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Semi-grand hybrid Monte Carlo (MC) simulations are used to measure equilibrium properties
of micelles formed in a simple bead-spring model of asymmetric A-B diblock copolymer surfactant
molecules in an A homopolymer solvent, over a range of values of surfactant solubility. Simulations
are used to accurately measure the free energy of formation of micellar clusters as a function of
aggregation number over a wide range of values, and to characterize the crossover from spherical
to rod-like micelle shape with increasing aggregation number. Dynamical properties of the same
model are considered in an accompanying paper.

I. INTRODUCTION

This work and a companion article [1] present a de-
tailed study of both equilibrium and dynamical proper-
ties of a simple simulation model of micellar solutions
of non-ionic surfactants. Both papers consider behav-
ior of a mixture of asymmetric AB diblock copolymers
dissolved in a liquid of A homopolymers, in which the
copolymers form spherical micelles. Equilibrium prop-
erties such as micelle free energies are discussed in this
paper, while the companion article discusses dynamical
properties. The work reported in both papers was origi-
nally motivated by an interest in modelling rare dynam-
ical processs in micellar solutions. An understanding of
equilibrium properties is, however, a prerequisite to the
quantitative study of dynamics. When attempting to
model rare processes that create and destroy entire mi-
celles, it is necessary to know how micelle free energies
depend on aggregation number. Specifically, one needs
accurate estimates of free energies for micelles with ag-
gregation numbers that are rare in equilibrium but play
a critical role in dynamics [2–5]. This need motivated
the development of improved methods for computing mi-
celle free energies, which are reported here along with our
results for a particular simulation model.

Molecular dynamics (MD) simulations of surfactant
micelles are complicated by the fact that equilibration
of the total number of micelles in a solution can be ex-
tremely slow [6, 7]. Exchange of surfactant molecules be-
tween micelles can occur comparatively rapidly via expul-
sion and reinsertion of individual molecules, as can repar-
titioning of material between micelles and free molecules
[8, 9]. These single molecule processes become infrequent
in systems of very sparingly soluble surfactants, but can
be observed in simulations of systems with more solu-
ble surfactants [10–12]. Processes that create or destroy
entire micelles are much less frequent, but are required
in order to equilibrate the number concentration of mi-
celles in a solution [2–4, 6, 13–15]. In any MD simu-
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lation of a closed system, with a fixed number of sur-
factant molecules, the system must also be large enough
to contain many micelles to avoid otherwise severe fi-
nite size effects. This combination of slow relaxation
and finite size effects make it difficult or impossible to
accurately determine the equilibrium average micelle ag-
gregation number and the critical micelle concentration
by straightforward MD simulations [16]. Consequently,
many MD and dissipative particle dynamics (DPD) sim-
ulations have instead focused on properties that equili-
brate more rapidly, such as chain conformations, coun-
terion distribution, and changes in micelle shape with
changes in aggregation number [11, 12, 17–20]. Some
studies have attempted to identify the CMC and equilib-
rium aggregation number by MD or DPD simulations of
simple coarse-grained models with relatively soluble sur-
factants [11, 21–25]. Few of these, however, have demon-
strated that equilibrium has been reached, which requires
that the simulation be long enough for micelles to be re-
peatedly created and destroyed after the system appears
to have equilibrated.

Many limitations of MD simulations can be avoided
by the use of biased Monte Carlo (MC) simulation tech-
niques in an open ensemble. Such simulations use non-
physical moves that allow the system composition to fluc-
tuate. Panagiotopoulos and coworkers have emphasized
how otherwise severe finite-size effects can be minimized
by the use of Monte Carlo simulations in an open en-
semble [26–28]. Bolhuis et al. have also used a similar
approach using free energy methods to determine the mi-
celle formation energy as a function of aggregation num-
ber [29].

In the current work, we perform a biased MC simula-
tion in a semi-grand ensemble using a technique similar
to one used previously by Cavallo, Müller and Binder to
treat a somewhat specialized class of polymeric systems
[30]. The technique used both here and in Ref. [30] can
only be applied solutions of AB diblock copolymer dis-
solved in an A homopolymer in which homopolymer and
copolymers contain the same number of beads. In this
special case, the algorithm provides extremely fast sam-
pling of micelle aggregation number in this special case.
The simulation is performed in a semi-grand ensemble in
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which the number of copolymer molecules can fluctuate,
using a MC move that can transform a copolymer into
a homopolymer, or vice versa. The combination of the
use of an open ensemble and a bias potential that cre-
ates a nearly uniform distribution of micelle aggregation
numbers allows micelles to be created and destroyed rel-
atively rapidly, and allows us to measure how the free
energy of formation of a micelle depends on aggregation
number. Cavallo et al. simulated a lattice model and
considered a sequence of systems containing chains with
different values for number of beads, N , but equal values
of χN , in order to compare to self-consistent field theory
predictions with increasing N . Here, we use a contin-
uum bead-spring model to simulate chains with a fixed
value of N = 32 over a range of values of the effective
χ parameter, in order to study the effects of increasing
AB repulsion (or decreasing solubility) upon micelle ther-
modynamics. The present work also introduces several
technical improvements in the methods used to compute
how the free energy required to create a micelle or cluster
depends on aggregation number. These improvements
were introduced in order to obtain reliable results for the
free energy of very small and very large micelles that are
rare in equilibrium but that play an important role in
the dynamical processes considered in the accompanying
paper.

The remainder of this paper is organized as follows.
Sec. II contains details of the simulation system that
is considered in both this paper and the accompanying
paper. Sec. III describes the details of our Monte Carlo
simulations. Sec. IV discusses the analysis and results for
several properties of a hypothetical semi-grand canonical
ensemble, in which the state of the system is specified
by the value of an exchange chemical potential. Sec. V
presents our analysis of semi-grand canonical formation
free energies for clusters of varying aggregation number.
Sec. VI presents an anaysis of how the shape of a micelle
changes with changing aggregation number, which shows
the existence of a crossover from spherical to rod-like
morphology. Conclusions are summarized in VII.

II. SIMULATION MODEL

The simulations presented here all use a simple bead-
spring model of a system containing a highly asymmetric
AB diblock copolymer surfactant in an A homopolymer
solvent. In the model used here, the copolymer is a chain
of 32 beads containing a block of 28 A beads and 4 B
beads, in which the minority B block forms the micelle
core. Each homopolymer “solvent” molecule is a chain
of 32 A beads.

Interactions are controlled by a potential energy model
similar to one used previously by our group in studies of
block copolymer melts [31–35]. Neighboring beads within
each chain are attracted to one another by a harmonic

bond potential of the form

Ubond(r) =
1

2
κr2 (1)

where r is the distance between beads and κ is a spring
constant. All beads interact through a repulsive non-
bonded pair potential of the form

Upair(r) =
1

2
εij

(
1− r

σ

)2

(2)

for any pair of beads of types i and j that are separated
by a distance r < σ, with Upair = 0 for r > σ, where σ is
the range of the non-bonded interaction. The parameter
εij controls the strength of repulsion between i and j
beads, with εji = εij . All simulations presented here use
a spring constant κ = 3.048kBT/σ

2 and a non-bonded
repulsion εAA = εBB = 25kT for interactions between
beads of the same type.

The repulsion between A and B beads is taken to ex-
ceed εAA by an amount controlled by a parameter

α = (εAB − εAA)/kBT , (3)

which we vary to control copolymer solubility and pre-
ferred micelle size. Extensive simulations have been per-
formed at four values of α = 10, 12, 14, and 16. Systems
with α significantly less than 10 do not exhibit stable
micelles.

The “solvent” in this model was chosen to be a polymer
with the same number of beads as the copolymer in order
to allow the use of efficient semi-grand ensemble sampling
techniques [30]. The copolymer was taken to be highly
asymmetric polymer, with a core-forming B block much
shorter than the corona-forming A block, to favor the
formation of spherical rather than wormlike micelles in
equilibrium.

All simulations are performed in the NPT ensemble
at a constant pressure P = 20.249kBT/σ

3. This re-
sults in a bead concentration of approximately 3.0σ−3

for long chains [34]. Monte Carlo simulations were used
to measure equilibrium properties, such as the cluster
formation free energy, which are reported in this pa-
per. Molecular dynamics simulations of the same model
were used to measure dynamical properties, which are
reported in [1]. All simulations presented here were
performed using the open-source Simpatico simulation
package, which was developed in our research group.
Source code is available via the github repository, at
github.com/dmorse/simpatico.

When analyzing simulations performed with this
model, we use a cluster identification algorithm to iden-
tify both micelles and short-lived submicellar clusters.
In this algorithm, two copolymer molecules are taken
to be in direct “contact” if any two B (i.e., core block)
monomers from those two chains are separated by a dis-
tance less than 0.8σ. Any two molecules that are in con-
tact are assigned to the same cluster. This definition
assigns every copolymer in the simulation unit cell to a
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unique cluster of one or more molecules. Isolated free
molecules are single-molecule clusters. When applied to
a system that contains one micelle, the algorithm typi-
cally identifies one large cluster (the micelle), and a few
free molecules. The algorithm also identifies some small
submicellar clusters of two or more molecules that hap-
pen to have core block monomers in contact, but that
do not have the long lifetimes characteristic of proper
micelles.

III. EQUILIBRIUM SIMULATIONS

Equilibrium properties for this simulation model have
been determined by performing semi-grand Monte Carlo
simulations at constant temperature and pressure. In a
semi-grand ensemble, the composition of the simulation
is allowed to fluctuate via an “alchemical” transforma-
tion move that allows a diblock polymer molecule to be
transformed into a homopolymer or vice versa [30]. Such
a transformation move may only be efficiently used in
dense liquid systems if the two species are approximately
the same size and shape. We have chosen to study a
system in which the surfactant and solvent molecules are
chains with the same number of beads in order to allow
the use of this technique.

The semi-grand MC simulations reported here were all
performed on a system with a periodic cubic simulation
unit cell that contains a total of 1500 copolymer and
homopolymer molecules. At the pressure used here, this
yields a simulation unit cell with edges of average length
L ' 25.2σ. For the range of parameters studied here, a
cell of this size was found to be large enough to prevent
steric interaction of a micelle with its periodic images.

A. Monte Carlo Moves

All MC simulations presented here used two types of
MC move: a hybrid MC move and a semi-grand trans-
formation move.

In a hybrid MC move [36], a short molecular dynamics
simulation is used to generate an attempted Monte Carlo
move. In an NPT ensemble, each attempted hybrid MC
move is generated by running a short constant enthalpy
(NPH) MD simulation, using a reversible, symplectic in-
tegrator and an Anderson barostat. Initial velocities for
each attempted hybrid move (i.e., each short MD simu-
lation) are chosen at random from a Maxwell-Boltzmann
distribution with the desired temperature. Attempted
hybrid moves are accepted or rejected on the basis of an
acceptance probability that depends on the change in sys-
tem enthalpy. When a hybrid move is rejected, particle
positions are reset to the values they had at the beginning
of the attempted move. Because the measured change in
enthalpy arises only from integration discretization er-
rors, the algorithm yields 100% acceptance in the limit
of a small MD integration time step ∆t. The resulting

algorithm has been proven to satisfy detailed balance in
the NPT ensemble even for nonzero values of ∆t 6= 0,
and thus converges to a canonical NPT distribution [36].
In our work, each hybrid move consists of 250 molecu-
lar dynamics integration steps with an integration time
∆t = 0.005τ0. Here, τ0 is the the Lennard-Jones time
unit, given by τ0 = σ

√
mb/kBT , where mb is a bead

masss that is taken to be the same for all beads.
The semi-grand canonical transformation move

changes a single copolymer molecule into a homopoly-
mer, or vice versa. An attempted transformation move
is performed by choosing a chain at random and simply
toggling the bead type of the four beads of that chain
that form the B block of the copolymer, between type
B (to obtain a copolymer) and type A (to obtain an A
homopolymer), while leaving the 28 beads of the corona
block unchanged. This move allows the total number of
copolymer molecules in the simulation to fluctuate.

Umbrella sampling is used to obtain a nearly flat
probability distribution for the number of copolymer
molecules in the simulation, in order to increase the prob-
abilities of otherwise rare states. Let N denote the total
number of copolymers in the simulation at any instant.
Each attempted transformation of a single molecule is
accepted or rejected using an acceptance criterion that is
designed to sample the equilibrium distribution e−U

′/kBT

produced by a modified potential

U ′ = U − V (N) , (4)

in which U is the physical potential energy of the model
as a function of the bead positions and current assign-
ment of molecule types, and V (N) is an umbrella poten-
tial that depends only on N , the number of copolymer
molecules. The addition of an umbrella potential V (N)
has no affect on the acceptance criterion for hybrid MC
moves, since hybrid moves do not change N . The ac-
ceptance criterion for a transformation move is a con-
ventional Metropolis MC criterion based on the change
in the value of U ′ induced by a change in the monomer
type of the last 4 monomers on a randomly chosen chain.
Each simulation was restricted to a finite range of values
of N , by prohibiting transformation moves that would
yield values of N outside that range. Results from sim-
ulations performed over overlapping ranges of N were
combined to obtain final results.

In the main loop of the MC algorithm, a decision is
made at beginning of each step whether to initiate either
a hybrid MC/MD move or a “sweep” of a pre-specified
number Nsweep of consecutive attempted transforma-
tion moves. Within a sweep of transformation moves,
each attempted transformation of a single molecule is
accepted or rejected using the acceptance criterion de-
scribed above. A decision whether to reject a hybrid MC
move is instead made only at the end of the attempted
move (i.e., at the end of a short MD simulation). In
what follows, we will refer to both hybrid MC moves
and sweeps of transformation moves as “composite” MC
moves.
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The equilibrium probability Psim(N) of obtaining a
state with a specified number of molecules in the box
within a biased simulation is given by

Psim(N) ∝ e−[G(N)−V (N)]/kBT , (5)

in which G(N) is the Gibbs free energy for a system with
N copolymers, and V (N) is the biasing potential used in
the simulation. Solving for G(N) yields

G(N) = −kBT lnPsim(N) + V (N) , (6)

to within an arbitrary constant.
The umbrella potential V (N) used in our final calcu-

lations of G(N) was chosen so as to give a nearly flat
histogram P (N). This potential was determined itera-
tively, by running a sequence of simulations in which the
estimate of G(N) obtained from each simulation is used
as the estimate of V (N) for the next iteration [37].

B. Prohibiting Multiple Micelles

To simplify some aspects of the analysis, MC simula-
tions were performed using an acceptance criterion that
prohibits the formation of states containing more than
one micelle within the simulation cell. For this purpose
a “micelle” is defined to be a cluster of aggregation num-
ber greater than or equal to some cutoff value, denoted
by ncut. We used a cutoff ncut = 8 in all of the simu-
lations presented here. A cluster analysis is performed
after each composite MC move, i.e., after each sweep of
transformation moves or each tentatively accepted hybrid
MD move. If more than one cluster of aggregation num-
ber greater than ncut is found to be present, the entire
composite move is rejected and the system is returned
to the state it had before the composite move was at-
tempted. This cluster analysis is performed only at the
end of each composite move, rather than after each at-
tempted transformation move or each time step of the
hybrid move, in order to reduce the computational cost
of the required cluster analysis.

The constraint described above allows sampling of
states that have an arbitrary number of small clusters
with n < ncut. It thus does not suppress appearance of
states with multiple unimers, dimers and other small ag-
gregates. The prohibition of states with more than one
cluster of size n > ncut was introduced in order avoid
potential problems with adequately sampling states in
which the system contains a large number of copolymer
molecules. Because the bias potential V (N) that we use
to enhance the probability of rare states depends only
on the total number of copolymers in the simulation cell,
it does not distinguish between states with one large mi-
celle and states with two smaller micelles. For sufficiently
large values of N , states in which the system contains a
single large micelle can have a higher free energy than
states with two smaller micelles of comparable size. If
the simulations were perfectly ergodic, this would cause

large micelles to undergo rapid spontaneous fission, and
cause poor sampling of the small population of very large
micelles. Moreover, because fission and fusion are rare
events that are not effectively accelerated by our biasing
potential, it could be difficult to ergodically sample the
relative equilibrium probabilities of states with one large
micelle or two smaller micelles. The bias potential used
here was designed to dramatically accelerate the rate of
creation and destruction of a single micelle by stepwise
association and dissociation. This bias allows us to ade-
quately sample relative probabilities of states with zero
or one micelle, but not relative probabilities of states with
different nonzero numbers of micelles. The use of biased
simulations with a prohibition on the formation of mul-
tiple micelles avoids this potential problem, and thereby
allows us to reliably measure free energies for large mi-
celles that would otherwise be susceptible to spontaneous
fission.

The only effect of this rejection rule upon the thermo-
dynamics of the system is to constrain the sampling to
a subset of microstates in which the system contains no
more than one micelle. The free energy G(N) that is
obtained from a constrained simulation is thus the con-
strained free energy of a model that is confined to this
set of microstates, as given by a partition function that
is defined as a sum over these allowed states.

IV. SEMIGRAND CANONICAL ENSEMBLE

Results of biased simulations can be reweighted to ob-
tain results for physical properties in a hypothetical semi-
grand canonical ensemble, by correcting for the effects
of the artificial bias V (N). A semi-grand canonical en-
semble describes a system with a fixed total number of
molecules that can swap molecules with a reservoir at a
fixed exchange chemical potential, causing fluctuations in
N . The exchange chemical potential, denoted by ∆µ, is
the difference between chemical potential of the copoly-
mer and homopolymer species. Such an ensemble can be
used to simulate a small open subsystem within a macro-
scopic micellar solution.

Semi-grand canonical average values for any dynami-
cal variable can be obtained by reweighting the results
of an adaptively biased MC simulation. Let f denote
the instantaneous value of any variable that can be com-
puted from knowledge of system configuration (i.e., from
the bead positions and the type of each molecule in the
system). The semi-grand canonical average of any such
variable can be obtained as a re-weighted average

〈f〉 =
〈fe[∆µN−V (N)]/kBT 〉sim
〈e[∆µN−V (N)]/kBT 〉sim

, (7)

where 〈· · ·〉sim denotes an average over a sequence of
states generated by a biased MC simulation. Somewhat
simpler expressions can be given for quantities that only
require knowledge of the Gibbs free energy G(N) as a
function of N , as discussed below.
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A. Probability Distribution for M

The equilibrium distribution of values of N in a semi-
grand canonical ensemble, denoted by Peq(N,∆µ), is
given by a ratio

Peq(N,∆µ) = e−Φ(N,∆µ)/kBT /Ξ , (8)

in which Ξ is a semi-grand partition function,

Ξ =

∞∑
N=0

e−Φ(N,∆µ)/kBT (9)

and in which

Φ(N,∆µ) ≡ G(N)−N∆µ (10)

is the constrained semi-grand canonical free energy for a
system with a known number of copolymers. Here, G(N)
is the Gibbs free energy that we obtain by analyzing the
biased MC simulations, as described above.

Figure 1 shows MC results for the free energy
Φ(N,∆µ) vs. N at α = 10, 12, 14 and 16 at the value of
∆µ for which the free molecule concentration is exactly
equal to the critical micelle concentration CMC. The def-
inition of the CMC used here is specified in subsection
IV C. At values of ∆µ near this critical value, Φ(N,∆µ)
is a function with two well-separated minima.

States in which N has a value near the smaller value of
N at which Φ(N) is minimum contain only free surfactant
molecules and occasional small clusters, but no proper
micelle. The value of N at this minimum is thus the most
probable value of the number of free surfactant molecules
in a system with no micelle. This is approximately 23 for
α = 10 and about 1 for α = 16. Near this first minimum,
Peq(N) is well approximated by a Poisson distribution

Peq(N) ∝ 〈N1〉N/N ! , (11)

where 〈N1〉 is the average number of free surfactant
molecules. For this distribution, the value of N at which
Peq(N) is maximum and Φ(N) is minimum is equal to
zero if 〈N1〉 < 1 and nearly equal to 〈N1〉 for 〈N1〉 > 1.

The second minimum in Φ(N,∆µ) corresponds to
states that almost always contain a single proper micelle
coexisting with zero or more free molecules. The value
of N at this minimum is thus approximately equal to
the most probable micelle aggregation number plus the
average number of free surfactant molecules that would
coexist with such a micelle within our simulation cell. A
simple estimate of the most probable aggregation number
at a given value of ∆µ may thus be obtained by taking
the difference between the two minima in such a plot of
Φ(N,∆µ).

Between these two minima is a maxima of Φ(N), at a
critical value of N that we denote by Ncr. This maximum
corresponds to a transition state for the formation of a
micelle by stepwise association or for the destruction of
a micelle by stepwise dissociation, which is important in
the next article in this series.
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FIG. 1. Semi-grand canonical free energy Φ(N) of the simu-
lation cell as a function of N (the total number of copolymer
molecules) at ∆µ = ∆µc, for α = 10, 12, 14, and 16, top to
bottom. Curves have been shifted vertically such that Φ = 0
at the first minimum.
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FIG. 2. Product NP (N) vs. the number of copolymer
molecules N in the simulation cell at ∆µ = ∆µc for α = 12,
where P (N) is the probability distribution for N .

B. Free Copolymer Concentrations

Knowledge of the equilibrium probability Peq(N,∆µ)
can be used to compute how the total concentration and
the concentration of free molecules depends on the ex-
change chemical potential ∆µ.

The total copolymer concentration c in a system with
exchange chemical potential ∆µ, including contributions
from both free molecules and clusters of all sizes, is given
by the ratio c = 〈N〉/V in which 〈N〉 is given by the
average,

〈N〉 =

∞∑
N=0

NPeq(N) =

∞∑
N=0

Ne−βΦ(N,∆µ)

∞∑
N=0

e−βΦ(N,∆µ)

. (12)

This sum is generally dominated by values of N near one
or both of the minima of Φ(N,∆µ) or (equivalently) the
maxima of Peq(N,∆µ). When ∆µ is near the critical
value - at which the concentration is equal to the criti-
cal micelle concentration - the summand MPeq(M) has
similar contributions from both maxima in Peq, as shown
graphically in Figure 2.

To estimate the concentration of free molecules, it use-
ful to consider a hypothetical system in which micel-
lization is suppressed. Micelle formation can be artifi-
cally suppressed by adding a fictitious infinite free en-
ergy penalty to microstates with N > Ncr, where Ncr

is the value at which Peq(N,∆µ) has a local minimum.
This is equivalent to simply setting Peq(N,∆µ) = 0 for
all N > Ncr. Let c1 denote the concentration of free
molecules at a specified value of ∆µ in a system with
such a truncated probability distribution. This concen-
tration is given by a ratio

c1 = 〈N〉f/V , (13)

where V is the average volume of the simulation unit cell,

α φc ∆µc/kBT ne σm ∆Wd/kBT ∆µ0/kBT a

10 1.63% 5.49 55 12.1 3.00 9.8 -12.8

12 0.54% 5.96 70 12.8 4.82 11.3 -22.2

14 0.17% 6.17 83 12.1 7.87 12.6 -32.2

16 0.072% 6.54 97 12.2 14.1 13.8 -40.7

TABLE I. Properties of micellar solutions at several values of
α. Shown here are values for the copolymer mole fraction φc

at the critical micelle concentration, the corresponding critical
exchange chemical potential ∆µc, the most probable micelle
aggregation number ne at ∆µ = ∆µc, the standard devia-
tion σm of the micelle aggregation number at ∆µ = ∆µc, the
dissociation barrier ∆Wd defined in Eq. (30), the standard
state exchange chemical potential ∆µ0, and the second virial
coefficent introduced in Eq. (17). The standard deviation
σm reported here is computed by considering only clusters
with n > nt, in order to exclude unimers and other submi-
cellar clusters, and computing the standard deviation of the
distribution Pn ∝ e−Wn/kBT for this subpopulation of proper
micelles.

and where

〈N〉f =

Ncr∑
N=0

Ne−βΦ(N,∆µ)

Ncr∑
N=0

e−βΦ(N,∆µ)

(14)

is the average of N averaged only over states with N ≤
Ncr. Here, we denote the average over such states by the
symbol 〈· · ·〉f . This constrained average is dominated by
values of N near the first minimum in Φ(N,∆µ), which
are states with no micelle.

C. Critical Micelle Concentrations

We define the critical micelle concentration cc to be
the free molecule concentration c1 in a state in which the
average number of free copolymer molecules is equal to
the average number in micelles, or, equivalently, in which
the total concentration is twice the free molecule concen-
tration. We thus determine the corresponding value of
∆µ in this state, denoted by ∆µc, as the value of ∆µ at
which

c = 2c1 , (15)

and at which we define cc = c1 = c/2. All results for
Φ(M) shown in Fig. 1 were computed at ∆µ = ∆µc,
corresponding to systems with c1 = cc. Values of ∆µc

and mole fraction of surfactant at ∆µc are given in Table
I.

D. Dilute Solution Equation of State

In a sufficiently dilute solution, in which interactions
between dissolved copolymers are negligible, we expect
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FIG. 3. Exchange chemical potential ∆µ vs. mole fraction φ
of surfactant in dilute solutions for α = 10, 12, 14, and 16.
Short vertical lines indicate the location of the CMC for each
value of α. Solid blue lines through the data are fits to the
virial equation of state given in Eq. (17). Dashed lines are
dilute solution asymptotes obtained by setting a = 0.

the exchange chemical potential to be related to the mole
fraction φ of copolymers by a dilute solution equation of
state

∆µ = ∆µ◦ + kBT ln

(
φ

1− φ

)
. (16)

where ∆µ◦ is a standard state exchange chemical po-
tential. At concentrations near the CMC, we find that
interactions between individual copolymers cause small
but measurable deviations from this dilute solution law.
To more accurately describe that data, we have thus fit
our data to a virial equation of state

∆µ = ∆µ0 + kBT

[
ln

(
φ

1− φ

)
+ aφ

]
, (17)

in which a is a dimensionless second virial coefficient.

Figure 3 shows a fit of our simulation results for the
relationship of φ and ∆µ at concentrations below the crit-
ical micelle concentration to Eq. (17), in which ∆µ◦ and
a have been treated as fitting parameters. The resulting
parameters are reported in Table I.

The Flory-Huggins theory for the type of mixture con-
sidered here predicts that, in the dilute limit, ∆µ should
have an equation of state of the form given in Eq. (16),
with

∆µ◦/kBT = χNB , (18)

where NB = 4 denotes the number of monomers in the
core block of a copolymer molecule. The value of ∆µ◦

given in Table I can thus equally well be interpreted as
an estimated value of χNB .

V. CLUSTER FREE ENERGIES

The free energy Φ(N,∆µ) shown in Fig. 1 is a free en-
ergy for entire simulation cell with a known total number
of copolymers N . In this section we present our analysis
and results for the free energies required to form clusters
of specified aggregation number.

We consider a solution that can contain aggregates or
clusters of all possible sizes. In what follows, we use
the symbol n to denote the aggregation number (i.e., the
number of copolymer surfactant molecules) of a partic-
ular species of aggregate, where n = 1 denotes a free
molecule. Let cn denote the number concentration of
aggregates that contain n surfactant molecules, or “n-
mers”, while c1 is the concentration of free surfactant, or
“unimers”.

A. Analysis of Simulation Data

We infer cluster free energies from an analysis of the
average number of clusters of each aggregation number
within the simulation unit cell. Let Nn denote the num-
ber of clusters of aggregation number n in a particular
microstate state of the simulation cell, as determined by
our cluster identification algorithm. The average value
〈Nn〉 in a hypothetical semi-grand canonical ensemble
with any specified value of ∆µ can be obtained from a
trajectory of states generated by a biased simulation by
applying Eq. (7) to the dynamical variable Nn.

The joint probability P (N1, N2, . . .) of obtaining a
state with a specified list of numbers of clusters of each
size (N1 unimers, N2 dimers, etc.) is given by a Boltz-
mann factor

P (N1, N2, . . .) ∝ e−Φ(N1,N2,...)/kBT (19)

in which Φ(N1, N2, . . .) is the semi-grand canonical free
energy of a system constrained to have a specified number
of clusters of each aggregation number.

Our analysis treats the system as a dilute solution of
non-interacting clusters. The limitations of this assump-
tion are discussed in subsection V C. In this limit, the
constrained free energy Φ(N1, N2, . . .) of our simulation
cell can be expressed as a sum

Φ(N1, N2, . . .) = Φh +
∑
n≥1

[NnΦex
n + ln(Nn!)] . (20)

Here, Φh is the semi-grand canonical free energy of
a homopolymer reference system, with no copolymer
molecules, while Φex

n is the excess free energy required
to form a n-mer anywhere in our simulation cell. Our
goal is to infer values of Φex

n for all n from our simulation
data.

In our simulations, we have imposed the constraint
that there can be no more than one cluster of size n
greater than or equal to a critical size ncut = 8. The ef-
fects of this constraint must be taken into account in our
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analysis of the frequency of large clusters, n > ncut. It is
useful to begin, however, by considering the behavior of
a simpler model, in which no such constraint is imposed.
This can be shown to correctly describe the statistics of
small clusters with n < ncut that are unaffected by the
constraint.

Unconstrained Systems: In the absence of any artificial
constraint on the allowed values of Nn, this model of
non-interacting clusters given in Eq. (20) yields a joint
probability distribution

P (N1, N2, . . .) ∝
∞∏
n=1

e−βΦex
n Nn

Nn!
. (21)

This yields a distribution in which values of Nn for dif-
ferent values of n are statistically independent, and in
which the probability distribution Nn is given for each n
by a Poisson distribution with an average value

〈Nn〉 = e−βΦex
n . (22)

In the absence of any artificial constraint on the number
of micelles, we can thus infer Φex

n from a measurement of
〈Nn〉 by setting Φex

n = −kBT ln〈Nn〉.
Constrained System: We now consider how to take

into account the constraint prohibiting the appearance
of more than one large cluster. Because the constraint
does not involve values of Nn for clusters of size n < ncut,
values of Nn for these small clusters remain statistically
independent of one another, and of values of Nn for larger
clusters. As a result, we may correctly infer values of Φex

n

for these smaller clusters by setting Φex
n = −kBT ln〈Nn〉,

exactly as in the absence of the constraint. Values of
Nn for larger clusters are, however, strongly correlated
by the requirement that no more than one of them can
have a value Nn = 1. The allowed states of the list of
values of Nn for n ≥ ncut are thus: (a) A state with no
micelle, for which Nn = 0 for all n ≥ ncut, and (b) a set
of states in which the system contains a single micelle
of some specified size greater than ncut. Let P0 denote
the probability that a randomly chosen state in a semi-
grand canonical ensemble will not contain any cluster of
size n ≥ ncut. For n ≥ ncut let 〈Nn〉 denote the average
number of clusters of aggregation number n in the same
ensemble, which is also equal to the probability that one
such cluster exists. These probabilities must satisfy

1 = P0 +

∞∑
n=ncut

〈Nn〉 . (23)

In a constrained system, the probability 〈Nn〉 finding a
cluster of specified size n > ncut is related to the proba-
bility P0 by

e−Φex
n /kBT =

〈Nn〉
P0

. (24)

Eq. (24) has been used to compute Φex
n each n ≥ ncut

from measured values of P0 and 〈Nn〉.
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FIG. 4. Results for the excess free energy Φex
n to form a

cluster of aggregation number n plotted vs. n for systems
with ∆µ = ∆µc (i.e., c1 = cc), at α = 12 (top plot) and
α = 16 (bottom plot). The filled black dot on each curve
indicates the value of n above which, in the absence of any
constraint on the number of large micelles, the appearance of
two micelles of aggregation number n/2 within our simulation
cell would become more probable than the appearance of a
single micelle of aggregation number n. The corresponding
unfilled dot on the curve marks the aggregation number n/2
of the corresponding fission products.

Results for Φex
n are shown plotted vs. n for systems

with ∆µ = ∆µc for several values of α in Fig. (4). Re-
sults for Φex

n were obtained using Eq. (22) for n < ncut

and Eq. (24) for n ≥ ncut. Reassuringly, the resulting
estimate of Φex

n is continuous at ncut = 8. The location
of the local micellar minimum in Φex

n corresponds to the
most probable micelle aggregation number, which we de-
note by ne. Values of ne at ∆µ = ∆µc increases with
increasing α by almost a factor of 2 over the range stud-
ied here, from ne = 55 for α = 10 to ne = 97 for α = 16.
The value of n at which Φex

n has a local maximum, de-
noted here by nt, is the critical aggregation number for
creation of a micelle by stepwise association and for de-
struction of a micelle by stepwise dissociation.

Plots of Φex
n vs. n shown in Fig. 4 broadly resemble

the corresponding plots of Φ(N) vs. N in Fig. 1, except
for a few key differences. The behavior is qualitatively
different for small values of n or N , because Φex

n always
has a minimum at n = 1, while Φ(N) shows a mini-
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mum at a value of N corresponding to the most probable
number of free copolymers in the simulation cell. Any
attempt to describe the prevalance of different sizes of
small, subcritical clusters must thus be based on a com-
putation of Φex

n , rather than Φ(N). The two functions
are more qualitatively similar for n > nt. In this case,
the most obvious difference is a shift in the absicca aris-
ing from the fact that the value of N in this region is
the sum of the aggregation number of a large cluster and
the number of unimers that coexist with it within the
unit cell, whereas Φex

n is plotted as a function of the true
aggregation number.

In appendix B, we consider the question of whether the
behaviour of Φex

n for n > nt can be inferred from knowl-
edge of Φ(M) alone. We consider there how well one
can approximate Φex

n for n > nt simply by re-expressing
Φ(M) as a function of the average number of molecules
in the micelle, when we compute the average number of
molecules in a micelle by subtracting the average num-
ber of free molecules from M . We find that this yields an
accurate estimate for Φex

n to within a constant for n ≥ nt

in systems with large values of α (and thus very few free
molecules), but that this procedure fails at lower values
of α for which the number of free molecules in the simu-
lation is larger.

The motivation for our introduction of a constraint
prohibiting the formation of more than one micelle can
be understood by considering when spontaneous fission
would be otherwise become likely. The solid dot on each
plot in Fig. 4 indicates the value of n above which, in the
absence of this constraint, the appearance of two clusters
of size n/2 within the simulation cell would be predicted
to be more probable than the appearance of one clus-
ter of aggregation number n, for a simulation cell of the
size used here. These probabilities become equal where
Φex
n = Φex

n/2 + ln(2!). Open circles shows the correspond-

ing value of n/2. The value of n above which existence of
a single large cluster of n molecules would be less proba-
ble than the existence of any two smaller clusters of the
same total aggregation number is actually somewhat less
than this estimate, because of the possibility of forming
two clusters of unequal size. The constraint is intended
to improve the reliability of sampling these large, ther-
modynamically unstable clusters, and to avoid the need
to accurately sample the relative probability of one- and
two-micelle states.

The quantity Φex
n (∆µ) is the semi-grand canonical free

energy required to form a single cluster of aggregation
number n anywhere in our simulation cell. The con-
tribution of translational entropy thus causes Φn to de-
pend on the size chosen for the simulation cell: Values
for Φex

n obtained from simulations performed using sim-
ulation cells of different volumes V1 and V2 would differ
by −kBT ln(V2/V1) because of the larger translational
entropy of the micelle in a larger cell.

B. Standard Free Energies

When defining a free energy of formation for a mobile
cluster, there is no way to avoid introducing an arbitrary
convention regarding the volume to which the cluster is
confined. The above definition of Φex

n uses the volume
of the simulation cell for this purpose, which is conve-
nient when analyzing simulation data. The more con-
ventional approach is to express the chemical potential
of each species relative to that obtained at some standard
concentration. In this approach, the chemical potential
for clusters of aggregation number n (n-mers) in a diute
solution is expressed as a sum

µn = µ◦n + kBT ln(cn/c
◦) (25)

where c◦ is an arbitrary standard concentration and µ◦n is
a corresponding standard-state chemical potential. For
simplicity, we take c◦ to be the same for all species.

The relationship between the concentrations of n-mers
and unimers may be established by considering a hypo-
thetical reaction in which an n-mer is formed by asso-
ciation of n unimers (see, e.g., Ref. [38] for a previous
discussion). The equilibrium criterion for this reaction
requires that µn = nµ1. Combining this criterion with
Eq. (25) and solving for cn yields an n-mer concentration

c∗n(c1) = c◦e−Wn(c1)/kBT (26)

for all n > 1, in which we have defined

Wn(c1) ≡ µ◦n − nµ1 . (27)

Here and hereafter, c∗n(c1) denotes the equilibrium con-
centration of n-mers in a solution with a known unimer
concentration c1. The quantity Wn(c1), which depends
on both n and c1, is the free energy required to create
an additional n-mer in a hypothetical solution with a
specified unimer concentration c1 and a standard n-mer
concentration cn = c◦. The dependence of Wn on c1 can
be made explicit by writing Wn(c1) as a sum

Wn(c1) = W ◦n + kBT ln
(c1
c◦

)
(28)

in which W ◦n is a standard free energy of formation for
an n-mer, given by W ◦n ≡Wn(c1 = c◦). Note that, if Eq.
(27) is used to define W1, then W ◦1 = 0, by definition.

The quantities Wn and Φex
n can be related by compar-

ing equivalent expressions for cn. Because Eq. (26) is cor-
rect only in a dilute system with no artificial constraint
on the number of micelles, we compare it to Eq. (22) for
〈Nn〉, which was valid in under the same conditions. By
equating corresponding expressions for c∗n = 〈Nn〉/V , we
obtain

Wn = Φex
n − kBT ln(c◦V ) . (29)

Values of Wn(c1) and Φex
n (c1) obtained at the same value

of c1 thus differ by a shift that is independent of n. This
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FIG. 5. Standard micelle formation free energy W ◦
n plotted

vs. cluster aggregation number n for α = 10, 12, 14, and 16,
defined using a standard concentration c◦ = cc. The standard
free energy W ◦

n is defined by Eqs. (25-28).

implies that Wn and Φex
n have local maxima and local

minima at the same values of of n, which we denote by
nt and ne, respectively.

It is convenient to choose a standard concentration
c◦ = cc equal to the critical micelle concentration. Val-
ues of the standard free energy of formation W ◦n defined
using this convention are plotted vs. n in Figure 5 for
systems all four values of α = 10, 12, 14, and 16. With
this convention, W ◦n corresponds to the value of Wn at
c1 = cc or c = 2cc.

The free energy barrier for dissociation of a micelle into
unimers by stepwise processes, which we denote by ∆Wd,
is given by the difference

∆Wd ≡Wnt −Wne (30)

between the values of Wn at its local maximum at nt

and at its local minimum at ne. The difference ∆Wd

depends on unimer concentration c1, and decreases with
decreasing c1, but is independent of the arbitrary choice
of a standard concentration c◦. For the system studied
here, values of ∆Wd at c1 = cc vary from a 3 - 14 kBT
as α varies from 10 - 16. In the accompanying paper [1],
we give quantitatitve predictions for the average time be-
fore a randomly chosen micelle in an equilibrated solution
would be destroyed by stepwise dissociation, which we re-
fer to as the equilibrium dissociation lifetime. Predictions
for this lifetime depend exponentially on ∆Wd/kBT .

C. Inter-Micelle Interactions

Throughout the above analysis, we have neglected all
effects of interactions between micelles. Because the sim-
ulations from which we infer micelle free energies never
contain more than one micelle, the free energies reported
here are correct for systems with very low micelle number
concentrations, as would be found very near the cmc. In-
clusion of the effects of inter-micelle interactions would

thus have almost no effect upon our predictions of the
CMC, but could effect predictions for the relationship be-
tween chemical potential and the total surfactant concen-
tration at concentrations sufficiently far above the CMC.

Effects of interactions between micelles upon thermo-
dynamic properties can be estimated using a second virial
approximation. Because block copolymer micelles ex-
hibit strong repulsive interactions, due to repulsion of
their coronas, we may model micelles for this purpose
as repulsive spheres with an effective hard-core radius d
comparable to the micelle radius of gyration Rg. The
micelle number concentration, which we denote by cm,
can be approximated by cm = (c− cc)/ne, where c is to-
tal surfactant number concentration and ne is the most
probable micelle aggregation number. The second virial
coefficient B for hard spheres of effective diameter d is
given by B = 2πd3/3. The corresponding increase δW in
the free energy required to form a micelle of aggregation
number n ' ne is δW = kBTcmB.

As an example, consider a system with α = 10 at the
total copolymer concentration c = 2cc, which is the con-
centration at which we have plotted cluster free ener-
gies. Because α = 10 is the lowest value of α we have
considered, with the highest CMC, this is the system
for which interaction effects are greatest at this value of
c/cc. For this system, φc = 0.0163, cc = 0.00153σ−3,
and cm = 2.8 × 10−5σ−3, corresponding to a character-

istic distance c
−1/3
m ' 33σ between micelles. Approxi-

mating Rg ' 5σ and d = 2Rg yields a estimated second
virial coefficient B = 2πd3/2 ' 2× 103σ3. This estimate
yields a predicted free energy shift of δW ' 6×10−2kBT
per micelle. This free energy change would be relevant
in very precise quantitative analysis, but is negligible for
most purposes. The resulting change in free energy per
micelle would be lower for larger values of α at the same
value of c/cc.

VI. MICELLE SHAPE

The shape of the core of micellar clusters has been
characterized by examining the eigenvalues of the gyra-
tion tensor of the micelle core. The instantaeous gyration
tensor, denoted by S, is defined for a cluster of aggrega-
tion number n as a sum

S =
1

N

N∑
i=1

riri (31)

in which ri is the position of the ith B bead in the cluster,
defined relative to the micelle core center of mass, and
riri is a dyadic tensor product. Here, N = NBn is the
total number ofB beads in a cluster of nmolecules, where
NB = 4 is the number of B beads per molecule in the
cluster.

The eigenvalues of this gyration tensor reveal informa-
tion about the shape of the micelle core. If the micelle
core were perfectly spherical, then the three eigenvalues
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of S would have identical values. If the micelle were in-
stead cylindrical or rodlike there will be one larger eigen-
value and two equal smaller eigenvalues. To characterize
the shape, we compute for a sequence of states the three
eigenvalues of S which we denote by λ1, λ2, and λ3. By
convention, we index the three eigenvalues in ascending
order, such that λ3 ≥ λ2 ≥ λ1. For each value of the
aggregation number n, we evaluate average values of the
largest, middle, and smallest eigenvalues over clusters of
that aggregation number. We then define three associ-
ated effective root-mean-squared radiii R1, R2, and R3,
defined by setting

Rα = 〈λα〉1/2 (32)

for α = 1, 2, 3. By construction, these lengths are also
ordered such that R1 ≤ R2 ≤ R3. The radius of gyration
of the core of a cluster of known aggregation number, de-
noted by Rg,core is related to these lengths by the relation

R2
g = 〈Tr[S]〉 = R2

1 +R2
2 +R2

3 , (33)

where Tr[· · ·] denotes the trace of a tensor.
Figure 6 shows the results of a computation of the the

three ordered root-mean-squared core radii as functions
of aggregation number n for α = 12 and α = 16. The
dotted line in this graph shows the common value that
would be expected for all three radii if the core were a
perfectly spherical region containing NBn B monomers
with a volue of v = 1/c per monomer, computed using
the bulk density c = 3σ−3 appropriate to this model in
the limit of long homopolymers. At aggregation num-
bers near the equilibrium aggregation number the effec-
tive radii are similar and stay clustered near the value
expected for a spherical core (the dotted line). The fact
that the three values are never exactly equal reflects the
fact that the core shape fluctuates somewhat about a typ-
ical spherical shape, and that the eigenvalues are ordered
by convention. Beginning at some crossover aggregation
several tens of percent abovemeq, the micelle undergoes a
crossover to a more rodlike shape, as indicated by the on-
set of a steady increase in the value largest value R3 and
the two smaller values, R1 and R2, in which R3 increases
starts to increase approximately linearly with n, while R1

and R2 remain similar to one another and change com-
paratively little with cchanges in n. This crossover to a
rod-like structure appears to begin in the range n = 100
- 125 for α = 12, for which ne = 70, and begins over the
range n = 125 − 150 for α = 16, for which ne = 97. At
values of n slightly above the onset of this crossover, there
is a slight decrease in the values of R1 and R2, which we
believe reflects the formation of dumbbell like structure
with a slightly narrower neck. Images from simulation
demonstrating this transition are shown in Fig. 7 which
shows typical micelles for α equal to 16 and for n equal
to 99 and 170.

For the model studied here, micelles are roughly spher-
ical for values of n near the most probable value ne, but
start to become rodlike for modestly larger values of n.
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FIG. 6. Ordered root-mean-squared radii of the micelle core
measured along the eigendirections of the gyration tensor,
plotted as a function of micelle aggregation number n for
α = 12 (upper plot) and α = 16 (lower plot). Solid lines
represent the measured values of R1, R2 and R3 (from bot-
tom to top). The dotted line represents the corresponding
value expected for a perfectly spherical core with a fixed vol-
ume per core monomer.

While acquiring data at very large values of the aggre-
gation number n it was found that for micelles with ag-
gregation numbers roughly twice that of the equilibrium
aggregation number the micelles form two separate mi-
celles bridged by one or more surfactant molecules. For-
mation of this structure is the result of our prohibition
on forming more than one micelle in each simulation vol-
ume which prevents the micelles from properly separat-
ing. The reliable formation of this structure marks an
end to where we are able to gather reliable equilibrium
data using this technique and so we do not present data
where this structure was observed.

VII. CONCLUSIONS

This work presents a methodology for accurately mea-
suring micelle formation free energies in a particular type
of model system. The method used here is a semi-grand
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FIG. 7. Snapshots of micelles with α = 16 with aggregation
number n = 99 (upper image) and n = 170 (bottom image).
The core forming B beads are shown as solid red while the
corona forming A beads are only outlined in blue. Surround-
ing homopolymers are not shown. The aggregation number
n = 99 of the micelle in the upper image is very close to the
most probable value ne for this value of α. Micelles undergo
a crossover from spherical to elongated cores with increasing
n.

MC simulation technique similar to one used previously
by Cavallo et al. [30]. The method relies on the use of a
semi-grand ensemble and a bias potential that depends
on the total number of copolymer molecules to create an
ensemble in which different values of the micelle aggrega-
tion numbers are almost equally probable. The main dif-
ferences between the methodology used here and that of
Cavallo et al. are (1) the introduction of a MC acceptance
criterion that prohibits the formation of states containing
more than one proper micelle, and (2) the introduction
of a method of computing the micelle free energies from
the probabilities of observing clusters of different sizes.
The prohibition on states with more than one micelle im-
proves the reliability of sampling large micelles that are
thermodynamically unstable to fission into two smaller
micelles. Computation of cluster formation free energies
from formation probabilities, rather than from the de-
pendence of the total system free energy on the number
of surfactant molecules, is necesary to obtain accurate

free energies for small clusters, particularly in systems
of more soluble surfactants in which the simulation cell
contains many free molecules.

Results were obtained for a highly asymmetric copoly-
mers over a range of values of the α parameter (or the
effective χ parameter), for which the critical micelle mole
fraction ranged from 1.6% to 0.07%. Over this range,
the barrier to stepwise dissociation was found to increase
from (3-14)kBT . In an accompanying paper [1], this is
shown to cause the rate of stepwise micelle dissociation to
decrease by many orders of magnitude over the same pa-
rameter range. The relative length of the A and B blocks
used in this study (1/8 of the beads are of type B) was
chosen so as to obtain spherical micelles in equilibrium,
and is the same as the composition used by Cavallo et
al. A study of the dependence of micelle shape on aggre-
gation number shows, however, that there is a crossover
from spherical to rodlike morpology beginning at an ag-
gregation number that is approximately 50% larger than
the most probable aggregation number. This change in
shape is relevant to the interpretation of results for fis-
sion rates discussed in the accompanying paper, where we
find that fission occurs most frequently in equilibrium for
relatively rare micelles that are significantly larger than
the most probable size.

The main limitation of the semi-grand simulation
method used here is the fact that it is directly appli-
cable only to a very special type of system, i.e., copoly-
mer/homopolymer mixtures with chains of equal length.
We chose to study both equilibrium and dynamical prop-
erties of a system of this type in order to take advantage
of the efficiency of this method. There is, however, a clear
need for more general methods of efficiently computing
absolute formation free energies for micelles in othe types
of system.
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Appendix A: Free Molecule Concentrations

In states of the simulation in which N , the number of
copolymers, is greater than or comparable to the value of
Ncr at the CMC, the simulation cell generally contains a
micelle coexisting with a few free copolymer molecules.
In such a state, the micelle and the surrounding solution
of free molecules coexist at an exchange chemical poten-
tial ∆µ̃(N) that depends slightly on N , and that is given
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by

∆µ̃(N) =
∂G(N)

∂N
. (A1)

The chemical potential ∆µ̃(N) for a system with a known
number of copolymers is generally not equal to the
macroscopic chemical potential ∆µ that we used to de-
fine Φ(N,∆µ) in our analysis of a semi-grand ensemble.
Observe that

∂Φ(N,∆µ)

∂N
=
∂(G(N)−∆µN)

∂N
= ∆µ̃(N)−∆µ . (A2)

The derivative ∂Φ(N,∆µ)/∂N vanishes only at the ex-
trema of Φ(N,∆µ), corrresponding to the two local min-
ima of Φ(N,∆µ) (or maxima of P (N)), and to the max-
ima at Ncr (or the minimum of P (N)). Eq. (A2) thus
implies that the N -dependent exchange chemical poten-
tial ∆µ̃(N) of a system with a known value of N is equal
to the macroscopic exchange chemical potential ∆µ used
to define a semi-grand ensemble only at values of N corre-
sponding to these extrema. Specifically, this means that
µ(N) = ∆µ at the most probable micelle size ne, and at
the transition state nt, but not at values of n intermedi-
ate between these values.

In a simulation volume that contain a micelle in coexis-
tence with free chains, the concentration of free molecules
in regions of the simulation cell well outside the micelle
corona is equal to a concentration c1 of free chains in a
system with chemical potential ∆µ̃(N). Figure 8 shows
the corresponding total average number of free molecules
Nf in our simulation cell for systems with different val-
ues of N and α. At the lowest values of α = 10 and 12,
the box contains a substantial number of free molecules
(e.g., 8-25) free molecules, but Nf changes very little with
changes in N . At the highest value of α = 16, fractional
variations in Nf(n) are larger, but absolute values Nf are
much smaller. As a result, absolute values of Nf actu-
ally never varies with changes in N by more than about
one molecule over the range of values of N and α studied
here.

Appendix B: Micelle vs. System Free Energy

In this work, we present results for several closely re-
lated semi-grand canonical free energies. The quantity
Φ(N) is the semi-grand canonical free energy of an entire
simulation cell with a constrained number N of copoly-
mer molecules, defined to within an arbitrary constant.
The quantity Wn is instead the free energy required to
form a cluster of specified aggregation number n. The
quantity Φex

n differs from Wn by an n-independent con-
stant, and is thus essentially equivalent to Wn. For values
of values of n greater than the critical value of nt, the
dependence of Wn on n qualitatively resembles the de-
pendence of Φ(N) on N . The most obvious difference
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FIG. 8. The average number of free molecules in the simu-
lation unit cell, denoted by Nf , versus the total number of
molecules in the cell, denoted by N . The difference in these
two numbers is the micelle excess aggregation number Nex

is that points on a graph of Φ(N) occurs at N that ex-
ceeds the value of n at corresponding points on a plot of
Wn simply because N includes free molecules, in addi-
tion to molecules that are within the micelle. This sug-
gests that, under favorable circumstances, one might be
able to obtain a close approximation for Wn, to within
a constant, by simply plotting Φ(N) as a function of an
approximation for the micelle aggregation number that
we obtain simply by subtracting the average number of
free molecules in the simulation cell from N .

In what follows we define the average excess aggrega-
tion number, denoted by Nex, to be equal to the differ-
ence

Nex(N) = N −Nf(N) (B1)

between the actual total number of copolymer molecules
N in the simulation cell and the average number of free
molecules Nf that we would expect in the simulation unit
cell in the absence of a micelle. In this definition, Nf

is computed at the exchange chemical potential ∆µ̃(N)
characteristic of a system with N copolymers, as de-
termined in appendix A by using the relevant value of
∆µ(N) in Eq. (A2). Because ∆µ̃(N) can be expressed
as a function N alone, this yields a definition of Nex as
a function of N .

In order to compare Φ(N) to Wn we use Nex(N) as
an approximation for the average aggregation number in
the micelle in a system containing a total of N copoly-
mer molecules. Performing this approximation allows us
to write Φ as a function of Nex; however this form of
approximation results in a discrete function Φ(Nex) but
the values of Nex are generally noninteger unlike the true
free energy surface which is only well defined for integer
aggregation numbers. To make a proper comparison we
construct a cubic spline approximation for Φ(Nex) which
allows us to interpolate to the proper integer values. In
Figure 9, we compare plots of Wn vs. n to correspond-
ing plots of Φ plotted as a function of Nex(N), at several
values of α. The plots of Φ vs. n shown here where
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obtained by simply replotting Φ(N) for each value of N
using the corresponding value of Nex(N) as an absicca.
Results for Φ vs. Nex are not shown for values of Nex

much lower than nt where this approximation expected
to fail, since the behavior of Φ(N) and Wn is qualitatively
different for very small values of N or n. The two func-
tions agree for all n > nt for the highest value of α = 16,
but differ significantly for α = 10. There is a particu-
larly large discrepancy near the local maximum n ∼ nt

that increases with decreasing α. The most important
difference between these two cases is the average number
of free molecules in the simulation cell, which is approx-
imately 23 for α = 10 but approximately 1 for α = 16.
The large discrepancy obtained at n ∼ nt at α = 10 ap-
pears to be a result of the fact that, at α = 10, a system
with N such that Nex(N) ∼ nt, the system may exist
in a “supersaturated” state with no large cluster but an
unusually large number of free molecules rather than in a
state with a cluster of aggregation number similar to nt.
This reflects the fact that, in this case, the free energy
cost of Wnt

∼ 10kBT of forming such a cluster is actually
somewhat less than the free energy cost of a correspond-
ing fluctuation in the number of free molecules in such
a system. This comparison indicates that this simple
method of shifting Φ(N) to construct an approximation
for Wn is reliable only for values of n ≥ nt corresponding
to proper micelles only in conditions in which there are
very few free molecules in the simulation cell, so that the
relationship between the two functions is not complicated
by fluctuations in the number of free molecules.

Appendix C: Effect of Constraints on M

In each of the biased MC simulations described here,
the value of N (the number of copolymers in the box) was
constrained to remain with some specified range. This
constraint is imposed by simply prohibiting transforma-
tion moves that, if accepted, would take N outside the
allowed range. Introduction of such a constraint intro-
duces an error in the values obtained for the cluster free
energy Φex

n for values of the cluster aggregation number
n very near the maximum allowed value of N . An exam-
ple of this behavior is shown by the dashed line in Fig.
10, which shows the measured free energy Wn obtained
in a simulation in which the total number of copolymers
in the box was constrained to N ≤ 140. Note the rapid
increase in the value of Wn as n approaches 140. A much
more accurate estimate of the free energy in this range is
shown by the dotted line, which shows results obtained
with a constraint that N ≤ 160, for which this artifact
does not occur within the range shown in this graph.

This error in our measurement of Φex
n is a result of

an artificial constraint on the number of free unimers
that is imposed by the imposition of a constraint on N .
Consider a simulation in which N is constrained to a
range N ≤ N . Let Ξn denote the constrained semi-grand
canonical partition function associated with the set of all
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FIG. 9. Comparisons of the micelle formation free energy Wn

plotted vs n to the simulation free energy Φ plotted vs. the
excess aggregation Nex, for α = 10, 12, and 16, top to bottom.
The solid red line shows Wn vs. n, while the dashed blue line
shows Φ(N) vs. Nex(N). Results for Φ(N) have been shifted
vertically by a constant amount to match the value of Wn at
its minimum.

microstates in which the system contains one large cluster
of aggregation number n and n unimers. The constrained
partition function is thus given to within a constant by
a product

Ξn = e−Φex
n /kBTSN−n , (C1)

where we have defined

SK ≡
k∑

n=0

1

n!
e−nΦex

1 /kBT (C2)

as a factor that arises from a sum over values of n =
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0, . . . ,K, which is evaluated here using an upper limit
K = N − n. The probability of finding exactly one clus-
ter of size n within the simulation is proportional to Ξn.
In the absence of the constraint on N , the sum over n
could be extended to infinity, replacing SN−n by a factor
S∞. Because the value of S∞ is independent n, and also
independent of the presence or absence of any large clus-
ter, the existence of such a common prefactor would have
no effect on the normalized probabilities of finding cluster
of various sizes. A similar situation is recovered in a sys-
tem in which N is constrained for values of n sufficiently
far below N , for which SN−n ' S∞. A signficant error
occurs only when N − n is small enough so that SN−n
differs signficantly from S∞. This error occur whenever
N − n is not much greater than e−Φex

1 /kBT , which is the
average number of unimers that would be present in the
the absence of a constraint on N . When this occurs, the
constraint on the range of allowed values of n decreases
Ξn, thus decreasing the probability of finding a cluster of
size n, and thereby increasing the value of Φex

n that we
infer from the simulation.

The above analysis suggests a simple method to correct
this error. In Eq. (C1), the introduction of a constraint
on N reduces Ξn by a factor SN−n/S∞, corresponding
to an increase in the corresponding free energy by an
amount

∆Φex
n = −kBT ln

(
SN−n
S∞

)
. (C3)

The error caused by proximity of n to the upper bound
can thus be corrected simply by subtracting the above
expression from ∆Φex

n from results for Φex
n for n near

the maximum allowed value of N . This correction has
applied whenever needed to obtain accurate values of Φex

n

and Wn in all plots of these quantities.
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FIG. 10. Comparison of corrected and uncorrected results
for the standard micelle formation free energy Wd vs. n for
α = 12. The dashed line shows uncorrected results obtained
from simulations in which the simulation cell was constrained
to have no more than N = 140 copolymer molecules, which
show the appearance of an artifact for n near this limiting
value. The solid line is the result obtained after applying the
correction given in Eq. (C3). The lighter blue line is the result
obtained from a simulation with higher limit of N = 160, for
which no artifact appears in the range of n shown here.
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