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The spectrum of the adjacency matrix plays several important roles in the mathematical theory
of networks and network data analysis, for example in percolation theory, community detection,
centrality measures, and the theory of dynamical systems on networks. A number of methods have
been developed for the analytic computation of network spectra, but they typically assume that
networks are locally tree-like, meaning that the local neighborhood of any node takes the form
of a tree, free of short loops. Empirically observed networks, by contrast, often have many short
loops. Here we develop an approach for calculating the spectra of networks with short loops using
a message passing method. We give example applications to some previously studied classes of
networks and find that the presence of loops induces substantial qualitative changes in the shape of
network spectra, generating asymmetries, multiple spectral bands, and other features.

I. INTRODUCTION

The adjacency matrix of an undirected network or
graph with n nodes is the n×n symmetric matrix A hav-
ing elements Auv = 1 if node u is connected to node v by
an edge and Auv = 0 otherwise. The spectral properties
of such matrices play a central role both in the mathe-
matical theory of networks and in practical methods for
the analysis of network data. The largest (most positive)
eigenvalue of the matrix, for instance, is related to the
percolation threshold on a network [1, 2], the correspond-
ing eigenvector is widely used as a centrality measure [3],
and spectral properties play a role in graph partitioning
and community detection [4–6], in localization [7, 8], in
the behavior of dynamical systems on networks [9], and
in detectability transitions [10, 11].
Spectra can be calculated using well established,

though computationally demanding, numerical methods,
such as the QR algorithm, but there are also a number
of analytic approaches, all closely related, that make use
of message passing or cavity techniques [12–15]. In these
approaches, the spectrum is expressed in terms of a set of
complex-valued “messages” that are passed between ad-
jacent nodes of the network, such that the values of the
messages a node sends can be calculated, via fairly simple
closed-form equations, from those it receives. In practical
applications the equations are usually solved numerically,
so that these methods are not fully analytic. Nonetheless,
they can provide an estimate of the spectrum of the net-
work that is accurate to any desired degree of precision,
and they also form the foundation for a variety of addi-
tional analytic calculations, for instance of the spectra of
random graphs [13–18].
One disadvantage of these methods, however, is that in

most cases they are restricted to networks that are locally
tree-like, meaning that the neighborhood of any node in
the network takes the form of a tree, free of short loops,
out to arbitrarily large distances in the limit of large
network size. (By “short loops,” we mean loops whose
size remains constant as the network becomes large—a
triangle would be an example of a short loop in a net-

work.) Unfortunately, while model networks such as ran-
dom graphs are typically tree-like in this sense, real-world
networks usually are not. We would like to understand
what effect the presence of short loops in networks might
have on network spectra.
In this paper, we present a message passing method

that allows us to compute adjacency matrix spectra for
networks that contain short loops. Specifically, we show
how to compute the spectra of networks that are made up
of a collection of finite subgraphs or motifs which may
contain loops, joined together via shared nodes. Such
networks have been studied previously, for instance in
the context of random graph models in which motifs are
placed at random [19–22], and message passing methods
(or their equivalent) have been applied to them to calcu-
late things such as percolation properties [21, 22] or the
behavior of the Ising model [23]. The spectrum of the
special case in which the only loop is a triangle has been
calculated in the limit of large average degree using ran-
dom matrix methods [24], but as far as we are aware no
calculation of the spectrum has been performed in the
general case studied here. There are, of course, calcu-
lations going back many decades of the spectra of more
specialized networks containing loops, such as regular lat-
tices. Husimi graphs, a generalization of Bethe lattices
built out of short loops of the same length, have also
been studied using message passing methods [15, 25, 26].
Our work, however, focuses on more general classes of
networks, closer to those observed in empirical studies.

II. NETWORKS CONTAINING SHORT LOOPS

There are a number of ways of generating networks
with short loops. One common approach involves “tri-
adic closure,” meaning any of several processes in which
loops are added to a network that initially has none by
looking for pairs of nodes with a common neighbor and
connecting them to form a triangle [27–30]. This ap-
proach has the advantage of mirroring directly a mech-
anism by which loops are believed to form in some real
networks. On the other hand, it turns out to be quite dif-
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FIG. 1: Top: a network built from a collection of motifs. In
this case there are three motifs: single edges, triangles, and
loops of length four. The shading is intended only to highlight
the motifs; the network itself consists of edges between nodes
alone. Bottom: the same network represented as a factor
graph, a bipartite network with two sets of nodes. One set,
the filled circles, represents the nodes of the original network.
The other, the open squares, represents the motifs.

ficult to treat analytically: even describing the ensemble
of networks generated by such processes is non-trivial.
An alternative approach is to create networks by di-

rectly placing loops in them. For instance, one can cre-
ate a random graph model in which not only single edges
but also complete triangles are strewn among a set of
nodes, each triangle connecting three randomly chosen
nodes [19]. This approach creates ensembles of networks
that are relatively straightforward to describe and an-
alyze. One can, for instance, calculate the expected
sizes of components, or percolation properties [19, 20].
One can take this approach further and create random
graphs in which not merely triangles but also other,
larger motifs are added to the network—sets of four, five,
or more nodes, connected in any of a variety of different
ways [21, 22].
Here we consider networks of this latter type, but we

will not focus on any particular model for generating
them. We will not, for instance, assume that they are
generated randomly (although they could be). Instead,
we demand only a weaker condition on our networks,
as follows. We consider networks built of motifs, as we
have described, where each motif is a connected subgraph
joining together a specific set of nodes in some specific

pattern of edges. A single edge connecting two nodes is it-
self considered to be a motif, the simplest possible exam-
ple. A triangle is another example, and there are many
larger possibilities. Networks built in this fashion can be
represented by a factor graph, a bipartite graph having
two distinct sets of nodes. One set represents the nodes
of the original network, the other represents the motifs,
and there are edges connecting each node to the motifs
to which it belongs—see Fig. 1. In our calculations we
will assume that this factor graph is locally tree-like. The
original network itself is not in general tree-like—it may
contain many loops of various lengths that fall within
the individual motifs—but the factor graph is tree-like.
In effect, we are saying that all the short loops in the
network are accounted for within the motifs. There are
no additional short loops other than these. Our approach
works by writing the spectrum of the network in terms of
a message passing algorithm that acts not upon the orig-
inal network but upon the factor graph, whose locally
tree-like structure then makes the calculation exact, at
least in the limit of large network size.

III. MESSAGE PASSING

In this section we develop our message passing ap-
proach for the general case of networks formed of motifs
of any size and structure, arranged on a locally tree-like
factor graph as in Fig. 1. In Section IV we apply the
resulting equations to the specific example of a network
formed of just two motifs, single edges and triangles, for
which the equations take a particularly simple form.

A. Spectral density

Our goal will be the calculation of the spectral density

or density of states ρ(x) of a given network of n nodes,
which is the function

ρ(x) =
1

n

n
∑

i=1

δ(x− λi), (1)

where λi is the ith eigenvalue of the adjacency matrix and
δ(x) is the Dirac delta function. Following a standard line
of argument, we write the delta function as the limit of a
suitably normalized Lorentzian (or Cauchy) distribution
as its width η tends to zero:

δ(x) = lim
η→0+

η/π

x2 + η2
= − 1

π
lim

η→0+
Im

1

x+ iη
, (2)

where the notation η → 0+ indicates that η tends to zero
from above. Substituting this form into Eq. (1) we get

ρ(x) = − 1

nπ
lim

η→0+
Im

n
∑

i=1

1

x− λi + iη
. (3)
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It will be convenient to define a generalization of the
spectral density to a complex argument z thus:

ρ(z) = − 1

nπ

n
∑

i=1

1

z − λi

= − 1

nπ
Tr(zI−A)−1. (4)

The standard real spectral density ρ(x) of Eq. (3) is
then given by the imaginary part of this quantity where
z = x + iη and we take the limit as η goes to zero from
above. The quantity η acts as a broadening parameter
that broadens the delta-function peaks in the spectrum
by an amount roughly equal to η, and in practical calcu-
lations on finite networks it is sometimes convenient to
retain a small non-zero value of η in order to make ρ(x)
a smooth function of its argument.
Expanding the matrix inverse in Eq. (4) as a geometric

series (zI−A)−1 = z−1
∑∞

r=0
(A/z)r and taking the trace

term by term, we have

ρ(z) = − 1

nπz

∞
∑

r=0

TrAr

zr
. (5)

The quantity TrAr is equal to the number of closed walks
of length r on the network, a closed walk being any (pos-
sibly self-intersecting) path across the network that starts
and ends at the same node. If we can count the number
of such walks for all lengths r then we can calculate the
spectral density from Eq. (5).

B. Counting closed walks

Let u denote an arbitrary node in the network and σ
denote one of the motifs to which it belongs. Because
the factor graph is locally tree-like, any closed walk that
starts at node u and takes its first step across one of
the edges in motif σ must, on its final step, return to
node u also across one of the edges in σ (although not
necessarily the same edge). Were this not the case, were
the walk to return via a different motif, then it would
in the process complete a loop on the factor graph, of
which, by hypothesis, there are none, and hence such
walks cannot exist.
Let us define Nuσ

r to be the number of closed walks
that start at node u, take their first step along one of
the edges in motif σ, and return to node u for the first
time, also via σ, exactly r steps later. Any node other
than u may be visited as many times as we wish during
the walk, but node u is visited only twice, once at the
start of the walk and once at the end. We will call such
walks excursions.
The total number of distinct possible excursions of

length r from node u is given by the sum of Nuσ
r over the

set Su of all motifs σ to which u belongs:
∑

σ∈Su
Nuσ

r .
Walks of length r that visit their starting node more
than twice—say m times other than at the start of
the walk—are made up of m distinct excursions with

lengths r1 . . . rm such that
∑m

i=1
ri = r. Thus the num-

ber Nu
rm of such walks is

Nu
rm =

∞
∑

r1=1

. . .

∞
∑

rm=1

δ
(

r,
∑

i ri
)

m
∏

i=1

∑

σ∈Su

Nuσ
ri

, (6)

where δ(i, j) is the Kronecker delta. (Terms with ri = 1
can only appear in networks that have self-loops—edges
that connect a node to itself—which is rare in real-world
situations. In all other networks the shortest possible
excursion has length 2. We leave these terms in the ex-
pression for the sake of completeness, however.)
Summing Eq. (6) over all possible values of m and all

nodes u now gives us the total number of closed walks
of length r in the whole network with any number of
excursions, which is precisely equal to the quantity TrAr

that we are trying to calculate. Substituting into Eq. (5)
we then get

ρ(z) = − 1

nπz

∞
∑

r=0

1

zr

n
∑

u=1

∞
∑

m=0

Nu
rm

= − 1

nπz

∞
∑

r=0

1

zr

n
∑

u=1

∞
∑

m=0

∞
∑

r1=1

. . .

∞
∑

rm=1

δ
(

r,
∑

i ri
)

m
∏

i=1

∑

σ∈Su

Nuσ
ri

= − 1

nπz

n
∑

u=1

∞
∑

m=0

m
∏

i=1

∞
∑

ri=1

∑

σ∈Su

Nuσ
ri

zri
, (7)

where we adopt the convention that the empty product
∏0

i=1
is equal to 1. Defining the useful quantity

µuσ(z) =

∞
∑

r=1

Nuσ
r

zr−1
, (8)

we can write Eq. (7) as

ρ(z) = − 1

nπz

n
∑

u=1

∞
∑

m=0

[

∑

σ∈Su

µuσ(z)

z

]m

= − 1

nπ

n
∑

u=1

1

z −∑

σ∈Su
µuσ(z)

. (9)

We regard µuσ(z) as a “message,” sent by motif σ to
node u, whose value can be calculated as we now demon-
strate.

C. Message passing equations

To evaluate the messages (8) we need to compute the
number of excursions Nuσ

r —the number of walks from u
that take their first (and last) step via motif σ and visit
u only at the start and end of the walk. The structure
of such walks is illustrated in Fig. 2. Each consists of
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FIG. 2: A complete excursion from a starting node (bot-
tom, circled) consists of a closed walk within a single motif,
here having four steps, plus, optionally, any number of sub-
excursions along the way that leave the motif and return to it
some time later via the same node. Each sub-excursion is it-
self of the same form, which allows us to write a self-consistent
expression (10) for the total number of excursions.

a closed walk around motif σ itself, which visits u only
at its start and end, plus any number of excursions from
nodes in σ (other than u) to the rest of the network.
Let w be a walk of length k+1 around motif σ, which

we will represent by the list v1 . . . vk of k nodes (not nec-
essarily distinct) that the walk passes through other than
node u, and let rv1 , r

v
2 , . . . be the lengths of the excursions

from node v. Then a complete walk of length r, excur-
sions included, must have r = k + 1 +

∑

v∈w

∑

i r
v
i , and

the total number of complete walks of length r that have
w as their foundation is given by

[ ∞
∑

mv1
=0

∞
∑

r
v1
1

=1

. . .

∞
∑

r
v1
mv1

=1

]

. . .

[ ∞
∑

mv
k
=0

∞
∑

r
v
k

1
=1

. . .

∞
∑

r
v
k

mv
k
=1

]

δ
(

r, k + 1 +
∑

v∈w

∑mv

i=1
rvi
)

∏

v∈w

mv
∏

i=1

∑

τ∈Sv

τ 6=σ

Nvτ
rv
i

,

(10)

where mv1 . . .mvk represent the numbers of excursions
from each of the nodes v1 . . . vk.
The total number Nuσ

r of paths is now equal to the
sum of Eq. (10) first over the complete set W k

uσ of walks
of length k + 1 in motif σ that start and end at node u,
and second over all k = 0 . . .∞. Taking the resulting
expression and substituting it into Eq. (8), we find that

µuσ(z) =

∞
∑

k=0

1

zk

∑

w∈W k
uσ

∏

v∈w

∞
∑

m=0

m
∏

i=1

∞
∑

rv
i
=1

∑

τ∈Sv

τ 6=σ

Nvτ
rv
i

zr
v

i

=
∞
∑

k=0

1

zk

∑

w∈W k
uσ

∏

v∈w

∞
∑

m=0

[

∑

τ∈Sv

τ 6=σ

∞
∑

r=1

Nvτ
r

zr

]m

=

∞
∑

k=0

∑

w∈W k
uσ

∏

v∈w

1

z −
∑

τ∈Sv

τ 6=σ

µvτ (z)
. (11)

Defining a new message gσu(z), passed from node u to
motif σ, by

gσu(z) =
1

z −∑

τ∈Su

τ 6=σ

µuτ (z)
, (12)

we can write Eq. (11) as

µuσ(z) =

∞
∑

k=0

∑

w∈W k
uσ

∏

v∈w

gσv(z). (13)

Equations (12) and (13) give us a complete set of self-
consistent equations whose solutions give the values of
the messages µuσ(z). For any given network we can solve
these equations, for example by simple iteration, to find
the values of the µuσ(z) for any z and then substitute
the results into Eq. (9) to get the spectral density.

IV. EXAMPLES

In practice the message passing equations (12) and (13)
can be difficult to solve because they require us to enu-
merate all closed walks of a given length for every mo-
tif in the network, which in many cases is not an easy
task. One important case that is relatively straightfor-
ward, however, is the case of a network composed solely
of single edges and triangles, which has been studied in
other contexts in the past [19, 20, 22].
For networks of this kind, which we will call edge–

triangle networks, there are only two distinct motifs: sin-
gle edges, which connect two nodes to one another, and
triangles, which connect three. Let us treat these in turn.
The case of single edges is straightforward. There is

only one closed walk in such a motif, having two steps,
along the edge and back again. In this case Eq. (13)
simplifies to

µuσ(z) = gσv(z), (14)

where v is the node at the other end of edge σ from u.
The case of triangles is only a little more complicated.

Every closed walk from u in a triangle has the same form:
we walk from u to one of the two other nodes in the
triangle—let us call them v and w—then we alternate
back and forth between v and w some number of times
before returning to u on the final step. For even values of
k in Eq. (13) nodes v and w are visited the same number
of times, namely 1

2
k each. For odd values, one node is

visited 1

2
(k+1) times and the other 1

2
(k− 1) times. Set-

ting k = 2l and summing over integer values of l, Eq. (13)
can then be written

µuσ(z) =

∞
∑

l=1

[

2glσvg
l
σw + glσvg

l−1
σw + gl−1

σv glσw
]

=
2gσv(z)gσw(z) + gσv(z) + gσw(z)

1− gσv(z)gσw(z)
. (15)
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Combining Eq. (14) (for single edges) and (15) (for tri-
angles) with Eq. (12), we now have our complete message
passing equations for edge–triangle networks.

A. Regular graphs

As an example, consider a random network in which
every node belongs to exactly one single edge and one
triangle. This is the equivalent for an edge–triangle net-
work of the regular graphs of traditional graph theory—
networks in which every node has the same degree. The
spectrum of a random regular graph obeys the well-
known Kesten–McKay distribution [31]. Here we calcu-
late the equivalent result for the edge–triangle case.
A random edge–triangle network necessarily has a lo-

cally tree-like factor graph for the same reason that tra-
ditional random graphs are locally tree-like: in a random
graph the probability of creating a loop vanishes in the
limit of large network size. This means our message pass-
ing equations are applicable to the random case and will
be exact in the limit of large network size.
Moreover, in a regular edge–triangle network every

node is equivalent, having the same local neighborhood,
out to arbitrary distances in the limit of large network
size. Similarly, every single edge has the same neighbor-
hood as every other, as does every triangle. This means
in practice that µuσ(z) takes only two values, one for sin-
gle edges and one for triangles, which we will denote by
µ(z) and ν(z) respectively. Similarly, gσu(z) takes only
two values, which we will denote g(z) and h(z). In terms
of these quantities, the message passing equations read

µ(z) = g(z), ν(z) =
2h(z)

1− h(z)
, (16)

and

g(z) =
1

z − ν(z)
, h(z) =

1

z − µ(z)
. (17)

Eliminating g and substituting into Eq. (9), we find that
the complex spectral density ρ(z) is given by

ρ(z) = − 1/π

z − µ(z)− ν(z)
=

1/π

µ− 1/µ
. (18)

At the same time, eliminating g, h, and ν from Eqs. (16)
and (17) yields a quadratic equation for µ with solution

µ(z) =
z2 − z − 1±

√
z4 − 2z3 − 5z2 + 6z + 1

2z
. (19)

We substitute this result into (18) and, after some ma-
nipulation, find that

ρ(z) =
z2 − z − 1± (2z − 1)

√
z4 − 2z3 − 5z2 + 6z + 1

2π(z4 − 2z3 − 5z2 + 6z)
.

(20)

Letting z go to the real line at x, taking the imaginary
part, and noting that the discriminant within the square
root can be written in the form [(z − 1

2
)2 − 13

4
]2 − 8, we

then recover the real spectral density

ρ(x) =
1

π

∣

∣x− 1

2

∣

∣

√

8−
[(

x− 1

2

)2 − 13

4

]2

9−
[(

x− 1

2

)2 − 13

4

]2
. (21)

This is the analog of the Kesten–McKay distribution for
this random regular edge–triangle network.
In order for (21) to be real, we require that the quantity

within the square root be positive. The zeros of this
quantity satisfy (x− 1

2
)2 − 13

4
= ±

√
8, or

x =
1

2

(

1±
√

13± 8
√
2

)

, (22)

and hence the spectral density is non-vanishing in
two different bands, the first between the x val-

ues 1

2
(1 −

√

13± 8
√
2), which is approximately x ∈

[−1.965,−0.149], and the second between the val-

ues 1

2
(1 +

√

13± 8
√
2), which is approximately x ∈

[1.149, 2.965]. Moreover, since Eq. (21) is a function of
|x− 1

2
| only, the spectrum must be symmetric about the

point x = 1

2
, meaning that the two bands are mirror im-

ages of one another. Figure 3 shows the shape of the
spectrum computed from Eq. (21).
Also visible in the figure are two delta-function peaks

in the spectrum at x = −2 and x = 0. These appear in
the solution as divergences in ρ(z) at the corresponding
points, which map to delta functions via Eq. (2). We
could, if we wish, introduce a small Lorentzian broaden-
ing via the parameter η in (2) to make these peaks visible
in the figure, but we have not done that here. Instead
we have merely added the peaks to the figure by hand at
their calculated positions.
We also show in Fig. 3 a histogram of the spectrum,

calculated by direct numerical diagonalization of the ad-
jacency matrix of a single example network randomly
generated from the model with n = 10 002 nodes. (The
number of nodes must be a multiple of six to satisfy the
requirement that the number of ends of edges be even
and the number of corners of triangles be a multiple of
three.) As the figure shows, the exact solution and nu-
merical results agree well.
In principle, one could construct a closed-form solution

analogous to (21) for the spectrum of any random regu-
lar edge–triangle network such that every node has the
same number of edges and triangles. A few other cases
are relatively simple to solve, such as the case where
there are triangles only and no single edges, which is
essentially equivalent to the Husimi graphs studied in
Refs. [15, 26]. The general case, however, involves solv-
ing a quartic rather than a quadratic equation, and, while
this can be done, the solution is complicated and we do
not give it here.
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FIG. 3: The spectrum of a random regular network in which
every node belongs to exactly one single edge and one trian-
gle. The histogram shows the distribution of eigenvalues cal-
culated by numerical diagonalization of the adjacency matrix
of one random realization of the network with 10 002 nodes.
The solid curves show the analytic solution, with the two
delta-function peaks added by hand at their calculated posi-
tions.

B. Random graphs

A more complex example is a general random edge–
triangle network in which we specify separately the num-
ber of edges and triangles that each node participates in.
In recent work, Peron et al. [24] have calculated spec-
tra for such networks using a random matrix method,
though their result is valid only in the limit of large av-
erage network degree. Our message passing method, by
contrast, allows us to study all cases, including cases with
arbitrarily small average degree.
To compute the spectral density of these networks we

must solve the full message passing equations (12), (14),
and (15), which we do here by simple iteration. For a
given network we choose any convenient starting values
for the messages (setting them all to zero works well),
then numerically iterate the equations until they con-
verge to the desired degree of accuracy. This process does
not give us an analytic form for the spectrum, but it can
in principle give us a solution accurate to any required
precision.
Figure 4a shows the results of one such calculation. In

this example we have generated a network of n = 10 000
nodes, each having a number of single edges drawn from a
Poisson distribution with mean 2, and a number of trian-
gles drawn from a Poisson distribution also with mean 2.
The result is a random network with average degree 6
and 2

3
n triangles in total, on average. The histogram in

Fig. 4a shows the spectrum of the network calculated by
conventional numerical diagonalization of the adjacency
matrix. The continuous curve shows the spectral density
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FIG. 4: (a) The spectrum of a random network composed
of single edges and triangles, with a Poisson distribution for
both: the number of both edges and triangles is Poisson dis-
tributed at every node with mean 2. (b) The spectrum of a
configuration model with the same node degrees as the net-
work in (a). In each panel the solid curve shows the spectral
density for a single randomly generated network with 10 000
nodes, calculated by direct iteration of the message passing
equations with Lorentzian broadening parameter η = 0.01.
The histogram shows the spectrum of the same network cal-
culated by numerical diagonalization of the adjacency matrix.

calculated using the message passing equations, with a
Lorentzian broadening parameter η = 0.01 (see Eq. (2)
and the following discussion). As the figure shows, the
agreement between the two calculations is good. Note in
particular how the delta-function peaks in the spectrum
at x = 0 and ±1 emerge clearly in the message pass-
ing calculation, made visible by the broadening. (These
peaks arise because of the presence of small components
in the network. Components of size one, for instance,
contribute a single zero eigenvalue each.) Note also the
very different overall shape of the spectrum in this case
from that of Fig. 3 for the random regular edge–triangle
network.
How does the presence of loops in the network affect

the spectrum in practice? To shed light on this ques-
tion, we show in Fig. 4b the spectrum of a random graph
with the same node degrees as in Fig. 4a, but without
loops. This network is generated using the standard con-
figuration model in which single edges only are placed
between nodes in the appropriate numbers, but no tri-
angles [32, 33]. In the limit of large network size this
produces a locally tree-like network. Figures 4a and 4b
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are plotted on the same scales and, as we can see, there
are some general similarities between the two but also
some clear differences. The approximate ranges spanned
by the spectra are similar and both show a prominent
peak at x = 0. But without loops the spectrum is
symmetric, whereas for the network with loops it has a
distinctly asymmetric shape—the presence of loops pro-
duces a clear redistribution of values, for instance shifting
the upper edge of the band to a higher value. A similar
but more pronounced asymmetry is visible in the spec-
trum of the regular edge–triangle network in Fig. 3.
Mathematically the asymmetry of the spectrum has a

straightforward explanation. In a loopless network all
closed walks have an even number of steps, and hence
the series expansion in Eq. (5) contains only even powers
of z. Once triangles are introduced into the network we
can have walks of odd length and hence the function can
contain both even and odd powers of z.
The difference between the spectra for networks with

and without loops indicates that calculations in which
network spectral properties are approximated using
model networks like the configuration model will in gen-
eral produce not only quantitative but also qualitative
errors because of their neglect of loops.

V. CONCLUSIONS

In this paper we have derived and demonstrated a mes-
sage passing method for calculating the adjacency matrix
spectra of networks that contain short loops. Most pre-
vious analytic approaches to calculating network spec-
tra have made the assumption that the networks studied
were locally tree-like, an assumption that is strongly vi-
olated by most real-world networks. (There have been
some prior studies of non-tree-like cases, but they have
typically been limited to specialized classes of networks
such as regular lattices, dense graphs, or Husimi graphs.)
Our approach gets around this assumption by represent-
ing networks as a collection of motifs, which are allowed
to contain loops, but assuming that the factor graph de-
scribing the connections between motifs is tree-like. This

assumption is enough to allow us to write down message
passing equations for the spectrum of such a network,
even though the network itself contains loops.
We have given two applications of our method to ex-

ample networks composed of just the two simplest motifs,
single edges and triangles. In our first example we con-
sider a random regular graph model in which each node
belongs to exactly one edge and one triangle. For this
model we are able to solve the message passing equations
exactly and derive a closed-form expression for the spec-
tral density. In our second example, we generate random
networks with Poisson distributions of their numbers of
edges and triangles, and compute their spectra by numer-
ical solution of the message passing equations. In both
cases we find good agreement with direct calculations of
the eigenvalues by numerical diagonalization.
The calculations described here could be extended in a

number of ways. We have considered only one example of
the random regular edge–triangle network but, as men-
tioned in Section IVA, it would be possible in principle
to calculate a closed-form expression for the spectra of
such networks in the general case where nodes belong to
any number of edges and triangles, although such an ex-
pression, whose derivation involves the solution of a quar-
tic equation, seems likely to be complicated. One could
also consider more elaborate networks built of larger mo-
tifs than the simple edges and triangles we have consid-
ered here. To do this, one would have to enumerate all
closed walks within each allowed motif in order to evalu-
ate Eq. (13), which becomes progressively harder as the
motifs become larger. Some cases are relatively tractable,
however. Walks on motifs consisting of simple loops of
any length, for instance, are quite straightforward to enu-
merate. These issues, however, we leave for future work.
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