of all sizes are needed in order to pre-
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FIG. 1. Mean squared displacement 〈(∆R)2〉 of a micelle cen-
ter of mass as a function of time t for a micelle of aggregation
number m = 60 and α = 16 in a box 40σ on a side. The
solid line shows the slope of a linear fit to the late time be-
havior, and has been displaced above the data for visibility.
After correcting for finite size effects, we obtain a diffusivity
of D = 0.001926σ2/τ0 for this micelle, where σ is the range
of the DPD potential and τ0 is the Lennard-Jones time unit.

dict diffusion-controlled limits for rates of insertion and
fusion. The tracer diffusion coefficient D for either a
unimer or a micelle can be obtained from a measure-
ment of mean-squared displacement as a function of time.
At long times, the mean-squared displacement (MSD)
〈(∆R)2〉 of the center-of-mass of a molecule or cluster in
a large simulation cell varies with time t as

〈(∆R)2〉 = 6Dt (18)

A typical mean squared displacement curve for a micelle
is shown in Figure 1. We have determined apparent dif-
fusivities for both individual copolymers and micelles of
varying sizes by fitting a line to data for 〈(∆R)2〉 vs. t
at long times. Results for micelle MSD were obtained
for each choice of parameters considered here from an
average of 144 independent simulations of systems that
each contain a single micelle simulation over a duration
of 104 LJ time units in a cubic simulation boxes of size
L = 25.2σ or larger.
When this analysis of MSD was applied to simulations

that contain one micelle in a simulation cell that is only a
few times larger than the micelle, the resulting apparent
values for D were found to depend noticeably on the size
of the periodic simulation cell [50, 51]. This finite-size ef-
fect in simulations of a single micelle is a well understood
result of the hydrodynamic interaction of each micelle
with its periodic images [50, 52]. Values for the diffusion
coefficient reported here were thus corrected to account
for this hydrodynamic effect in order obtain the diffusion
coefficient that would be obtained in a macroscopic sys-
tem, which we denote by D. The required correction is
discussed in Appendix A.
We first consider tracer diffusion of individual diblock

copolymers in a hompolymer melt. We obtain a tracer
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FIG. 2. The radius of gyration Rg (+ symbols) and hydrody-
namic radius Rh (open circles) plotted vs. aggregation num-
ber n. Different colors represent results obtained with α = 16
(light blue) and α = 12 (dark red).

diffusivity of D = 0.0125 σ2/τ0 for A homopolymers, cor-
responding to copolymers with α = 0.0, and D = 0.0117
σ2/τ0 for copolymers with α = 16, the highest value of
α considered here. Because this diffusivity was found
to depend only weakly on α, we used the homopolymer
(α = 0) tracer diffusivity as an approximation for the
copolymer diffusivity in subsequent analysis.

Results for the diffusion coefficient D for a micelle can
be used to define a corresponding micelle hydrodynamic
radius Rh by using Stokes-Einstein formula

D = kBT/(6πη0Rh) , (19)

where η0 is the zero shear viscosity of the surrounding
solvent, which in this case is a homopolymer liquid.

Colleague T. Ghasimakbari has measured the stress
relaxation modulus G(t) and zero shear viscosity η0 =
∫∞

0
G(t)dt of a homopolymer melt simulated with the

model used here. He found that the dependence of
these quantities on time and chain length is very well
described by a Rouse model [53] with a viscosity η0 =
7.92 kBTτ0/σ

2 for chains of 32 beads.

Figure 2 shows simulation results for the dependence
of both radius of gyration Rg (+ symbols) and hydrody-
namic radius Rh (circles) upon n, using data obtained
from two different values of α = 12 and α = 16. Re-
sults obtained with different values of α nearly collapse
when plotted vs. n, indicating that results for Rh and
Rg at any specified value of n are almost independent
of α. Results for Rh shown in this figure were obtained
from estimates of diffusivity in an infinite domain, after
correcting for hydrodynamic finite size effects. The hy-
drodynamic radius Rh is found to vary somewhat more
strongly with n than the radius of gyration Rg, but al-
ways remains comparable to Rg.

VI. INSERTION AND EXPULSION

This section presents an analysis of rate constants for
insertion of a free surfactant molecule into a micelle
and for expulsion of a single surfactant molecule from
a micelle. Throughout this section, we use the symbols
k+n = k+n,1 and k−n = k+n,1 for insertion and expulsion rate
constants, respectively.

A. Methodology

Insertion and expulsion rate constants have been in-
ferred from simulations of sytems that each contain a
single micelle in coexistence with a few free surfactant
molecules within a periodic cubic unit cell. In a sys-
tem with exactly one micelle of size n, we expect free
molecules to be expelled from the micelle at a rate k−m
and inserted at a rate k+mc1, where c1 is the concentration
of free molecules in coexistence with the micelle. Once
the simulation has reached equilibrium over long times
the average of these two rates must be equal.
We define the observed rate of insertion and expulsion

in such a simulation as follows: At each instant, we iden-
tify a set of copolymer molecules that are “inside” the
micelle, and another set that are far “outside”. Which
copolymer molecules are inside the micelle is determined
by a cluster analysis that identifies molecules for which
the atoms of the core-forming B block are in close con-
tact. (This algorithm is discussed in greater detail in
paper I.) A copolymer is defined to be “outside” if the
distance from the center of mass of the micelle to the B
bead at the A-B junction (the B bead that is bonded to
an A bead) exceeds some cutoff distance Ro, which we
refer to as the outer radius. We assign every molecule
a variable with possible values “in” or “out” indicating
whether that molecule was most recently inside or out-
side, in the sense described above. The value of this vari-
able changes from in to out only when a molecule that
was most recently inside the micelle diffuses far enough
from the micelle be relabelled as “out”. Similarly, the
label is changed from out to in whenever a micelle that
was most recently “outside” is incorporated into the mi-
celle. If a molecule leaves the micelle and is then re-
incorporated back into the micelle before reaching a dis-
tance Ro from center of the micelle, it is thus treated as
if it never left the micelle.
The observed insertion rate, denoted by F , is given by

the rate (number per time) at which surfactant molecules
that are labelled “out” enter the micelle. Similarly,
the observed explusion rate is given by rate at which
molecules that have been expelled from the micelle but
are labelled “in” diffuse far enough from the center of the
micelle to be relabelled as “out”. On average, in equi-
librium, these insertion and expulsion rates must exactly
balance. The value of the insertion rate F (Ro) obtained
by this method depends somewhat on the choice of the
outer radius Ro, but approaches a limiting value in the
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limit Ro → ∞, denoted by

F∞ ≡ lim
Ro→∞

F (Ro) . (20)

We estimate the limiting value F∞ by an extrapolation
procedure that is described below.

The limiting value F∞ represents the rate at which ex-
pelled molecules irreversibly escape a micelle, or at which
the micelle capture molecules that originate from distant
points within a solution (e.g., from other micelles within a
dilute micellar solution). The value for the macroscopic
insertion rate constant k+n for a micelle of aggregation
number n in a dilute micellar solution is thus taken to be
related to F∞ by the relations

F∞ = k+n c1 , (21)

where c1 is the average concentration of free molecules
under the conditions used in the simulation. Because
the instantaneous aggregation number of the micelle in
such a simulation fluctuates slightly as molecules are in-
serted and expelled, an estimate of k+n is obtained from
a simulation in which the average aggregation number
of the micelle (excluding free molecules) is equal to n.
This measurement is repeated for systems with different
numbers of copolymer molecules and different values of
α.

B. Dependence of Flux on Outer Radius

Our extrapolation of results obtained with a finite
outer radius Ro to the limit Ro → ∞ is based on a simple
diffusion model of the dependence of the insertion rate
F on on Ro. In this model, we treat chain insertion as
diffusion to a micelle with an absorbing boundary with
some effective capture radiusRc. We treat molecules that
are labelled “in” and “out” as two different species that
are interconverted by reactions that occur at the inner
and outer boundary of a spherical annulus. Molecules
that are labelled “out” are created (i.e., relabelled) at a
steady rate F along the surface of a sphere of radius Ro

around the center of the micelle, and are destroyed (or
absorbed by the micelle) along a surface of radius Rc,
the effective capture radius. Let c(r) denote the concen-
tration of copolymer molecules that are labelled “out” at
points a distance r from the center of a micelle. Because
all molecules that lie a distance greater than Ro from
the micelle are labelled “out”, the concentration of such
molecules must equal the total free molecule concentra-
tion c1 for all r ≥ Ro. To compute c(r), we thus solve
a steady-state diffusion equation 0 = ∇2c in the region
Rc < r < Ro subject to a boundary condition requiring
that c(Ro) = c1 along the outer boundary r = Ro and an
absorbing boundary condition requiring that c(Rc) = 0
at the effective capture radius r = Rc. The solution
to this diffusion problem yields a concentration that de-
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FIG. 3. Inverse insertion flux 1/F vs. inverse outer radius
1/Ro, computed using data for single micelle of average ag-
gregation number n = 80 at α = 12 at several values of Ro.
Inverse flux is measured in inverse Lennard-Jones time units.

pends on radius r as

c(r) = c1
R−1

c − r−1

R−1
c −R−1

o

. (22)

The corresponding flux of labelled molecules into the mi-
celle satisfies the equation

1

F
=

1

F∞

−
1

4πDc1Ro
(23)

where D is the copolymer diffusivity, and where

F∞ = 4πDRcc1 (24)

is the limiting value of the flux in the limit Ro → ∞.
The validity of Eq. (23) can be tested by plotting val-

ues of the inverse flux 1/F obtained using different val-
ues of Ro as a function of 1/Ro. Because the copolymer
diffusivity D and free copolymer concentration c1 have
been measured independently, the only free parameter in
Eq. (24) is the extrapolated flux F∞. Figure 3 shows
an example of such a plot. The results shown here for
different values of Ro were computed by simply postpro-
cessing the same set of MD trajectories using different
values Ro. The line in this plot was constructed using
the predicted slope 1/(4πDc1), computed using indepen-
denty measured values of D and c1. The intercept of
1/F∞ was chosen to fit this data. The quality of the fit
confirms the validity of the proposed model for the de-
pendence on Ro, and provides a straightforward method
to determine F∞ for each simulation.

C. Discussion

The above analysis of values of F∞ was performed for
micelles of varying aggregation number n for each of the
four values of α considered here. The value of F∞ ob-
tained from each simulation was then used to compute
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FIG. 4. Effective capture radius Rc for micelles and ho-
mopolymer droplets of differing aggregation number n plot-
ted vs. the micelle core radius Rcore. Data for micelles is
shown for α = 10, 12, 14, and 16 on a single graph, with
distances in units in σ = 1. Corresponding results obtained
from insertion and expulsion of copolymers into a homopoly-
mer droplet at α = 12 are show as solid red circles. The
dashed line is the best global fit line drawn through the data,
given by Rc = 1.04Rcore + 2.55.

a corresponding value of the effective capture radius Rc,
by applying Eq. (24). Figure 4 shows a compilation of
results for Rc plotted vs. the nominal micelle core radius
Rcore. The nominal core radius Rcore shown here is com-
puted for a micelle of aggregation n by assuming a spher-
ical micelle core and equating the core volume 4πR3

core/3
to the expected volume NBnv of the monomers in the
core block of n molecules, where NB = 4 is the number
of beads in each core-forming B block and v = 1/c is the
average volume per bead in the system of interest, for
which we use c = 3.0σ−3. Very similar values of Rc are
obtained for systems with the same values of n and Rcore

but different values of α, as shown by the near collapse of
data from different values of α in Figure 4. The depen-
dence of the capture radius Rc on the core radius Rcore

is reasonably well described by a simple linear function

Rc(M) = Rcore(M) + ∆ , (25)

which is shown by the dashed line in Figure 4, in which
∆ is a distance ∆ = 2.55σ.
Eq. (25) can be motivated by a simple picture of in-

sertion as a diffusion-limited reaction between a spherical
micelle core of radius Rcore and a copolymer that acts as
a sphere of effective radius ∆. If insertion were diffusion
controlled but copolymer surfactants were point-like ob-
jects that are captured whenever they touch the micelle
core, we would expect a capture radius Rc = Rcore. The
fact that the effective capture radius is actually larger
than the core radius is presumably a result of the fact
that the copolymer is not a point particle, but is instead
an extended object. Because of the strong effective at-
traction between B monomers in an Amatrix, we assume
that a copolymer diffusing near a micelle is nearly certain

to be captured as soon as any monomer in the B block
of the micelle comes in contact with the core of the mi-
celle. Because the copolymer is an extended object, this
first contact may occur when the center of hydrodynamic
resistance of the molecule and the junction between the
A and B blocks both remain outside the core, giving an
effective capture radius somewhat larger than the core
radius.
The above discussion is based on an assumption that

insertion is diffusion controlled. Consider instead what
we would expect to see if the micelle corona created a
large barrier to insertion. In this case, the existence of
a barrier would yield an insertion rate F much less than
predicted by a diffusion-controlled model. Because Rc

is proportional to F , by Eq. (24), existence of a sign-
ficant barrier to insertion would thus yield an effective
capture radius signficantly less than the actual core ra-
dius. Observation of an effective capture radius slightly
greater than the core radius thus implies that the corona
does not create a signficant barrier to insertion, and that
insertion must thus be at least approximately diffusion
controlled.

VII. INSERTION INTO A DROPLET

The above analysis of effective capture radii for mi-
celles suggests that, in the model studied here, insertion
is at least approximately diffusion controlled. To make
this statement more precise, we need to introduce an ap-
propriate definition of what we would mean to say that
this process was completely diffusion controlled. We are
primarily concerned here with the possible effects of the
corona of the micelle, which can produce a barrier to in-
sertion. To define what we mean by diffusion controlled,
or barrierless, insertion, we have thus chosen to compare
our results for insertion of a copolymer molecule into a
copolymer micelle to results for insertion of a copoymer
into a liquid droplet of B homopolymers, and compare re-
sults for a micelle and liquid droplet containing an equal
number of B monomers. Such a droplet acts as a model
of the core of a micelle with no corona.
To create a homopolymer droplet, we simply create

a system containing N = 20 − 100 short B homopoly-
mer chains within a matrix of A homopolymers. Each of
the B chains contains 4 B beads (which is the length of
core block of our copolymers), while each A homopoly-
mer contains 32 beads. The repulsion between A and B
causes the homopolymer to form a liquid droplet with
a structure similar to that of the micelle core. To mea-
sure the effective radius for capture of a copolymer by
such a droplet we then add a few AB copolymers (much
fewer than the number of B homopolymers) to the same
system, measure rates of insertion of copolymers into a
droplet using the method described above for a micelle,
and convert the results into an estimated capture radius
Rc

Resulting values for the capture radius Rc of a liquid
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droplet are plotted vs. Rcore in Figure 4 as solid circles,
alongside corresponding results for the capture radii of
micelles. The core radius Rcore for a droplet is computed
using a procedure analogous to that used for micelles, by
setting the volume of a sphere of radius Rcore equal to
the volume nNBv computed using the average number n
of homopolymers in the core, excluding any that escape
into solution. When plotted vs. Rcore, results for the
effective capture radii of homopolymer droplets all lie
within the the narrow band of values obtained for capture
radii of micelles. The fact that we obtain nearly identical
results for Rc for a droplet and a micelle of equal core
radius demonstrates that the corona does not cause any
measurable barrier to insertion. In the model studied
here, insertion is thus completely diffusion controlled.

VIII. EQUILIBRUM DISSOCIATION LIFETIME

In this section, we compute the average rate at which
micelles would be created and destroyed by association
and dissociation, in the absence of fission and fusion. Be-
cause we neglect the possibility of fission and fusion, the
analysis is based on a completely stepwise model. As a
measure of the frequency of dissociation events, let τd de-
note the average time before a randomly selected micelle
in equilibrated solution would undergo stepwise dissoca-
tion, in the absence of fission and fusion. We refer to
τd as the equilibrium dissociation lifetime. The value of
τd depends on the overall copolymer concentration. All
values reported here are computed for systems at a con-
centration twice the critical micelle concentration.
To define and compute τd, we consider the predictions

of the stepwise kinetic model for the following thought
experiment: Imagine that at some time t = 0, we iden-
tify and somehow label all proper micelles of aggregation
number greater than some cutoff size. Imagine that we
then keep track of fluctuations in the aggregation num-
ber of each micelle in this labelled population, and note
when each of them undergoes complete dissociation into
unimers. Let P (t) denote the probability that a micelle
that had an aggregation number n > b at t = 0 has sur-
vived to time t without undergoing dissociation. Because
dissociation is a rare, random event, we expect P (t) to
decay exponentially at long times, giving P (t) ∝ e−t/τd ,
where τd is the desired dissociation lifetime.
The computation of τd is discussed in detail in ap-

pendix B and summarized more briefly here. The micelle
lifetime can be computed using a slight modification of
the method normally used to compute rates of stepwise
nucleation in the Becker-Döring model. In this approach,
one considers a pseudo-steady-state solution to the step-
wise kinetics model in which the distribution cn(t) of sur-
viving micelles closely resembles the equilibrium distribu-
tion c∗n at values of n near the most probably value ne,
but in which there is a small nonzero flux Jn from the
micellar region to the submicellar region. This flux Jn is
assumed to be nearly independent of n over a range of val-

ues of n near the transition state value nt. The resulting
analysis is simply a discrete version of Kramer’s method
treating diffusion over a barrier. Similar answers’s can be
obtained by applying Kramer’s analysis to the continuum
diffusion equation given in Eq. (15).
When applied to the present problem, the Becker-

Döring analysis yields a lifetime

τd = Q

ne
∑

n=1

1

k−n
eWn+1/kBT , (26)

in which

Q =

∞
∑

n=nt

e−Wn/kBT (27)

is a partition function for a polydisperse micelle.
An analytic approximation for τd can be obtained by

approximating the summands in Eqs. (26) and (27) by
Gaussians and the sums by integrals. This yields a rate

τ−1
d ≃

k+nt

2πσeσt
c1e

−∆Wd/kBT , (28)

in which

∆Wd = Wnt
−Wne

(29)

is the barrier to dissociation. Here, σe is the standard
deviation of n about ne in the Gaussian approximation
for e−Wn/kBT in Eq. (27), while σt is the standard de-
viation in the Gaussian approximation for e+Wn/kBT in
Eq. (26). In Eq. (28), we have chosen to use the detailed
balance condition to express the expulsion rate constant
k−nt

by a product k+nt
c1.

The factors of c1 and e−∆Wd/kBT in Eq. (28) both
decrease rapidly with increasing α or, more generally,
decreasing surfactant solubility. Other quantities in this
equation, including the insertion rate k+nt

, are much less
sensitive to changes in surfactant solubility. All results
reported here are for situations where c1 = cc. Values of
cc for this model decrease by approximately a factor of 23
between α = 10 and α = 16. Values of ∆Wd obtained in
paper I range from only 3kBT at α = 10 to 14kBT at α =
16, corresponding to a change in e−∆Wd/kBT by a factor
of approximately 0.7 × 105. The most important factor
controlling the decrease in the rate of dissociation with
increasing α is thus the decrease in the Boltzmann factor
associated with the free energy barrier ∆Wn, though the
decrease in the unimer concentration also contributes.
Numerical results for the dependence of τd on α are

shown in Fig. 5. The lifetime τd increases by approx-
imately a factor of 106 as α increases from 10 to 16.
As noted above, most of this increase is a result of an
increase with increasing α in the free energy ∆Wd re-
quired to shrink an equilibrium micelle to the critical
aggregation number nt by expelling unimers. The value
of τd ≃ 1013τ0 obtained at α = 16 corresponds to ap-
proximately 1015 MD steps. Stepwise dissociation events
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FIG. 5. Calculated equilibrium dissociation lifetime τd plot-
ted against α. This lifetime increases by approximately 106

over the range α = 10− 16.

would thus be far too infrequent to be observed in brute
force MD simulation, but can be accurately modelled by
the combination of techniques used here.

It is worth noting that the dissociation lifetime τd con-
sidered here is not exactly equivalent to the ”slow” re-
laxation time τ2 predicted by the stepwise model to de-
scribe relaxation after a small perturbation. The disso-
ciation lifetime τd is the average time it would take a
randomly chosen micelle in an equilibrated solution to
be destroyed by stepwise dissociation, in the absence of
fission or fusion. The slow relaxation time τ2 is instead
the time required for a micellar solution to reach a new
equilibrium state with a new micelle number concentra-
tion after equilibrium is disturbed by a step change in,
e.g., temperature or total surfactant concentration. In
appendix B, we compute τd by computing the rate at
which a subpopulation of micelles that were present at
some time t = 0 undergo dissociation. Because the so-
lution remains in equilibrium, the unimer concentration
c1 is assumed to remain constant during this process.
In the calculation of τ2 by the stepwise model, as first
given by Aniansson and Wall [14–16], one must instead
allow for the fact that c1 and average micelle aggregation
number both change during the slow relaxation process.
Both τd and τ2 are proportional to an Arrhenius factor of
e−Wd/kBT , and thus both become very large in systems
with Wd ≫ kBT . The slow time τ2 is, however, always
less than τd, as a result of changes in c1 during relaxation
that tend to accelerate approach to a new equilibrium
state.

IX. INTRINSIC FISSION RATES

We now focus on quantifying rates of spontaneous fis-
sion. The total rate of fission of micelles of a specified
aggregation number n (n-mers) into daughters of all pos-
sible sizes can be expressed as product kfisn cn, in which
kfisn is a quantity that we will call the intrinisc rate con-
stant for n-mers. This quantity is simply given by the

sum

kfisn =

n/2
∑

n′=1

k−n′,n−n (30)

of the rate constants for fission of n-mers into daughters
of all possible pairs of sizes. We define a corresponding
time scale τfisn that is given by the inverse

τfisn ≡ 1/kfisn , (31)

and refer to τfisn as the intrinsic fission lifetime for n-
mers.
In this section, we present the results of MD simu-

lations in which we have determined τfisn for micelles
of varying aggregation number n by directly observing
spontaneous fission of artificially assembled metastable
micelles. The lifetime τfisn is found to decrease rapidly
with increasing n. For micelles with n similar to the most
probable value ne, this lifetime is found to be too long
to allow direct observation of fission in long MD simula-
tions. The simulations presented are instead performed
using larger, less stable micelles in order to obtain com-
putationally accessible fission lifetimes.

A. Methodology

For each value of α, we have performed fission simula-
tions at several values ofN , the total number of molecules
in the simulation cell. For each choice of α andN , we cre-
ated an ensemble of n equivalent systems, each of which
initially contains a single preassambledmicelle containing
all N copolymers. All the systems in each such ensemble
are then simulated for an equal time T that is chosen
to be long enough to observe spontaneous fission of the
micelle in a significant fraction of the systems. All of the
results presented here were obtained using ensembles of
n = 20 such equivalent systems.
The pre-assembled micelle in each such system was cre-

ated by first generating an initial configuration in which
copolymers are distributed randomly throughout the
simulation unit cell, and then running a short prepara-
tory MD simulation with an artificial external potential
that strongly attracts B monomers (those in the copoly-
mer core block) to a spherical region of radius comparable
to the expected radius of the micelle core. The external
potential was then turned off to begin the dynamical sim-
ulation, during which the micelle can undergo fission.
The time required for the NPT integrator to reestab-

lish the target temperature and pressure after turning
off the external potential was small compared to the
time required for any other equilibration process (i.e., the
time for the radius of gyration to equilibrate), and much
smaller than the average fission time. After this, the
micelle undergoes a period of local structural equilibra-
tion, during which the micelle shape begins to fluctuate.
Over a somewhat longer period, the micelle also gener-
ally expels a few molecules, creating a metastable local
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equilibrium state in which the micelle is in equilibrium
with a few free copolymers.

Figure 6 shows an example of the time dependence
of the radius of gyration of the micelle core (i.e., of the
collection of B monomers of molecules in the micellar
cluster) and of the number of free molecules (molecule
outside the cluster) as a function of time t, for α = 14.
In this example, the radius of gyration of the cluster has
equilibrated after roughly 103 LJ time units (i.e., ap-
proximately 105 MD steps), but a longer period of ap-
proximately 104 LJ units (or 106 MD steps) is required
before the number of free molecules equilibrates. The
time required to equilibrate the number of free molecules
increases with increasing α, increasing roughly propor-
tionately to 1/c1. (This follows from the fact that the
the rate of insertion per micelle is given by a product of
the insertion rate constant and c1, and that the inser-
tion rate constant for micelles of a specified aggregation
number depends very little on α.) The resulting small
decrease in micelle aggregation number also has less ef-
fect on other properties as α increases, however, simply
because the average number of free molecules released
from the micelle becomes very small for large values of
α.

Throughout these simulations, we use the cluster iden-
tification algorithm to identify fission events. Immedi-
ately after we turn off the external potential that is used
to pre-assemble a micelle, this algorithm identifies one
large cluster that contains all of the copolymers. Some-
what later, the algorithm normally finds one large clus-
ter and a few free molecules. Potential fission events
are identified by determining the earliest time at which
this algorithm finds two clusters with aggregation num-
bers that are both greater than some cutoff value a, for
which we choose a = 10. For the appearance of a second
large cluster to qualify as a fission event, we also require
that almost all of the molecules in these two clusters be
molecules that were part of the single large cluster just
prior to this event.

Figure 7 shows a coarse histogram of the distribution
of values for the ratio of the aggregation number of each
daughter micelle produced by a fission event to the aggre-
gation number of the parent micelle. The results shown
here for each value of α are averaged over several values of
the aggregation number n of the parent cluster. The fact
that the distribution is clustered around a 50/50 split
confirms that the fission events identified here usually
produce two daughter clusters of approximately equal
size.

We have observed that, under some conditions, a sec-
ond micelle can appear within our simulation cell via
step-wise association of free molecules, rather than via
fission of the pre-assemble micelle. This was observed
only at the lowest value of α considered here, α = 10,
for which stepwise association is more frequent, and only
for systems with relatively small values of N . Obser-
vation of stepwise association becomes more likely with
decreasing N at a fixed value of α because the increase

0 0.5 1 1.5 2 2.5

t [LJ] 10 4

0
1
2
3
4
5
6
7
8
9

10

N
f

0 0.5 1 1.5 2 2.5

t [LJ] 10 4

2.5

2.75

3

3.25

3.5

3.75

4

4.25

4.5

R
g
/

FIG. 6. These plots show the time dependence of the radius
of gyration of the micelle core, denoted by Rg (lower plot) and
the number Nf of free surfactant molecules (upper plot) as a
function of time t after initiation of a fission simulation. Data
shown here is for a system of N = 140 surfactant molecules
and α = 14, for which the average final aggregation number is
n ≈ 136. Time t is given in Lennard-Jones time units, where
t = 0 corresponds to the time at which the potential that we
use to a assemble a micelle is removed. For this system, the
relaxation time for the radius of gyration is less than 103 LJ
time units, while the relaxation time for the number of free
surfactant molecules is approximately 104 LJ time units.

in intrinsic fission lifetime with decreasing aggregation
number leaves more time for stepwise association to pre-
empt fission. Formation of a micelle by stepwise associ-
ation is characterized by appearance a second cluster of
size n ≥ ncut in which the smaller such cluster initially
has an aggregation number n = a, because it has grown
by stepwise insertion from a cluster with n < a, and in
which few if any of the molecules in this smaller cluster
were recently members of the single larger cluster.
We did not attempt to estimate τfisn under conditions

for which any stepwise association events were observed.
This requirement limited the lower end of the range of
values of n over which we could obtain a reliable value
for τfisn at α = 10, but had no effect on our analysis of
results obtained with other values of α.
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FIG. 7. Histogram of values of the ratio of aggregation num-
ber of each daughter produced by a fission event to the aggre-
gation number of the parent micelle before fission. To obtain
adequate statistics, the histogram is binned into ranges of
value of width 0.1, so that, for example, the point at 0.4 rep-
resents the probability of finding a daughter for which this
ratio lies between 0.35 and 0.45.

For each pair of values of α and N , we performed sim-
ulations of n independent systems for an equal time T
after removal of the external potential used to assemble
each micelle. The simulation time T used for each choice
of α and N was chosen (based on information from pre-
liminary simulations) so that roughly half of the micelles
were expected to undergo fission during the course of the
the simulation. When each such set of simulation were
complete, we could identify a subset of systems in which
fission occured during the simulation, for which we iden-
tify the time at which fission occurred.
If we had run these simulations long enough for all

of the micelles to fission, the fission lifetime could have
been estimated by simply taking the mean value of all
measured fission times. A more sophisticated analysis is
required to estimate a lifetime from results of simulations
that are run for a finite time T comparable to the instrin-
sic lifetime, as done here. We have estimated τfisn and
the root-mean-squared statistical error of the estimate
using a maximum likelihood estimator [54], as discussed
in appendix D.

B. Results

Fig. 8 shows the estimated values of τfisn plotted vs.
aggregation number n for all four values of α considered
here. Values of n shown in the absicca of this plot are
mean values of the micelle aggregation number just prior
to fission, as measured by a cluster identification algo-
rithm, averaged over systems with the same values of α
and N that undergo fission during the simulation. Error
bars in this plot show the estimated root-mean-squared
statistical error for τfis. Because of the relatively small
sample size, the statistical error is substantial (typically
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FIG. 8. Estimated values of the intrinsic fission lifetime τ fis
n

for micelles of differing size at α = 10, 12, 14, and 16. Error
bars show the root mean-squared statistical errors on the esti-
mated value. Dashed lines show the predictions of the global
linear fit to a function ln τ fis

n (α) = A + Bα + Cm given in
Eq. (8), plotted vs. n at these four values of α. Time is given
in Lennard-Jones units, with 1 Lennard-Jones time τ0 being
equal to 200 MD steps. Symbols shown in black were used
in the used to obtain Eq. (32), while lighter blue symbols
obtained at higher values of n were excluded from the fit.

20 - 30% of τfisn ), but not large enough to obscure un-
derlying trends.
Results for τfisn show a clear systematic dependence

upon both n and α. At each value of α, results for ln τfisn

decrease approximately linearly with increasing n near
the lower end of the range shown here, but crossover to
a slower decrease at higher values of n. The behavior at
high values of n appears consistent with saturation to a
nearly constant value. Within the range of linear depen-
dence of ln τfisn on n, the slope appears to be similar for
different values of α. Within this regime, our results are
fit rather well by an assumed linear dependence ln τfisn

upon both n and α, of the form

ln τfisn = A+Bα+ Cn , (32)

with coefficients A = 10.855, B = 2.0984, and C = -
0.1877. Dotted lines in Fig. 8 show lines predicted by
this fit at constant values of α = 10, 12, 14 and 16. This
fit was obtained by fitting only the data points shown in
black in 8, while excluding the points at higher values of
n that are shown in blue.
Our ability to obtain meaningful results for τfisn for

very large values of n is limited, in part, by the require-
ment that this fission lifetime must be greater than the
time required for an artificially pre-assembled micelle to
reach a metastable local equilibrium state after the po-
tential that we use to assemble the micelle is turned off.
If this condition were not satisfied, then the measured
fission lifetime could be sensitive to details of the proce-
dure used to produce a pre-assembled initial state. For
all of the data shown in Fig. 8, the observed value of τfisn

remains greater than the time required for apparent equi-
libration of fluctuations of the radius of gyration of the
micelle core, which we use as an indicator of structural
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relaxation of a micelle of fixed aggregation number. For
some large values of n, the value of τfisn measured here
does, however, become comparable to the time required
for a pre-assembled micelle to expel a few molecules and
thereby reach an equilibrium average aggregation num-
ber.

For some of the largest micelles studied here, the mi-
celle can thus undergo fission while the aggregation num-
ber is still (on average) slowly decreasing slightly by ran-
dom expulsion of unimers. There are, however, two rea-
sons to believe that this does not significantly effect our
conclusions regarding the dependence of τfisn on n. The
first reason is the fact that the aggregation number shown
as the absicca in Fig. 8 is actually the average aggrega-
tion number of micelles that fission, measured immedi-
ately prior to fission. We assume that the value of n just
prior to fission is what controls the stability of the micelle
with respect to fission, even in a simulation in which the
average aggregation number is still slowly decreasing over
the period when most fission events occur. The second
reason is that, for the largest values of α considered here,
the average number of molecules that would be expelled
if the micelle did not undergo fission is simply too small
to matter. The number of free molecules that would co-
exist in the simulation cell with a known total number of
copolymers is analyzed in Appendix A in I. For α = 16,
we know that only 1-2 free molecules would coexist with
the micelle at any value of n considered here. A change
in n by 1-2 molecules would be too small to significantly
change the expected value of τfisn . For both of these rea-
sons, we thus believe that the apparent tendency of τfisn

to saturate at large values of n is a real physical effect,
rather than an artifact arising from slow changes in ag-
gregation number. The evidence for this is particularly
clear for α = 16, for which the change in n is too small
to matter.

Some level of understanding of how micelle structure
varies with aggregation number can be obtained by re-
examining Fig. 6 of I. This figure shows the root-mean-
square core radii along principal directions of the gyra-
tion tensor plotted vs. n for systems with α = 12 and
α = 16. A comparison of Fig. 6 of I and Fig. 8 of this
work shows that at both of these values of α, the small-
est value of n for which we have reported a fission time
is slightly above the range in which Fig. 6 of I shows ev-
idence of the start of a transition from a spherical shape
to a dumbbell or slightly elongated rod. Over the range
of values of n in which we were able to directly measure
fission rates, the micelles thus appear to have cores are
typically ellipsoidal or “pill” shaped prior to fission.

We show in Sec. XI that the overall fission rate in an
equilibrated solution is dominated at each value of α by
fission of micelles with aggregation numbers greater than
the most probable value ne but somewhat less than the
smallest values for which we have been able to directly
measured τfisn . In what follows, we thus use Eq. (32) pri-
marily to extrapolate our measurements of τfisn to values
of n that are less than those for which measurements were

performed. The nature of the dependence of τfisn on n
at very large values of n, where this dependence is not
adequately described by Eq. (32), is thus irrelevant to
our analysis of overall fission rates in equilibrium.

X. SMOLUCHOWSKI MODEL

As a baseline for comparison to our measured fission
rates, we now consider fusion and fission rates predicted
by the Smoluchowski model discussed in subsection IVB,
which assumes that micelle fusion is diffusion controlled.
Calculation of fusion rate constants for the Smolu-

chowski model is straightforward. The rate constant
k+n,n′ for fusion between micellar clusters of aggregation

numbers n and n′ is given by Eqs. (16) and (17). The
effective hard-core radius Rn used in Eq. (17) is taken to
be the idealized core radius for a cluster of aggregation
number n, defined as discussed previously. The effective
diffusivity for each micelle has been computed by using a
fit to the dependence of hydrodynamic radius on n shown
in Fig. 2, while assuming negligible dependence of Rg on
α at fixed n.
In order to allow comparison to our MD results, we

focus on predictions of this model for fission rates. The
intrinsic fission rate kfisn = 1/τfisn measured in our simu-
lations is the overall rate constant for fission of a parent
cluster of aggregation number n into daughters of unspec-
ified sizes. This is given by the sum of the rate constants
for fission into all possible pairs of daughters. Using the
detailed balance condition, k−n,n′c∗n+n′ = k+n,n′c∗nc

∗
n′ , kfisn

can be expressed in terms of fusion rate constants as a
sum

kfisn =
1

c∗n

∑

n′≤n/2

k+n′,n−n′c
∗
n′c∗n−n′ . (33)

By using the values of c∗n obtained in paper I, we can thus
compute predictions of this model for the fission lifetime
τfisn = 1

kfis
n

.

Fig. 9 shows the resulting predictions of values of τfisn

as a function of aggregation number n. For compari-
son, this figure also shows the results for τfisn obtained
from MD simulations, which are also shown in Fig. 8.
Dashed lines in Fig. 9 simply show predictions of the
Smoluchowki model multiplied by factors of 10, 100, and
1000, which create a constant vertical offset on this semi-
logarithmic plot. As expected, measured lifetimes of τfisn

are greater than those predicted by the Smoluchowski
model within the range of values of n for which direct
measurement was performed. At α = 10, measurements
of τfisn were limited to rather large values of n, compli-
cating a comparison to predictions of the Smoluchowski
model. We thus focus primarily on higher values of α.
For the remaining values of α = 12, 14, and 16, the value
of τfisn at the lowest value of n for which this quantity
has been measured is approximately 103 greater than the
value predicted by the Smoluchowski model.
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FIG. 9. Comparison of the measured values and predictions of
the Smoluchowski theory for the fission lifetime τ fis

n , plotted
vs. aggregation number n. Solid black curves are predictions
of the Smoluchowski theory. Dashed lines show predictions of
the Smoluchowski theory multiplied by factors of F = 10, 100,
and 1000. Open circles are values measured in MD simula-
tions. Dotted straight lines are the fit to these measurements
given by Eq. (32).

The key approximation underlying the Smoluchowski
model is, of course, the neglect of any barrier to fusion.
If there were instead a barrier to fusion of magnitude
∆Gfus

n , we would expect both fusion rates and corre-
sponding fission rates to be decreased relative to that
predicted by the Smoluchowski by an Arhenius factor
exp(−∆Gfus

n /kBT ). For purposes of discussion, it is con-
venient for us to define an effective barrier ∆Gfus

n to
fusion reactions that create an aggregate of aggregation
number n by defining

e∆Gfus
n /kBT =

τfisn

τfis,Sn

(34)

where τfis,Sn denotes the intrinsic fission lifetime pre-
dicted by the Smoluchowski model, and τfisn is the true
fission lifetime. For reactions involving fission of rela-
tively small micelles, we assume that this barrier is pri-
marily due to the free energy required to deform the coro-
nas of two colliding micelles in order to bring the micelle
cores into intimate contact. Correspondingly, we picture
the transition state for fusion as a state in which the

approximately spherical cores of two micelles are nearly
in contact but are connected by a thin throat of B-rich
material. This picture suggests that the correspond-
ing barrier should increase monotonically with increas-
ing n, due to the larger free energy required to force to-
gether larger micelles in which the corona regions contain
more molecules that become somewhat more strongly
stretched with increasing n.
In the data shown in Fig. 9, the predictions of the

Smoluchowski model for ln τfisn tend to decrease with in-
creasing n more rapidly than the values measured in MD
simulations. The effective barrier defined in Eq. (34)
thus does appear to increase with increasing n. One con-
sequence of this difference in slope in a plot of ln τfisn vs.
n is that, for α = 16, a simple linear extrapolation of the
dependence of measured values of ln τfisn on n to lower
values (the dotted line) would clearly intersect the pre-
dictions of the Smoluchowski model. Use of Eq. (32) to
extrapolate to very small values of n would thus violate
the lower bound provided by the Smoluchowski model.
In order for the true fission lifetime τfisn to be consistent
with both our MD results and this lower bound, while
also allowing for the existence of some barrier to fusion
at all values of n, it seems clear that a plot of ln τfisn

vs. n must curve upwards slightly at values of n below
the range of n over which τfisn has been measured. This
behavior would naturally yield values of τfisn that always
exceed the greater of the value obtained from the Smolu-
chowski theory and the value obtained from the linear
extrapolation given in Eq. (32), i.e., that satisfy

τfisn > max(τfis,Sn , τfis,Ln ) (35)

where τfis,Sn denotes the prediction of the Smoluchowski
model and τfis,Ln denotes the prediction of Eq. (32). We
propose that this provides a tighter, and more physically
reasonable lower bound on the fission lifetime than that
provided by Smoluchowski model alone, which yields fis-
sion lifetimes that are known to be much too low at large
values of n.
In order to examine the possible effects of the existence

of a modest barrier to fusion for small micelles, we have
also considered predictions of a family of models in which
τfisn is approximated as a function

τfisn = max(Fτfis,Sn , τfis,Ln ) (36)

where F is a constant factor. In this approximation,
F ≡ exp(∆Gfus/kBT ) is a factor that has been intro-
duced to take into account the effects of a barrier ∆G†

that, for simplicity, been taken to be independent of n
over the relevant range of values of n. Setting F = 1 in
this approximation yields the lower bound given in Eq.
(35). Values of Fτfis,Sn for F = 10, 100, and 1000 are
shown by dotted lines in Fig. 9. In order for this approx-
imation to remain consistent with all measured values of
τfisn , the factor of F used for α = 14 and F must be
approximately 103 or less, corresponding to an effective
barrier of ∆Gfus = ln(103)kBT = 6.9kBT or less. On
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physical grounds, we find it implausible that the defor-
mation of the corona’s required to bring the cores of two
micelles into contact could not produce a free energy bar-
rier of a least a few kBT , making it hard to justify a value
of F < 10. The comparison of MD results at large values
of n with predictions of the Smoluchowski model thus
yields a relatively narrow range (in a logarithmic sense)
of plausible values of the factor of F or (equivalently) the
effective barrier in this approximation.

XI. EQUILIBRIUM FISSION LIFETIME

We now consider the rate at which micelles undergo
fission in equilibrium. Let rfis denote the rate of fission
events of proper micelles in an equilibrated solution, per
unit volume and per unit time. This quantity can be
expressed as a sum

rfis =

∞
∑

n=a

c∗nk
fis
n , (37)

where kfisn = 1/τfisn is the intrinsic fission rate for mi-
celles of aggregation number n. Here, a is a lower cutoff
that we introduce to exclude fission of small submicellar
aggregates. The corresponding equilibrium rate of fission
per micelle, denoted here by kf is given by the ratio

kf = rfis/cmic (38)

where

cmic =

∞
∑

n=a

c∗n (39)

is the total equilibrium number concentration of micelles
of size n ≥ a. Let τf denote the equilibrium fission life-
time, which is defined to be the inverse

τf = 1/kf (40)

of this rate of fission per micelle.

A. Distribution of Fission Reactants

To identify which micelles undergo fission most fre-
quently, it is useful to also consider the probability that a
random fission event involved fission of a micelle of aggre-
gation number n. This probability, denote by Pfis(n), is
proportional to the equilibrium rate of fission of n-mers,
and is thus given to within a constant by the product

Pfis(n) ∝ kfisn c∗n . (41)

Because the intrinsic fission rate kfisn increases with in-
creasing aggregation number, while c∗n decreases with in-
creasing n for n > ne, we expect Pfis(n) to reach a max-
imum at a value of n somewhat greater than neq.
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FIG. 10. Comparison of the equilibrium micelle distribution
Peq(n) with the distribution Pfis(n) of fission reactants for
a system with α = 16 and ∆µ = ∆µc, plotted vs. micelle
aggregation number n. For Pfis(n), n refers to the aggre-
gation of the parent (reactant) micelles. Both distributions
have been normalized so that the sum over integer values of
n greater than a cutoff is equal to unity. The equilibrium
distribution Peq(n) is proportional to the equilibrium number
concentration Peq(n) ∝ c∗n, while Pfis(n) is given by Eq. (41).

Computation of the equilibrium fission rate and life-
time is straightforward given estimates of both the equi-
librium concentration c∗n and the intrinsic fission rate kfisn

as functions of n over the physically relevant range. Val-
ues for equilibrium concentrations have been accurately
determined for this model over a wide range of values of
n. Values for intrinsic fission rate constants have, how-
ever, been measured only over a more limited range of
rather large values of n. To obtain a simple estimate of
equilibrium fission rate, we have thus taken the empirical
formula given in Eq. (32) to apply at arbitrary values of
n, thus using Eq. (32) to extrapolate our measurements
of kfisn to values of n less than than the lower limit of the
range over which direct measurements were performed.

Figure 10 shows the predictions obtained for Pfis(n)
by this approximation alongside corresponding results for
the equilibrium micelle size distribution Peq(n) for sys-
tems with α = 16. The predicted value for Pfis(n) shows
a maximum at a value of n ≃ 128 roughly 30 % greater
than the value ne ≃ 97 at which Peq(n) is maximum. Fis-
sion of a micelle of this size into two daughters of equal
size would lead to two micelles of size n ≃ 64 that are
substantially smaller than the most probable size. After
fission, the aggregation numbers of these fission prod-
ucts would begin to fluctuate via much more frequent
stepwise insertion and expulsion events. Because these
fission products in this example would have aggregation
numbers much greater than the critical aggregation num-
ber for dissociation but greater than ne, they would be
unlikely to dissociate, and will instead tend to revert to
the most probably value ne via stepwise insertion.

These results suggest the following scenario for a typ-
ical fission event: A micelle chosen at random from the
equilibrium distribution fluctuates in size as a result of
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comparatively frequent insertion and expulsion events.
Fission is a much more rare event that usually occurs
during a rare fluctuation when n is signficantly greater
than n, and creates two micelles of aggregation numbers
significantly less than n. In systems in which stepwise
processes are much more frequent than fusion or fission
events, these fission products are very likely to to grow to
aggregation numbers near ne by stepwise insertion before
having time to undergo fusion or any other more rare pro-
cess. Further quantitative justification for this scenario is
provided in appendix C, in which we which compare time
scales for different possible processes involving products
of a fission reaction.
Because fusion and fission must obey detailed balance,

the most common fusion events must involve fusion of ag-
gregates with the same sizes as the most common prod-
ucts of fission events. Because fission is known to usually
yield two products of similar aggregation number, the
most common fusion events for the example of a system
with α = 16 must involve fusion of micelles with aggre-
gation numbers equal to roughly half the value at which
Pfis(n) is maximum, i.e., fusion of micelles with n ≃ 64.
One may see from inspection of the equilibrium distribu-
tion Peq(n) shown in Fig. 10 that such small micelles are
relatively rare. This implies that both fusion and fission
usually involve rare clusters that appear in the tails of
the equilibrium distribution, with fission typically occur-
ing for clusters with n > ne and fusion typically occuring
for clusters with n < ne.

B. Comparison of Different Estimates

The above analysis yields a prediction for Pfis(n) for
systems with α = 16 with a maximum at a value that
is signficantly below the smallest value of n ≃ 160 at
which we actually were able to measure a fission rate.
Similar analyses at other values of α yield similar results:
The value of n for which events are predicted to be most
frequent is greater than the most probable size ne but is
always somewhat less than the lower limit of the range
over which we were able to measure kfisn . The accuracy of
our estimate of the equilibrium lifetime τf thus depends
critically upon the accuracy of whatever approximation
we use to estimate τfisn outside the range of values of n
in which we measured kfisn .
In what follows, we discuss estimates of τf that are

based on several different approximations for the depen-
dence of τfisn on n.

(a) Smoluchowski Model: We have computed an esti-
mate of τf by using the predictions of the Smolu-
choski model for τfisn at all n.

(b) Equation (32): We have obtained a simple estimate
by using Eq. (32) to approximate τfisn at all n, thus
assuming a strictly linear dependence of ln τfisn on
n.

(c) Equation (36) with varying values of F : Several
related estimates of τf have computed by using Eq.
(36) for τfisn with values of F =1, 100, and 1000.

(d) Upper Bound on τf : We have constructed an up-
per bound on τf by applying Eq. (32) over the
range of values of large values of n within which
this approximation is reliable, and simply ignoring
the possibility of fission of micelles for which n falls
outside this range.

Comments about these estimates are given below.
The use of the Smoluchowski model (estimate a) pro-

vides a lower bound on the value of τfis that can be
constructed without reference to the results of our MD
simulations of fission rates for large micelles. Because
the model predicts unphysically rapid fission for large
micelles, however, it yields an estimate of τfisn that is
much less than any estimate that takes into account the
results of our MD simulations for fission rates.
The estimate obtained by using Eq. (36) (estimate

c) with F = 1 represents the bound given in Eq. (36).
We believe that this extimate represents the lowest value
that τf could plausibly have in light of the results of
our MD simulations and the bound on τfisn provided by
Smoluchowski theory. Estimates computed with Eq. (36)
with values of F > 1 provide information about how
the presence of a modest barrier to fusion would effect
computed fission rates.
To construct an upper bound for τf (estimate d), we

used Eq. (32) for τfisn for all values of n for which this
equation yields τfisn < 5 × 106 LJ units and simply set
kfisn = 0 for all smaller values of n. This cutoff on the
maximum allowed value of τfisn is slightly greater than
the greatest value that we were able to measure for α =
12, 14, or 16, and corresponds to the upper edge of the
plot shown in Fig. 8. For the case α = 16, this bound
causes us to neglect of fission for all parent micelles with
n < 158. By inspection of Fig. 10, one can see one can
see that this cutoff ignores the overwhelming majority
of fission events, and must thus produce an estimated
fission rate much lower than the true rate. This upper
bound was computed for all α ≥ 12 but not for α = 10,
because of the limited range of values of n over which we
could reliably estimate τfisn for α = 10.
Fig. 8 shows a comparison of estimates for τf obtained

by all of the methods described above. Several conclu-
sions emerge from an inspection of this graph.
Predictions of τf obtained using the Smoluchoski

model (open circles) are several orders of magnitude
lower than those obtained by any other method. This is
a result of the unrealistically short fission lifetimes pre-
dicted by this model for large values of n, which are dra-
matically faster than the results of our MD simulations
in the same range of n. This estimate can thus be dis-
counted as unrealistically fast.
The estimate obtained using Eq. (32) (+ symbols, es-

timate b) is very similar, but slightly less than the esti-
mated obtained using Eq. (36) and F = 1. These two
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FIG. 11. Comparison of several different estimates of the
equilibrium fission lifetime τf . Open circles are calculated
using the Smoluchowski model (estimate a). Plus (+) symbols
represent estimate obtained by using Eq. (32) for τ fis

n for all
n (estimate b). Open squares represent estimates obtained by
using Eq. (36) with different values of F =1, 100, 1000, from
lowest to highest (estimate c). Cross (×) symbols represent
the upper bound by allowing for fission of only very large
micelles for which the behavior of τ fis

n is known from MD
simulations (estimate d).

estimates are similar because both estimates predict that
most fission events involve micelles with n in a range of
values in which Eq. (32) yields a larger estimate of τfisn

than the Smoluchowski theory. The estimate obtained
using Eq. (36) is, however, necessarily greater than or
equal to that obtained from Eq. (36) because Eq. (36)
yields an estimate of τfisn that is greater than obtained
from Eq. (32) for all values of n.

Upon comparing estimates obtained using Eq. (36)
with different values of F , we see that the range of values
predicted for τf is much narrower than the range of values
of F considered, again because many of the fission events
occur in a range of values of n in which the value given
by Eq. (36) is equal to that given by Eq. (32). The
value obtained using F = 1000 also comes rather close to
the upper bound obtained by ignoring the contribution
of fission involving micelles for which n lies below the
range in which it has been measured. This is because
the assumption of such a large value for F shifts the
distribution Pfis(n) to higher values of n.

The true value of τf for this model cannot be deter-
mined exactly from the available data, but almost cer-
tainly lies somewhere between the estimate obtained by
using Eq. (32) with F = 1 and that obtained using
F = 103. We suspect that the most accurate estimate
may be that provided by using Eq. (32) using F = 100.
More important, however, is the observation that the
comparison of these estimates seems to constrain the
plausible range of values to a range of approximately one
order of magnitude or less at each value of α, with a
value τf ∼ 1011 for the highest value of α = 16. It
is also worth noting that this range of possible values
for the equilibrium fission lifetime τf seems to increase

much less rapidly with increasing α than our estimate of
the the equilibrium dissociation lifetime, increasing only
about 2-3 orders of magnitude as α increases from 10
to 16, rather than the 6 order of magnitude change pre-
dicted for τd. A direct comparison of our estimates of τd
and τf is deferred to the final section of this paper.

XII. DISCUSSION AND CONCLUSIONS

This work is a quantitative study of the rates of several
different types of infrequent dynamical processes in a sim-
ple simulation model of a micellar solution of AB diblock
copolymer surfactant in a solvent of A homopolymers.
Specifically, we focus here on quantifying rates for “step-
wise” insertion and expulsion of individual molecules,
and rates of processes that can create and destroy en-
tire micelles.

A. Insertion and Expulsion

Our analysis of insertion and expulsion rates focused
on a comparison of the rate constant for insertion to the
predictions of a diffusion limited insertion model. We
chose to focus on predictions for insertion because the
rate constant for insertion is simpler to interpret than
the rate constant for expulsion. The rate constant for in-
sertion is sensitive to the barrier posed by the corona (if
any), but not to the large free energy required to remove
the core block of the copolymer from the micelle core,
which is the dominant factor determining the value of the
expulsion rate. The question of whether the corona poses
a significant barrier can thus be determined by comparing
the insertion rate constant to a simple model of diffusion-
controlled insertion. We find that, for the model studied
here, insertion is completely diffusion limited, and that
the corona surrounding each micelle thus does not present
a significant barrier to insertion. This fact was demon-
strated most directly by showing that the rate constant
for insertion into a micelle is essentially indistinguishable
from the corresponding rate constant for insertion into a
homopolymer droplet with a radius equal to the radius
of the micelle core.
The fact that the corona poses almost no barrier to

insertion in this model may be a result of the particular
choice of molecules and parameters used here, and need
not be true more generally about block copolymer mi-
celles. The barrier to insertion posed by the corona of an
AB diblock is related to the stretching free energy of the
corona chains, since the free energy required to drag the
corona block of a free copolymer into the micelle corona
is similar to the stretching free energy of chains that are
already part of the micelle. The corona in the system
studied here remains rather weakly stretched both as the
result of our use of a polymeric solvent, rather than a
small molecule solvent, and the use of relatively modest
values of χN . The corona is more likely to present a
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FIG. 12. Comparison of the dissociation lifetime τd to several
different estimates of equilibrium fission lifetime τf , plotted
vs. α. Red open diamonds show computed values of τd. Blue
symbols show three different estimates of τf . Open circles are
the upper bound on τf that we obtained by ignoring fission
of micelles with lifetimes too long to be accurately measured
by MD simulation. Plus signs are the estimate obtained by
using Eq. (36) with F = 100, which is our best estimate of
τf . Open squares are obtained using Eq. (36) with F = 1,
which is the lowest estimate that is consistent with our MD
results.

barrier to insertion in systems of long, comparatively in-
soluble copolymers dissolved in a small molecule solvent.

B. Micelle Creation and Destruction

The analysis of micelle creation and destruction pro-
cesses given in Secs. VIII-XI focused on the computa-
tion or estimation of rates of the competing mechanisms
of stepwise association and dissociation vs. fission and
fusion. Figure 12 shows a comparison of predictions for
the equilibrium dissociation lifetime τd (red diamonds)
to three different estimates of the equilibrium fission life-
time τf . The three estimates of τfis include a strict upper
bound (estimate d, open circles), a lower bound on the
range of estimates consistent with our MD results (es-
timate c with F = 1, squares), and our proposed best
estimate (estimate c with F = 100, shown by + signs).
The predicted dissociation lifetime τd can be seen to

increase with increasing α (or decreasing surfactant solu-
bility) much more rapidly than any of our three estimates
of the equilibrium fission lifetime τf . As a result, there
appears to be crossover within the range of parameters
studied here from a regime of comparatively high copoly-
mer solubility (low α) in which micelles are created by
association and dissociation to a regime of lower solu-
bility (high α) in which the number of micelles changes
primarily by fission and fusion. The fact that τf < τd
at the highest value of α = 16 is shown definitively by
the fact that the computed value of τd (which is known
quite accurately), is approximately 10 times greater than
the upper bound on τf (open circles) that we obtained
by ignoring the vast majority of fission events and only

counting those involving unusually large, unstable mi-
celles with an intrinsic lifetime short enough for us to
measure. Conversely, it is clear that for α = 12, τf is
more than an order of magnitude less than the lowest of
these three estimates of τf .
The results indicate that, for simple non-ionic surfac-

tants of the type described by this model, stepwise as-
sociation and dissociation control the slow process for
relatively soluble surfactants, but that fission and fusion
can dominate for less soluble surfactants. This conclu-
sion is consistent with the conclusions of a number of
authors [17, 21, 22, 32, 33] who have previously argued
on experimental grounds that the slow process may oc-
cur by fission and fusion in this type of system (i.e., in
systems of sparingly soluble non-ionic surfactants). The
most important reason for the crossover from a stepwise
mechanism to a fission-fusion mechanism is the rapid in-
crease in the barrier ∆Wd to dissociation with increasing
α or decreasing solubility, which causes the dissociation
lifetime to increase more rapidly with decreasing solubil-
ity than the fission lifetime.
The accuracy of the estimates of fission lifetime given

here is limited by our use of brute force MD simulations
to estimate fission lifetime, which allowed us to estimate
intrinsic lifetimes only for rather large, unstable lifetimes.
We have worked around this limitation by combining
these simulation results with predictions of the Smolu-
chowski theory to construct upper and lower bounds on
τf , and found that these bounds were sufficient to estab-
lish the existence of a change in the mechanism of micelle
birth and death with increasing α. It would be useful for
further work along these lines to apply more sophisti-
cated methods of estimating rates of rare processes in
order to allow precise estimates of fission and fusion rate
constants to be obtained over a wider range of values of
aggregation number.
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Appendix A: Finite-Size Effects on Diffusivity

When performing explicit solvent simulations via
molecular dynamics with periodic boundary conditions
complications can arise due to long range hydrodynamic
interaction between a diffusing object and its periodic
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images. In a cubic box of dimensions L × L × L, the
relative magnitude of this effect depends upon the ratio
of the hydrodynamic radius Rh to the box dimension L.
For L ≫ Rg, this effect has been shown to yield a cor-
rection to the apparent given by to a first order in 1/L
by [50, 52]

D(L) = D −
ξkBT

6πηL
(A1)

where D denotes the diffusivity in an infinite system,
D(L) is the measured apparent diffusivity in a periodic
cubic cell with sides of length L, η is the fluid viscos-
ity, and ξ = 2.8372 is a constant that was obtained by
analyzing the equivalent hydrodynamics problem [52].
The hydrodynamic radius Rh is related to the diffusiv-

ity D in an infinite domain by the Stoke-Einstein relation
D = kBT/(6πηRh). The finite size correction given in
Eq. (A1) yields a small fractional correction to D only
only if L ≫ Rh. In the simulations presented here, we
found that this condition was satisfied in simulations of
free molecules, for which Rh/L ≃ 0.02 for a typical value
of L ≃ 25σ. In many of our simulations of micelles, how-
ever, the ratio Rh/L was found to be large enough to
cause an appreciable error.
To test whether the dependence of our results on L can

be described by this analytic theory, we have compared
theoretical predictions to measurements of the apparent
diffusivity D(L) for micelles of aggregation numbers 20,
40, 60 and 80 in boxes with side lengths of length L = 20,
30, 40 and 80σ. This data was compared to a prediction
for the dependence of D(L) on 1/L that is accurate to
order O(L−2), for which the theory predicts

D(L) =
kBT

6πη

[

1

Rh
−

1

L

(

ξ −
4πR2

h

3L2

)]

. (A2)

Figure 13 shows a plot of the resulting measurements of
D(L) plotted vs. 1/L, along with a fit of the results
for each aggregation number to Eq. (A2), in which the
true value of Rh for each micelle aggregation number has
been treated as a fitting parameter. The quality of the
fit confirms the validity of Eq. (A2).
After confirming that Eq. (A2) accurately described

the data shown in Figure 13, values of Rh for other
choices of n and α were found by measuring the apparent
diffusivity D(L) for each micelle aggregation number in
a single box with L = 25.2σ and then solving Eq. (A2)
for Rh.

Appendix B: Computing Dissociation Lifetime

In this section, we discuss the computation of the mi-
celle dissociation lifetime τd, computed within the con-
text of a model of purely stepwise kinetics. We consider
a system with a unimer concentration c1 and micelle free
energy Wn at that value of c1 with a local maximum at
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FIG. 13. Fit of the apparent diffusivity as a function of in-
verse box length for micelles of different aggregation numbers.
From top to bottom the data is for aggregation numbers 20,
40, 60 and 80. Data was collected from 25 independent tra-
jectories. Error bars are for one standard deviation from the
mean.

nt and a local miniminum ne, for which the difference
∆Wd = Wa −Wne

acts as a barrier to dissociation.

To compute τd, we analyze the thought experiment
proposed in Sec. VIII. We imagine that at some time t =
0, we label all ”proper” micelles of aggregation number n
great than some cutoff size b in an equilibrated solution,
for some choice of cutoff b ∈ [nt, ne]. Let cn(t) denote
the population of micelles that had aggregation number
n > b at t = 0 and that have aggregation number n
at time t, and that have survived over the interval [0, t]
without undergoing dissociation into unimers. A micelle
will be assumed to be doomed to dissociation, and thus
removed from the population of surviving micelles, if its
aggregation number ever shrinks to a lower cutoff value
a, for some choice of a ∈ [1, nt]. The resulting estimate
of τd will be almost independent of our exact choice of
values for the cutoffs a and b, as long as these values are
chosen appropriately. The value of b should be far enough
below ne so that, in equilibrium, almost all micelles have
n > b. The value of a must be far enough below nt so
that a cluster of size a would be very unlikely to grow
into a proper micelle before undergoing dissociation.

The concentration cn(t) described above is assumed to
obey the master equation for the stepwise model, as given
in Eqs. (11). The assumption that clusters of size n ≤ a
are doomed to dissocation is implemented by imposing
an absorbing boundary condition requiring that cn(t) = 0
for n = a. The initial condition described above requires
that cn(t = 0) = c∗n for n > a and cn(t = 0) = 0 for
n ≤ a at t = 0.

The evolution of the surviving subpopulation cn(t) is
described by a system of ordinary differential equations
(ODEs) that are linear in the concentration of clusters of
sizes n > a. The resulting equations involve terms of the
form k+n cnc1 that arise from insertion reactions. The ex-
istence of such terms would yield a set of nonlinear equa-
tions if we allowed c1 to vary with time, and thus treated
c1(t) as one of our dynamical variables. We would, for
example, have to allow for a time-dependent unimer con-
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centration in order compute the “slow” time measured
in experiments that probe the response of a micellar so-
lution to a small step perturbation (e.g., a temperature
jump). In the thought experiment that we consider here,
however, we consider the evolution of a labelled subpop-
ulation of clusters within a system that remains in equi-
librium, and in which c1 thus remains strictly constant.
Let cm(t) denote the total concentration of surviving

micelles of aggregation number n > b at time t, as given
by the sum

cm(t) =

∞
∑

n=b+1

cn(t) . (B1)

This quantity to decays with time as a result of the flux
in aggregation-number space to the absorbing boundary
at n = a. At long times, c(t) can be shown to exhibit an
exponential decay

c(t) ∝ e−t/τd , (B2)

in which τd is the desired dissociation lifetime. In the
remainder of this section, we present two complementary
methods of computing τd.

1. Eigenvalue Analysis

The conceptually simplest method of computing τd is
based on the use of an eigenvector expansion to describe
the relaxation of cn(t) for n > a. The set of linear ODEs
that describe the time evolution of this model can be
expressed as a matrix equation of the general form

dc(t)

dt
= −Ac(t) . (B3)

Here, c(t) is a column vector whose elements are values
of the concentration cn(t) for n > a, and in which A is
a constant matrix. The matrix A can be shown to be
a positive semidefinite tridiagonal matrix with constant
elements whose values depend upon the constant c1 and
the rate constants k+n and k−n .
The solution of Eq. B3 for the column vector c(t) can

be expanded in terms of the eigenvectors of the matrix
A. Let vα for any α ≥ 1 denote an eigenvector of A that
satisfies

Avα = Γαvα , (B4)

where Γα is an associated eigenvalue, and α = 1, 2, 3, . . .
is an index for independent eigenvectors. The solution of
Eq. (B3) can be expanded in these eigenvectors as a sum

c(t) =
∑

α≥1

dαvαe
−Γαt . (B5)

in which values of the coefficients d1, d2, . . . are chosen so
as to satisfy the initial conditions requiring that cn(t =
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FIG. 14. Comparison of the stepwise dissolution of micelles at
equilibrium by both the eigenvalue and Becker-Döring meth-
ods. Dark red diamonds correspond to the calculation ob-
tained by numerical analysis of eigenvalues, while light blue
circles symbols correspond to results of the Becker-Döring
analysis.

0) = c∗n, and in which the eigenvalues Γ1,Γ2, . . . are all
positive.
Using the eigenvector expansion of c(t) to compute

the sum cm(t) defined in Eq. (B1) would yield a sum of
exponentially decaying contributions, in which each term
arises from one of the eigenvectors, and the decay rate of
each term is given by corresponding eigenvalue Γα. At
very long times, the terminal decay is given by the lowest
eigenvalue, which we denote by Γ1, giving cm(t) ∝ e−Γ1t.
We thus identify the dissociation time τd as the inverse

τd = 1/Γ1 (B6)

where Γ1 is the lowest eigenvalue of A.
The dissociation lifetime τd has been computed for the

simulation model of interest at each of the four values of
α used in our simulations, for systems with c1 = cc or
(equivalently) c = 2cc. Very similar estimates of τd have
been obtained by using the eigenvalue method described
above and the Becker-Döring method described in the
next subsection. Results obtained by both methods are
shown in Figure 14.

2. Becker-Döring Analysis

The eigenvalue analysis discussed above provides a
straightforward numerical algorithm for computing τd,
by computing eigenvalues of a large matrix. It involves
very few limiting assumptions, but also provides very lit-
tle physical insight into what determines τd. In systems
with a large barrier to dissociation, more insight can be
gained by following method analogous to one that was
originally introduced by Becker and Döring to describe
homogeneous stepwise nucleation from a supersaturated
vapor[30].
We again consider the decay of the population cn(t)

of micelles that have survived over a time interval [0, t].
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The Becker-Döring analysis of dissociation is based on an
assumption of quasi-steady decay during the late states of
decay. In this approximation, we assume that the current
Jn(t) is independent of n over a range of values near nt

where cn(t) is very small. It is convenient to define a
ratio

yn(t) = cn(t)/c
∗
n . (B7)

where c∗n is the equilibrium concentration of n-mers. The
current Jn(t) can be expressed in terms of yn(t) as a
difference

Jn = −k−n c
∗
n+1(yn+1 − yn) . (B8)

We assume that Jn(t) is equal to an n-independent value
J for all n in some range [a, b] that includes the transition
state value nt. By solving for yn+1 − yn for each n ∈
[a, b], adding these differences of neighboring values, and
setting ya(t) = 0 to impose an absorbing boundary, we
obtain

yb+1(t) = −J(t)R , (B9)

in which

R =

b
∑

n=a

1

k−n c∗n+1

(B10)

is an effective steady-state ”resistance”.
To compute a dissociation rate, we assume in addition

that the concentrations of proper micelles, of sizes n > b,
retain a partial equilibrium distribution during the late
stages of decay. A partial equilibrium distribution is one
in which the ratio of concentrations cn/cn′ for micelles
of different aggregation numbers n, n′ > b always has the
value c∗n/c

∗
n′ that would be obtained in complete equilib-

rium. Such a state is characterized by a dimensionless
concentration yn(t) that is independent of n, giving

yn(t) = Y (t) (B11)

for all n > b, where Y (t) is a function that decays with
time but that is independent of n. Setting yb+1 = Y (t)
in Eq. (B9) yields a flux

J(t) = −Y (t)/R . (B12)

The same approximation yields a total concentration
cm(t) of proper micelles given by

cm(t) = Y (t)c∗m , (B13)

in which

c∗m ≡

∞
∑

n=b+1

c∗n (B14)

is the equilibrium concentration of micelles with n > b at
the specified unimer concentration.

The dissociation time can be determined by setting

dcm(t)

dt
= J(t) , (B15)

while using Eq. (B12) for J(t) and (B13) for cm(t). Solv-
ing for Y (t) then yields an exponential decay, Y (t) ∝
e−t/τd , with a decay time

τd = Rc∗m . (B16)

Eq. (26) in the main text is obtained by evaluating this
product and making convenient choices for limits on the
resulting summations.
The Becker-Döring analysis of τd is strictly valid only

for systems with a large barrier to dissociation, ∆Wd ≫
kBT . In this limit, the sum in Eq. (B14) for c∗m is domi-
nated by values of n ≃ ne, while the sum in Eq. (B10) for
R is instead dominated by values of n ≃ nt. In the same
limit, the values of R and c∗m are both rather insensitive
to the values chosen for the cutoff b used in the above
analysis. In the expression given in Eq. (26), for simplic-
ity, we have taken the sum that defines R to extend over
all n ≤ ne and taken the sum that defines c∗m(t) over all
n ≥ nt.
Predictions for τd obtained using Eq. (26) are com-

pared to those obtained by the eigenvalue method in
Figure 14. For the model considered here, these methods
yield results that agree within a few percent at all values
of α. We chose to discuss only the Becker-Döring method
in the body of the paper because it is more standard and
provides a clear basis for discussing trends.

Appendix C: Fate of Fission Fragments

In subsection XI.A, we describe a scenario for a typical
fission event. Fission was shown to usually involve a re-
actant with an aggregation number significantly greater
than ne (but less than 2ne) and to product products with
aggregation numbers less than ne but greater than the
critical value nt for stepwise dissociation. Here, we show
that the product of such a fission event is very likely to
grow to an aggregation number near n via stepwise pro-
cesses before any competing process (e.g., dissociation or
fusion) could occur. To do so, we compare estimates of
characteristic time scales for several processes that can
occur to products of a fission reaction.
Let Pn denote the normalized distribution of aggrega-

tion numbers of micelles that are created by fission, at
the rates found in thermal equilibrium. This distribution
is given to within a prefactor by a sum

Pn ∝

∞
∑

n′=1

k−n,n′c
∗
n+n′ , (C1)

with a prefactor chosen to satisfy the condition
∑

n Pn =

1. It is useful in this context to express k−n,n′ as a product

k−n,n′ = k−n+n′P
−
n,n′ , (C2)
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in which k−n+n is the overall fission rate constant for clus-
ters of aggregation number n+n′ and Pn,n′ is the proba-
bility that fission of such a cluster will produce fragments
of specified sizes n and n′. Because the probability P−

n,n

is largest for n ≃ n′, we expect Pn to be peaked about a
most probable size approximately half the value of n for
which the reaction rate k−n c

∗
n is maximum.

In what follows we consider the fate of a subpopula-
tion of fission products that are produced at t = 0 with a
distribution Pn, and estimate characteristic times for re-
laxation to the equilibrium distribution by stepwise pro-
cesses, for stepwise dissociation, and for fusion processes.
For concreteness, we focus in what follows on a system
with α = 16. In this case, fission is most frequent for
reactants with n ≃ 135. We thus expect a distribution
Pn peaked about a value n ≃ 65 that is intermediate
between the most probable equilibrium value, ne ≃ 100,
and the critical value for dissociation, nt ≃ 20.
We first consider the time for relaxation of the average

aggregation number of such a subpopulation to the most
probable value ne by stepwise insertion and expulsion.
To treat relaxation to equilibrium, it is useful to approx-
imate the dependence of the micelle free energy Wn near
its minimum by a harmonic function

Wn ≈ Wne
+

1

2

kBT

σ2
(n− ne)

2
+ ... (C3)

in which σ is the standard deviation of n. If we adopt
this approximate for n and approximate k−n by its value
at n = ne, the stepwise model for diffusion of n becomes
equivalent to a model of an overdamped Brownian har-
monic oscillator with a diffusivity given by k−ne

. The time
scale τ for the relaxation of the average coordinate value
of such a Brownian oscillator is given [55] by the ratio

τ =
σ2

k−ne

, (C4)

where σ is the equilibrium standard deviation of n from
ne. For α = 16, we obtain σ = 12.2, k−ne

= 5.9 × 10−4

inverse LJ time units, and τ ≃ 2.5 × 106 LJ time units
for this process.
Stepwise dissociation is a more rare event that also oc-

curs by stepwise processes. For a micelle with an initial
aggregation number n in the range [nt, ne], stepwise dis-
sociation is always much less likely than relaxation to ne,
simply because dissociation requires diffusion of n up a
gradient in Wn to the maximum value at n = nt, rather
than drift of n down the gradient to the minimum value
of Wn at ne.
We next consider possibility that products of a fission

reaction could undergo fusion with other micelles. The
rate per unit time at which a micelle chosen at random
from a population of size distribution Pn is given by a
sum

τ−1
fus =

∑

n,n′

Pnk
+
n,n′c

∗
n′ . (C5)

The required fusion rate constant k+n,n′ is, of course

related to k−n,n′ by the detailed balance condition

k+n,n′c∗nc
∗
n′ = k−n+n′c∗n+n′ . To estimate the fusion rate

given in Eq. (C5), given knowledge of c∗n for all n, it
is thus sufficient to estimate k+n,n, which is also needed

in Eq. (C1) for Pn. To estimate k+n,n we have used an
extrapolation of simulation results for the overall fission
rate k−n and approximated Pn,n′ for fixed n + n′ by a
Gaussian distribution that yields a distribution of val-
ues for products that is centered around half the reac-
tant aggregation number with a standard deviation 6%
of the reactant aggregation number. Using this estimate,
we find a fusion lifetime τfus = 3.8 × 108 in Lennard-
Jones units for a system with α = 16. This is more than
100 times the estimated time for the average aggregation
number to relax by stepwise insertion, implying that fu-
sion is unlikely to occur befor relaxation of n stepwise
insertion.

Appendix D: Statistical Analysis of Fission Data

We use a maximum likelihood estimator [54] to esti-
mate the average fission lifetime τfis(M,α) from our data
for observed times of fission events. For each choice of
a set of values of α and N , we perform n simulations of
the same duration T , with n = 20. The results of the
simulations yield a set of simulations in which fission oc-
curred before the simulation was ended after a time T ,
and a set of simulations in which no fission was observed.
If fission occurred in simulation number i, for i ∈ [1, n]
we define a variable yi to be the time at which fission
occurred. If fission did not occur in simulation number
i, we set yi = T , by convention.
We assume that survival to time y in each trial is con-

trolled by an exponential probability density function

P (y; τ) =
1

τ
e−t/τ (D1)

for y < T , in which the parameter τ ≡ τfis is the fission

lifetime. There is also a probability e−T/τ that fission will
not occur before time T , corresponding to y = T . To de-
rive an expression for the maximum likelihood estimator
(MLE) for τ , we maximize the conditional probability of
obtaining the observed sequence of values of y1, . . . , yn
given a specified value of τ with respect to variations in
the parameter τ . Because the n trials are statistically in-
dependent, the joint probability of obtaining a particular
set of values y1, . . . , yn, given a value for τ , is given by a
product

P (y1, . . . , yn; τ) = P (y1; τ)P (y2; τ) . . . P (yn; τ) . (D2)

The maximumum likelihood estimator (MLE) for τ is ob-
tained by setting the values of y1, . . . , yn to the observed
values, with the understanding that values yi = T repre-
sents the case in which no fission occurs, and maximizing
the joint probability P (y1, . . . , yn; τ) with respect to the
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unknown parameter τ . This can be done by maximizing
the logarithm

lnP (y1, . . . , yn; τ) =

n
∑

i=1

lnP (yi; τ) , (D3)

which is given explicitly by

lnP (y1, . . . , yn; τ) =

n
∑

i=1

B(yi < T )(−yi/τ − ln(τ))

+

n
∑

i=1

B(yi = T )(−T/τ) , (D4)

where B(x) is a boolean-valued function that evaluates
to 1 if its argument is a true statement and to 0 if its
argument is false. The MLE is obtained by setting the
derivative of this quantity with respect to τ equal to zero.
A straightfoward calculation of the derivative yields the
estimator

τ =
1

m

n
∑

i=1

yi , (D5)

in which n is the number of micelles that were observed
to undergo fission before the end of the simulation (i.e.,
for which yi < T ). Here, a value yi = T is used in the
sum for each simulations in which fission did not occur
before the end of the simulation. The values shown in
Fig. 8 of this supplementary material and Fig. 2 of the
main manuscript are values of this estimator.
It is reassuring (for those of us who are not statisti-

cians) to consider the behavior of this estimator in the
limits of very long and very short simulations. In the
limit of very long simulations, with T ≫ τ , we expect all
micelles to undergo fission, giving m = n. In this case
Eq. (D5) reduces to an expression for the average of the
measured micelle lifetimes,

lim
T≫τ

τ ≃
1

n

n
∑

i=1

yi (D6)

with all yi < T , as expected. In the opposite limit T ≪
τ , in which only a small fraction undergo fission, this
estimator reduces to

lim
T≪τ

τ ≃ Tn/m , (D7)

i.e., to T divided by the fraction that undergo fission
in time T . This is consistent with the statement that,
for T ≪ τ and large n, the fraction that fission should
approach T/τ .

The statistical error for a MLE of parameter τ can be
estimated by computing the Fisher information, denoted
here by I. The Fisher information for a measurement
of n independent trials of a variable with a distribution
P (y; τ) is given by the average

I = n

〈

−∂2 lnP (y; τ)

∂τ2

〉

, (D8)

in which

〈· · ·〉 =

∫

dyP (y; τ) · · · (D9)

denotes an average computed with respect to the hypoth-
esized probability distribution, using the estimated value
of τ . The mean-squared statistical error σ2 is given for
n ≫ 1 by the inverse Fisher information,

σ2 ≃ 1/I . (D10)

We use this as our estimate of the RMS statistical error
σ. For the model of P (y; τ) considered here, the required
average is analytically tractable, and yields

σ = τ/〈m〉1/2 (D11)

in which

〈m〉 = n[1− exp(−T/τ)] (D12)

is the expected mean value of the number m of simula-
tions in which fission occurs before time T .

We are grateful to Prof. Charles Geyer of the Univer-
sity of Minnesota School of Statistics for suggesting the
use of a maximum likelihood estimator, and providing
us with the analysis outlined above. Prof. Geyer had as-
signed an equivalent problem as homework for a graduate
class in statistics, and gave us the homework solution for
reference.
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